Analysis of rescattering effects in 3π final states

Dominik Stamen

MENU 2023

HISKP (Theorie) Bonn University

16th October 2023

[DS, T. Isken, B. Kubis, M. Mikhasenko, M. Niehus Eur. Phys. J. C 83, 510 (2023); arXiv:2212.11767]

COMPASS experiment

- large data set on diffractive $\pi^-\pi^-\pi^+$ production
- allows to study $I^G = 1^-$ processes
- $m_{3\pi}$ mass range from 0.5 to 2.5 GeV
- set of 88 partial waves

• highly relevant question for COMPASS PWA framework:

[COMPASS; 2015]

to what extent and how are the $\pi^+\pi^-$ partial waves modified by the presence of the third spectator pion?

COMPASS experiment

- large data set on diffractive $\pi^-\pi^-\pi^+$ production
- allows to study $I^G = 1^-$ processes
- $m_{3\pi}$ mass range from 0.5 to 2.5 GeV
- set of 88 partial waves

• highly relevant question for COMPASS PWA framework:

[COMPASS; 2015]

to what extent and how are the $\pi^+\pi^-$ partial waves modified by the presence of the third spectator pion?

• ρ -mass dependence on $m_{3\pi}$

Motivation

- \bullet different decay processes that decay into $\rho\pi$ final states
- effects of the ρ described by $\pi\pi$ *P*-wave phase shift

Motivation

- \bullet different decay processes that decay into $\rho\pi$ final states
- effects of the ρ described by $\pi\pi$ P-wave phase shift
- include full rescattering effects
- Khuri-Treiman equations [Khuri, Treiman; 1960]

Motivation

- different decay processes that decay into $\rho\pi$ final states
- effects of the ρ described by $\pi\pi$ *P*-wave phase shift
- include full rescattering effects
- Khuri-Treiman equations [Khuri, Treiman; 1960]

• which statistics to observe rescattering effects, depending on process and energy?

Khuri–Treiman equations

• amplitude for
$$\omega, \phi
ightarrow 3\pi$$

$$\mathcal{F}(s,t,u) = \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$$

unitarity condition

$$f_1(s) = \mathcal{F}(s) + \widehat{\mathcal{F}}(s)$$

disc $\mathcal{F}(s) = 2i \left(\mathcal{F}(s) + \widehat{\mathcal{F}}(s) \right) \sin \delta(s) e^{-i\delta(s)} \theta(s - 4M_\pi^2)$

- partial wave f_1 with angular momentum $\ell = 1$
- $\pi\pi$ *P*-wave phase shift δ
- \bullet homogeneous solution with $\widehat{\mathcal{F}}(s)=0$ gives Omnès function

[Omnès; 1958]

$$\Omega(s) = \exp\left(\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \mathrm{d}s' \frac{\delta(s')}{s'(s'-s)}\right)$$

Khuri–Treiman equations

• amplitude for $\omega, \phi \to 3\pi$

$$\mathcal{F}(s,t,u) = \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$$

unitarity condition

$$f_1(s) = \mathcal{F}(s) + \widehat{\mathcal{F}}(s)$$

disc $\mathcal{F}(s) = 2i \left(\mathcal{F}(s) + \widehat{\mathcal{F}}(s) \right) \sin \delta(s) e^{-i\delta(s)} \theta(s - 4M_\pi^2)$

- partial wave f_1 with angular momentum $\ell=1$
- $\pi\pi$ *P*-wave phase shift δ
- inhomogeneous solution leads to KT equations

$$\mathcal{F}(s) = \Omega(s) \left(P_n(s) + \frac{s^n}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\mathrm{d}s'}{s'^n} \frac{\sin \delta(s') \widehat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right)$$

- four different processes
- \bullet angular-momentum quantum numbers of 3π system

•
$$(I^G)J^{PC} = (0^-)0^{--}$$
 (exotic), $(0^-)1^{--}$ (ω, ϕ),
 $(1^-)1^{-+}$ (π_1), $(1^-)2^{++}$ (a_2)

- $\bullet\,$ restrictive analysis with only one free parameter: $\rightarrow\,$ normalization
- only consider *P*-waves
- not include processes that involve S-waves $(1^{++}, a_1)$
- only elastic unitarity

Basis functions (normalized s = 0)

Basis functions (normalized $s = M_{\rho}^2$)

Log-likelihood differences

- KT equations set as truth
- to which extent do Omnès functions reproduce these?
- probability density function

$$f(s,t) = \frac{|\mathcal{M}(s,t)|^2}{\int_D |\mathcal{M}(s,t)|^2 \mathrm{d}s \mathrm{d}t}$$

likelihood function

$$L(\mathbb{D}, f) = \prod_{i=1}^{N} f(s_i, t_i)$$

• log-likelihood difference

$$\Delta \mathcal{L}(\mathbb{D}) = \ln(L(\mathbb{D}, f^{\mathsf{Omnès}})) - \ln(L(\mathbb{D}, f^{\mathsf{KT}}))$$

• use Kullback-Leibler divergence $d_{\rm KL}$ and variance $\nu_{\rm KL}$

[Kullback, Leibler; 1951]

 $\bullet\,$ probability of $\Delta {\cal L}>0$ via cumulative distribution function

 $q(N) = 1 - \mathcal{N}(0, \mu(N), \sigma(N)) \quad \mu(N) = -Nd_{\mathsf{KL}} \quad \sigma(N) = \sqrt{N\nu_{\mathsf{KL}}}$

• number of events

$$N(q) = 2\nu_{\mathsf{KL}} \left(\frac{\mathsf{erf}^{-1}(1-2q)}{d_{\mathsf{KL}}}\right)^2$$

Dalitz plots for 1^{--} : ω, ϕ

Dominik Stamen (HISKP)

16.10.2023

Dalitz plots for 1^{-+} : π_1

Dominik Stamen (HISKP)

16.10.2023

11/14

Results

- form dominated by angular momentum quantum number
- rise for limit $M \to \infty$ (but inelastic effects)
- two peaks in 1^{--}

schematic Dalitz plots for different decay masses

- difference decreases when ρ bands cross in Dalitz plot
- approx. $\sqrt{2M_
 ho^2+M_\pi^2}$
- second peak also due to kinematic effect

- compare Omnès to KT solutions: when are rescattering effects visible?
- in $0^{--},\,1^{-+}$ and 2^{++} many events ($\mathcal{O}(10^5)-\mathcal{O}(10^6))$ are needed for all decay masses
- $\bullet~{\rm for}~1^{--}$ strong dependence on decay mass
- at ω mass: small difference [BESIII; 2018]
- at ϕ mass: rescattering effects easy to observe

[KLOE; 2003]

Dalitz plots for 0^{--}

Dominik Stamen (HISKP)

1/2

Dalitz plots for 2^{++}

Dominik Stamen (HISKP)