Global extraction of proton and pion Transverse Momentum Distributions

INFŃ

Istituto Nazionale di Fisica Nucleare

MENU 2023 - Mainz

Lorenzo Rossi

MAP Collaboration

3-dimensional map of the internal structure of the nucleon $f(x, \vec{k}_T)$

 \vec{k}_T = intrinsic (non-perturbative) transverse momentum of the quark

3-dimensional map of the internal structure of the nucleon $f(x, \dot{k_T})$

Quark Polarisation

 \vec{k}_T = intrinsic (non-perturbative) transverse momentum of the quark

3-dimensional map of the internal structure of the nucleon $f(x, \dot{k_T})$

Quark Polarisation

 \vec{k}_T = intrinsic (non-perturbative) transverse momentum of the quark

3-dimensional map of the internal structure of the nucleon $f(x, k_T)$

Time-reversal odd

 \dot{k}_T = intrinsic (non-perturbative) transverse momentum of the quark

3-dimensional map of the internal structure of the nucleon $f(x, k_T)$

Time-reversal odd

Time-reversal even

 \dot{k}_T = intrinsic (non-perturbative) transverse momentum of the quark

A. Bacchetta, F. Delcarro, C. Pisano and M. Radici, Phys. Lett. B 827 (2022) 136961

TMDs map the distribution of partons inside the nucleon in 3D in momentum space.

They can be extracted through global fits There are attempts to calculate them in lattice QCD

3-dimensional map of the internal structure of the nucleon $f(x, k_T)$

Quark Polarisation

 \dot{k}_T = intrinsic (non-perturbative) transverse momentum of the quark

3-dimensional map of the

 $\dot{k_T}$ = intrinsic (non-perturbative) transverse momentum of the quark

TMD factorization — Drell-Yan process

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

4

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

TMD factorization — Drell-Yan process

4

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

4

 $F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A} x_{B} \mathcal{H}^{DY}(Q; \mu) \sum_{\sigma} c_{a}(Q^{2}) \int d|\mathbf{b}_{T}| |\mathbf{b}_{T}| J_{0}(|\mathbf{q}_{T}||\mathbf{b}_{T}|) \hat{f}_{1}^{a}(x_{A}, \mathbf{b}_{T}^{2}; \mu, \zeta_{A}) \hat{f}_{1}^{b}(x_{B}, \mathbf{b}_{T}^{2}; \mu, \zeta_{B})$

 $F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A} x_{B} \mathcal{H}^{DY}(Q; \mu) \sum_{c} c_{a}(Q^{2}) \int d|\mathbf{b}_{T}| |\mathbf{b}_{T}| J_{0}(|\mathbf{q}_{T}||\mathbf{b}_{T}|) \hat{f}_{1}^{a}(x_{A}, \mathbf{b}_{T}^{2}; \mu, \zeta_{A}) \hat{f}_{1}^{b}(x_{B}, \mathbf{b}_{T}^{2}; \mu, \zeta_{B})$

 $F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A} x_{B} \mathcal{H}^{DY}(Q; \mu) \sum_{\sigma} c_{a}(Q^{2}) \int d|\mathbf{b}_{T}| |\mathbf{b}_{T}| J_{0}(|\mathbf{q}_{T}||\mathbf{b}_{T}|) \hat{f}_{1}^{a}(x_{A}, \mathbf{b}_{T}^{2}; \mu, \zeta_{A}) \hat{f}_{1}^{b}(x_{B}, \mathbf{b}_{T}^{2}; \mu, \zeta_{B})$

$$F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A}x_{B}\mathcal{H}^{DY}(Q; \mu) \sum_{a} c_{a}(Q^{2})$$

W term

$$F_{UU,T}(x \, z; \mu_F, \mathbf{P}_{hT}^2, Q^2) = x \sum_a H_{UU,T}^a (Q^2, \mu^2) \int d^2$$

$$+Y_{UU,T}(Q^2,\mathbf{P}_{hT}^2)+\mathcal{O}(M^2$$

$d^2\mathbf{k}_{\perp}\mathbf{d}^2\mathbf{P}_{\perp}f_1^{\mathbf{a}}(x,\mathbf{k}_{\perp}^2;\mu^2)D_1^{\mathbf{a}\to\mathbf{h}}(z,\mathbf{P}_{\perp}^2;\mu^2)\delta^{(2)}(z\mathbf{k}_{\perp}-\mathbf{P}_{hT}+\mathbf{P}_{\perp})$

W Term

• The <u>W term</u> dominates in the region where

• The <u>W term</u> dominates in the region where $q_T \ll Q$

- The Y term has been excluded in the analysis

 $\times \left(\frac{\zeta}{\mu_{b}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{1}{\zeta}\right]$

"Foundations of Perturbative QCD"

TMD factorization – Structure of TMDs

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

TMD factorization — Structure of TMDs Matching coeff. (perturbative calculable)

 $\hat{f}_1^q(x_B, \mathbf{b}_T; \mu_F, \zeta_F) = [C \otimes f_1](x_B)$

 $\times \left(\frac{\zeta}{\mu_{h}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{1}{\zeta}\right]$

"Foundations of Perturbative QCD"

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

 $\times \left(\frac{\zeta}{\mu_{b}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{1}{\zeta}\right]$

"Foundations of Perturbative QCD"

TMD factorization – Structure of TMDs

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

 $\times \left(\frac{\zeta}{\mu_{h}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{1}{\zeta}\right]$

"Foundations of Perturbative QCD"

TMD factorization — Structure of TMDs Collinear PDFs (previous fit)

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

 $\times \left(\frac{\zeta}{\mu_{b}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{1}{\zeta}\right]$

"Foundations of Perturbative QCD"

TMD factorization – Structure of TMDs

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

"Foundations of Perturbative QCD"

TMD factorization — Structure of TMDs

$$(b_{\star}, \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\times \left(\frac{\zeta}{\mu_{b_{\star}}^2}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{\zeta}{Q_0}\right]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x,\mathbf{b}_T;\zeta,Q_0)$$

 $\times \left(\frac{\zeta}{\mu_{b}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{1}{\zeta}\right]$

"Foundations of Perturbative QCD"

TMD factorization – Structure of TMDs

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

 $\times \left(\frac{\zeta}{\mu^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{\zeta}{O_0}\right]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x,\mathbf{b}_T;\zeta,Q_0)$

"Foundations of Perturbative QCD"

TMD factorization — Structure of TMDs

Perturbative Sudakov evolution factor

 $\hat{f}_{1}^{q}(x_{B}, \mathbf{b}_{T}; \mu_{F}, \zeta_{F}) = [C \otimes f_{1}](x_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{L}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$

 $\times \left(\frac{\zeta}{\mu_h^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{\zeta}{\zeta}\right]$

Anomalous dimension:

"Foundations of Perturbative QCD"

TMD factorization — Structure of TMDs

Perturbative Sudakov evolution factor

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

$$\gamma(\mu, \zeta_F) = \gamma_F + \gamma_k \ln\left(\frac{\sqrt{\zeta_F}}{\mu}\right)$$

 $\times \left(\frac{\zeta}{\mu_{b}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{1}{\zeta}\right]$

"Foundations of Perturbative QCD"

TMD factorization – Structure of TMDs

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

 $\times \left(\frac{\zeta}{\mu_{b_{\star}}^2}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[-\frac{\zeta}{\mu_{b_{\star}}^2}\right]^{K(b_{\star},\mu_{b_{\star}})/2} \left[-\frac{\zeta}{\mu_{b_{\star}}^2$

"Foundations of Perturbative QCD"

TMD factorization – Structure of TMDs

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

$\times \left(\frac{\zeta}{\mu_{b_{\star}}^2}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[-$

Collins-Soper kernel

"Foundations of Perturbative QCD"

TMD factorization – Structure of TMDs

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

 $\times \left(\frac{\zeta}{\mu_{b_{\star}}^2}\right)^{K(b_{\star},\mu_{b_{\star}})/2} -$

Collins-Soper kernel

"Foundations of Perturbative QCD"

TMD factorization — Structure of TMDs

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$
$$\frac{\zeta}{Q_{0}} \Big]^{-g_{K}(\mathbf{b}_{T})/2} f_{1}^{NP}(x, \mathbf{b}_{T}; \zeta, Q_{0})$$

 $\times \left(\frac{\zeta}{\mu_{b_{\star}}^2}\right)^{K(b_{\star},\mu_{b_{\star}})/2} -$

NP part of Collins-Soper Kernel

"Foundations of Perturbative QCD"

TMD factorization – Structure of TMDs

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$
$$\frac{\zeta}{Q_{0}} \Big]^{-g_{K}(\mathbf{b}_{T})/2} f_{1}^{NP}(x, \mathbf{b}_{T}; \zeta, Q_{0})$$

 $\times \left(\frac{\zeta}{\mu_{b}^2}\right)^{K(b_\star,\mu_{b_\star})/2} [-$

Kernel of rapidity evolution equation

NP part of **Collins-Soper Kernel**

"Foundations of Perturbative QCD"

TMD factorization — Structure of TMDs

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{ \int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F}) \right\}$$

$$\frac{\zeta}{Q_{0}} \Big]^{-g_{K}(\mathbf{b}_{T})/2} f_{1}^{NP}(x, \mathbf{b}_{T}; \zeta, Q_{0})$$

 $\frac{\partial \ln \hat{f}_1(x, b_T; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = K(b_T, \mu)$

 $\times \left(\frac{\zeta}{\mu_{b}^2}\right)^{K(b_{\star},\mu_{b_{\star}})/2} -$

Kernel of rapidity evolution equation

 $\partial \ln f$

Collins-Soper

kernel

 $K(b_T,$

"Foundations of Perturbative QCD"

TMD factorization — Structure of TMDs

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{ \int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F}) \right\}$$

$$\frac{\zeta}{Q_{0}} \Big]^{-g_{K}(\mathbf{b}_{T})/2} f_{1}^{NP}(x, \mathbf{b}_{T}; \zeta, Q_{0})$$

$$\frac{\hat{f}_1(x, b_T; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = K(b_T, \mu)$$

$$\mu_{b_*}) = K(b_*, \mu_{b_*}) + g_K(b_T)$$

 $\times \left(\frac{\zeta}{\mu_{b}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{1}{\zeta}\right]$

"Foundations of Perturbative QCD"

TMD factorization – Structure of TMDs

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

 $\times \left(\frac{\zeta}{\mu_{b}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{1}{\zeta}\right]$

"Foundations of Perturbative QCD"

TMD factorization — Structure of TMDs

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} \int_{1}^{NP} (x, \mathbf{b}_T; \zeta, Q_0)$$

Non perturbative part of TMDs

 $\times \left(\frac{\zeta}{\mu_{h}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[-\frac{\zeta}{\mu_{h}^{2}}\right]^{K(b_{\star},\mu_{b_{\star}})/2} \left[-\frac{\zeta}{\mu_{h}^{2}}\right$

NP part of Collins-Soper Kernel

"Foundations of Perturbative QCD"

TMD factorization — Structure of TMDs

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$
$$\frac{\zeta}{Q_{0}} \Big]^{-g_{K}(\mathbf{b}_{T})/2} f_{1}^{NP}(x, \mathbf{b}_{T}; \zeta, Q_{0})$$

Non perturbative part of TMDs

 $\times \left(\frac{\zeta}{\mu_{b_{\star}}^2}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[-\frac{\zeta}{\zeta}\right]$

NP part of Collins-Soper Kernel

"Foundations of Perturbative QCD"

TMD factorization — Structure of TMDs

$$\int_{1}^{p} f_{1}(x_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\int_{1}^{p} \frac{(\zeta_{D})^{-g_{K}(\mathbf{b}_{T})/2}}{(Q_{0})^{-g_{K}(\mathbf{b}_{T})/2}} f_{1}^{NP}(x, \mathbf{b}_{T}; \zeta, Q_{0})$$

$$Non perturbative part of TMDs$$

$$\mathbf{Fit extraction}$$

https://github.com/MapCollaboration/NangaParbat

E README.md

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

For the last development branch you can clone the master code:

git clone git@github.com:MapCollaboration/NangaParbat.git

Available codes

https://teorica.fis.ucm.es/artemide/

arTeMiDe

News

12 Dec 2019: Version 2.02 released (+manual update). 23 Feb 2019: Version 1.4 released (+manual update). 21 Jan 2019: Artemide now has a repository.

Archive of older links/news.

Download

Ø

Recent version/release can be found in repository

Articles, presentations & supplementary materials

Extra pictures for the paper arXiv:1902.08474 Seminar of A.Vladimirov in Pavia 2018 on TMD evolution. Link to the text in Inspire. Archive of older links/news

If you have found mistakes, or have suggestions/questions, please, contact us.

Some extra materials can be found on Alexey's web-page Alexey Vladimirov <u>Alexey.Vladimirov@physik.uni-regensburg.de</u>

Ignazio Scimemi ignazios@fis.ucm.es

ATLAS 8TeV 116-150 GeV model 2 NNLO χ²/points=0.22 N=0.845

	Accuracy	SIDIS	DY	Z production	N of points	χ²/N _{data}
Pavia 2017 JHEP 06 (2017) 081	NLL				8059	1.55
SV 2019 <i>JHEP</i> 06 (2020) 137	N ³ LL				1039	1.06
MAPTMD22 <i>JHEP</i> 10 (2022) 127	N ³ LL				2031	1.06

	Accuracy	SIDIS	DY	Z production	N of points	χ²/N _{data}
Pavia 2017 JHEP 06 (2017) 081	NLL				8059	1.55
SV 2019 <i>JHEP</i> 06 (2020) 137	N ³ LL				1039	1.06
MAPTMD22 <i>JHEP</i> 10 (2022) 127	N ³ LL				2031	1.06

MAP Collaboration, JHEP 10 (2022)

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

MAP Collaboration, JHEP 10 (2022)

- Perturbative accuracy: $N^3 LL^-$

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

- Perturbative accuracy: $N^3 LL^{-1}$
- Number of fitted parameters: 21

MAP Collaboration, JHEP 10 (2022)

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: $N^3 LL^-$
- Number of fitted parameters: 21
- Extremely good description: $\chi^2/N_{data} = 1.06$

MAP Collaboration, JHEP 10 (2022)

Different implementation of TMD evolution **Collins-Soper-Sterman** vs zeta-prescription

Different implementation of TMD evolution **Collins-Soper-Sterman** vs zeta-prescription

Different choice of non-perturbative functional form **21 parameters** vs **11 parameters**

Different implementation of TMD evolution **Collins-Soper-Sterman** vs zeta-prescription

Different choice of non-perturbative functional form **21** parameters vs **11** parameters

Different criteria of data selection

Comparison included datasets

MAPTMD22

484(DY) + 1547(SIDIS) = 2031 fitted data

SV19

457(DY) + 582(SIDIS) = 1039 fitted data

- $\mathbf{0.5}$
- $\mathbf{0.4}$
- 0.3
- 0.2
- 0.1

Eur.Phys.J.C 81 (2021) 8, 752

- Home
- TMDplotter
- Source Code Download
- PDF sets (names)
- PDF sets Download (New)
- Updates/News
- Source Code Download (Old)
- TMD-Project
- CCFM uPDF evolution code
- Contact

TMDlib

TMDlib2 and TMDplotter: a platform for 3D hadron structure studies

NEW manual released 2103.09741

- TMDplotter

TMDlib is hosted by Hepforge, IPPP Durham

Download source from TMDlib 2.X

Download source from TMDlib 1.X

• Any questions or comments should be directed to tmdlib@projects.hepforge.org. TMDlib1 Doxygen Documentation

quite good in normalization

	Accuracy	DY	N of points	χ²/N _{data}
Wang et al, 2017 JHEP 08 (2017) 137	NLL		96	1.61
VPion 2019 <u>JHEP 10 (2019) 090</u>	N^2LL'		80	1.44
MAPTMDPion22 PRD 107 (2023) 1, 014014	N^3LL^-		138	1.54
Jam 2023 arXiv:2302.01192	$N^2 L L$		93	1.37

	Accuracy	
Wang et al, 2017 JHEP 08 (2017) 137	NLL	
VPion 2019 <u>JHEP 10 (2019) 090</u>	N^2LL'	
MAPTMDPion22 <u>PRD 107 (2023) 1, 014014</u>	N^3LL^-	
Jam 2023 arXiv:2302.01192	N^2LL	

Small number of data points

	Accuracy	
Wang et al, 2017 JHEP 08 (2017) 137	NLL	
VPion 2019 <u>JHEP 10 (2019) 090</u>	N^2LL'	
MAPTMDPion22 <u>PRD 107 (2023) 1, 014014</u>	N^3LL^-	
Jam 2023 arXiv:2302.01192	N^2LL	

Small number of data points

Fairly good description

	Accuracy	
Wang et al, 2017 JHEP 08 (2017) 137	NLL	
VPion 2019 <u>JHEP 10 (2019) 090</u>	N^2LL'	
MAPTMDPion22 <u>PRD 107 (2023) 1, 014014</u>	N^3LL^-	
Jam 2023 arXiv:2302.01192	$N^2 L L$	

Small number of data points

Fairly good description

Pion-induced Drell-Yan process

$\pi^- + W \rightarrow \mu_+ + \mu_- + X$

Experiment	$\sqrt{s} [\text{GeV}]$	Q [GeV]	N_{bins}	x_F	
E615 (Q-diff)	21.8	4.05 < Q < 13.05	10(8)	$0 < x_F < 1$	W. J. Stirling et al. 1993
E537 (Q-diff)	15.3	4.0 < Q < 9.0	10	$-0.1 < x_F < 1$	E. Anassontzis et al. 198

Pion-induced Drell-Yan process

Experiment	$\sqrt{s} [\text{GeV}]$	Q [GeV]
E615 (Q-diff)	21.8	4.05 < Q <
E537 (Q-diff)	15.3	4.0 < Q <

Pion-induced Drell-Yan process

Starting point for Pion TMDs

MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in the PROTON from a global fit. It seems in agreement with other extractions.

MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in the PROTON from a global fit. It seems in agreement with other extractions.

MAPTMDPion22 is the first extraction of the MAP Collaboration of unpolarized quarks TMDs in the Pion from a fit of pion-induced Drell Yan.

MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in the PROTON from a global fit. It seems in agreement with other extractions.

MAPTMDPion22 is the first extraction of the MAP Collaboration of unpolarized quarks TMDs in the Pion from a fit of pion-induced Drell Yan.

A **Pion TMDs** are an almost unexplored field.

MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in the PROTON from a global fit. It seems in agreement with other extractions.

MAPTMDPion22 is the first extraction of the MAP Collaboration of unpolarized quarks TMDs in the Pion from a fit of pion-induced Drell Yan.

A **Pion TMDs** are an almost unexplored field.

Flavour Dependence

MAPTMD22 is the most recent extraction of unpolarized quarks TMDs in the PROTON from a global fit. It seems in agreement with other extractions.

MAPTMDPion22 is the first extraction of the MAP Collaboration of unpolarized quarks TMDs in the Pion from a fit of pion-induced Drell Yan.

A **Pion TMDs** are an almost unexplored field.

Flavour Dependence

Refinement of Pion TMDs

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$$

$$D_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{P_\perp^2}{g_{3A}}} + \lambda_{FB} k_\perp^2 e^{-\frac{P_\perp^2}{g_{3A}}} \right)$$

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$g_3(z) = N_3 \frac{(z^{\beta} + \delta)(1-z)^{\gamma}}{(\hat{z}^{\beta} + \delta)(1-\hat{z})^{\gamma}}$$

$$g_K(b_T^2) = -g_2^2 \frac{b_T^2}{4}$$

Backup slides

11 parameters for TMD PDF + 1 for NP evolution + 9 for TMD FF = 21 free parameters

Proton

 $g_{1\pi}(x)$

$$= N_{1\pi} \frac{x^{\sigma_{\pi}} (1-x)^{\alpha_{\pi}}}{\hat{x}^{\sigma_{\pi}} (1-\hat{x})^{\alpha_{\pi}^{2}}}$$

SIDIS multiplicities beyond NLL

The description considerably worsens at higher orders!!

Backup slides

<u>High-Energy Drell-Yan beyond NLL</u>

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550