The light baryon resonance spectrum in a coupled-channel approach – recent results of the Jülich-Bonn model

MENU 2023 - The 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

October 17, 2023 | Deborah Rönchen | Institute for Advanced Simulation, Forschungszentrum Jülich

In collaboration with: M. Döring, M. Mai, T. Mart, Ulf-G. Meißner, C.-W. Shen, Y.-F. Wang, R. Workman (Jülich-Bonn and Jülich-Bonn-Washington collaborations)

Supported by DFG, NSFC, MKW NRW HPC support by Jülich Supercomputing Centre

Member of the Helmholtz Association

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Major source of information:

In the past: elastic or charge exchange πN scattering

"missing resonance problem"

In recent years: photoproduction reactions

large data base, high quality (double) polarization observables, towards a complete experiment Reviews: Prog.Part.Nucl.Phys. 125, 103949 (2022), Prog.Part.Nucl.Phys. 111 (2020) 103752

In the future: electroproduction reactions

■ 10^5 data points for πN , ηN , KY, $\pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012) Member of the Helmholtz Association

From experimental data to the resonance spectrum

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Different modern analyses frameworks:

. . .

- (multi-channel) K-matrix: GWU/SAID, BnGa (phenomenological), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3d scattering eq., off-shell intermediate states ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn
- unitary isobar models: unitary amplitudes + Breit-Wigner resonances MAID, Yerevan/JLab, KSU
- other groups: Mainz-Tuzla-Zagreb PWA (MAID + fixed-t dispersion relations, L+P), JPAC (amplitude analysis with Regge phenomenology), Ghent (Regge-plus-resonance), truncated PWA

Detailed comparison of MAID, GWU/SAID, BnGa and JüBo: EPJ A 52, 284 (2016) Member of the Helmholtz Association October 17, 2023 Slide 2112

From experimental data to the resonance spectrum

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Different modern analyses frameworks:

. . .

- (multi-channel) K-matrix: GWU/SAID, BnGa (phenomenological), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3d scattering eq., off-shell intermediate states ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn
- unitary isobar models: unitary amplitudes + Breit-Wigner resonances MAID, Yerevan/JLab, KSU
- other groups: Mainz-Tuzla-Zagreb PWA (MAID + fixed-t dispersion relations, L+P), JPAC (amplitude analysis with Regge phenomenology), Ghent (Regge-plus-resonance), truncated PWA

Detailed comparison of MAID, GWU/SAID, BnGa and JüBo: EPJ A 52, 284 (2016) Member of the Helmholtz Association October 17, 2023 Slide 2112

Jülich-Bonn DCC approach for hadronic reactions

The Jülich-Bonn DCC approach for \mathcal{N}^* and Δ resonances

pion-induced reactions

EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$L'S'p'|T^{II}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{II}_{\mu\nu}|LSp\rangle + \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{II}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{II}_{\gamma\nu}|LSp\rangle$$

channels ν , μ , γ :

 $\hookrightarrow \pi N \to \omega N \text{ included by Y.-F. Wang (PRD 106 (2022)), talk on Monday on compositeness of resonances (2307.06799 [nucl-th]) }$

The Jülich-Bonn DCC approach for N^* and Δ resonances pion-induced reactions ${}_{\rm EPJ\,A\,49,\,44\,(2013)}$

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

October 17, 2023

Slide 3112

Resonance states

- (2 body) unitarity and analyticity respected (no on-shell factorization, dispersive parts included)
- opening of **inelastic channels** ⇒ **branch point** and new **Riemann sheet**

Resonances: poles in the full *T*-matrix • on the unphysical Riemann sheet • Pole position E_0 is the same in all channels • $\text{Re}(E_0) = \text{``mass''}, -2\text{Im}(E_0) = \text{``width''}$ residues \rightarrow branching ratios

3-body $\pi\pi N$ channel:

- **p**arameterized effectively as $\pi\Delta$, σN , ρN
- $\pi N/\pi\pi$ subsystems fit the respective phase shifts
- \downarrow branch points move into complex plane

Photoproduction

Photoproduction in a semi-phenomenological approach

EPJ A 50, 101 (2015)

 $m = \pi, \eta, K, B = N, \Delta, \Lambda$

$T_{\mu\kappa}$: full hadronic *T*-matrix as in pion-induced reactions

Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$\mathbf{V}_{\mu\gamma}(E,q) = \underbrace{\gamma}_{N} \underbrace{\mathbf{P}_{\mu}^{NP}}_{\mathbf{P}_{\mu}^{NP}} B + \underbrace{\gamma}_{N} \underbrace{\mathbf{P}_{i}^{P} \cdot \gamma_{\mu}^{*}}_{\mathbf{P}_{i}^{P}} B = \frac{\tilde{\gamma}_{\mu}^{\sigma}(q)}{m_{N}} P_{\mu}^{\mathsf{NP}}(E) + \sum_{i} \frac{\gamma_{\mu,i}^{\sigma}(q) P_{i}^{\mathsf{P}}(E)}{E - m_{i}^{b}}$$

Simultaneous fit of pion- & photon-induced reactions

Free parameters

- couplings in contact terms
- t- & u-channel parameters: cut-offs, mostly fixed to values of previous JüBo studies (couplings fixed from SU(3))
- \Rightarrow \sim 900 fit parameters in total, \sim 72,000 data points

calculations on a supercomputer [JURECA, Jülich Supercomputing Centre, Journal of large-scale research facilities, 2, A62 (2016)]

- large number of fit parameters, many from polynomials
- can be regarded as advantage: prevents the inclusion of superfluous s-channel states to improve fit

Extension to $K\Sigma$ photoproduction on the proton

JüBo2022 Eur.Phys.J.A 58 (2022) 229

Simultaneous analysis of $\pi N \to \pi N$, ηN , $K\Lambda$, $K\Sigma$ and $\gamma p \to \pi N$, ηN , $K\Lambda$, $K\Sigma$

- almost 72,000 data points in total, $W_{\text{max}} = 2.4 \text{ GeV}$
 - $\gamma p \rightarrow K^+ \Sigma^0$: $d\sigma/d\Omega$, P, Σ , T, $C_{x',z'}$, $O_{x,z}$ = 5,652 • $\gamma p \rightarrow K^0 \Sigma^+$: $d\sigma/d\Omega$, P = 448
- polarizations scaled by new Λ decay constant α_{-} (Ireland PRL 123 (2019), 182301), if applicable
- χ² minimization with MINUIT on JURECA [Jülich Supercomputing Centre, JURECA: JLSRF 2, A62 (2016)]

Resonance analysis:

- all 4-star N and Δ states up to J = 9/2 are seen (exception: $N(1895)1/2^{-}$) + some states rated less than 4 stars
- no additional s-channel diagram, but indications for new dyn. gen. poles

Resonance contributions to $K\Sigma$ photoproduction

JüBo2022 Eur.Phys.J.A 58 (2022) 229

• dominant partial waves: I = 3/2

Exception: P_{13} partial wave (I = 1/2):

N(1720) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{tot}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1726(8)	185(12)	5.9(1)	82(6)
2017	1689(4)	191(3)	0.6(0.4)	26(58)
PDG 2021	1675 ± 15	250^{+150}_{-100}	-	-

N(1900) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1905(3)	93(4)	1.3(0.3)	-40(18)
2017	1923(2)	217(23)	10(7)	-34(74)
PDG 2021	1920±20	150 ± 50	4±2	110±30

drop in cross section due to N(1900)3/2⁺

"cusp-like structure" only qualitatively explained

Resonance contributions to $K\Sigma$ photoproduction

Data: Jude et al. (BGOOD) PLB 820 (2021)

JüBo2022 Eur.Phys.J.A 58 (2022) 229

dominant partial waves: I = 3/2

Exception: P_{13} partial wave (I = 1/2):

N(1720) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{tot}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1726(8)	185(12)	5.9(1)	82(6)
2017	1689(4)	191(3)	0.6(0.4)	26(58)
PDG 2021	1675 ± 15	250^{+150}_{-100}	-	-

N(1900) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{tot}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1905(3)	93(4)	1.3(0.3)	-40(18)
2017	1923(2)	217(23)	10(7)	-34(74)
PDG 2021	1920±20	150 ± 50	4±2	110±30

drop in cross section due to N(1900)3/2⁺

"cusp-like structure" only qualitatively explained

Selected results $\gamma p \rightarrow K^0 \Sigma^+$

Selected fit results:

JüBo2022 Eur.Phys.J.A 58 (2022) 229

- much less data than for K⁺Σ⁰ (448 vs 5,652 data points)
- in parts inconsistent data
 - \rightarrow difficult to achieve a good fit result
- cusp in σ_{tot} at \sim 2 GeV not reproduced (data not included in fit)

Data: open squares: SPAHIR 1999, cyan: SAPHIR 2005, orange: CBELSA/TAPS 2007, black squares: CBELSA/TAPS 2011, open circles: A2 2018, open triangles: A2 2013, black triangles: Hall B 2003, black circles: CLAS 2013

Electroproduction

Experimental studies of electroproduction:

major progress in recent years, e.g., from JLab, MAMI, ...

- = 10⁵ data points for πN , ηN , KY, $\pi \pi N$ electroproduction
- access the Q² dependence of the amplitude

 \rightarrow expected to provide a link between perturbative QCD and the region where quark confinement sets in

so far, no new N^* or Δ^* established from electroproduction: data not yet analyzed on the same level as photoproduction Reviews: Prog.Part.Nucl.Phys. 67 (2012); Few. Body Syst. 63 (2022) 3, 59

Single-channels analyses, e.g.:

- MAID: π, η, kaon electroproduction (EPJA 34, 69 (2007), NPA 700, 429 (2002),)
- JLab: π electroproduction covering the resonance region (PRC 80 (2009) 055203)

- ANL-Osaka: extension of DCC analysis of pion electroproduction (PRC 80, 025207 (2009)) in progress (Few Body Syst. 59 (2018) 3, 24)
- Jülich-Bonn-Washington approach M. Mai *et al.* PRC 103 (2021): $\gamma^* p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K\Lambda$

Figure and data from Markov et al. (CLAS) PRC 101 (2020), resonance contribution: JLab/YerPhI

Jülich-Bonn-Washington parametrization

- simultaneous fit to πN , ηN , $K \Lambda$ electroproduction off proton ($W < 1.8 \text{ GeV}, Q^2 < 8 \text{ GeV}^2$)
- 533 fit parameters, 110.281 data points
- Input from JüBo: $V_{\mu\gamma}(k, W, Q^2 = 0)$, $T_{\mu\kappa}(k, p, W)$, $G_{\kappa}(p, W)$

 \rightarrow universal pole positions and residues (fixed in this study)

Iong-term goal: fit pion-, photo- and electron-induced reactions simultaneously October 17, 2023

$$\gamma^* p \to K \Lambda$$
 at $W = 1.7 \text{ GeV}$

Summary and Outlook

Extraction of the N^* and Δ spectrum from experimental data: major progress in last decade

- \blacksquare new information from photoproduction data \rightarrow new and upgraded states in PDG table
- \blacksquare however: less progress for Δ^* states
- wealth of high-quality electroproduction data, more at high Q^2 in the future (CLAS12) \rightarrow to be included in modern coupled-channel analyses (in progress)

Jülich-Bonn DCC analysis:

- Extraction of the N^* and Δ spectrum in a simultaneous analysis of pion- and photon-induced reactions [Eur.Phys.J.A 58 (2022) 229]
- = $\pi N \rightarrow \omega N$ channel included, prerequisite for ω photoproduction [Wang et al. PRD 106 (2022), 094031]
- Electroproduction: Jülich-Bonn-Washington approach [Mai et al. PRC 103 (2021), PRC 106 (2022), 2307.10051 [nucl-th]]
 - In progress: Baryon transition form factors
 - In progress: adaption of JüBo framework to $\bar{K}N$ reactions $\to \Lambda^*, \Sigma^*$
 - New interactive web interface: https://jbw.phys.gwu.edu (under construction) \rightarrow multipoles, observables, data

Thank you for your attention!

Appendix

New data for $\gamma p ightarrow \eta p$ from CBELSA/TAPS

included in JüBo2O22 Eur.Phys.J.A 58 (2022) 229

T, P, H, G, E Müller PLB 803, 135323 (2020): very first data on H, G (and P) in this channel

1			$r^{1/2}r^{1/2}$	
N(1535) 1/2 ⁻	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma \pi N^{\Gamma} \eta N}{\Gamma_{tot}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1504(0)	74 (1)	50(3)	118(3)
2017	1495(2)	112(1)	51(1)	105(3)
PDG 2022	1510 ± 10	130 ± 20	43 ± 3	-76 ± 5
N(1650) 1/2 ⁻	Re E_0	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{tot}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1678(3)	127(3)	34(12)	71(45)
2017	1674(3)	130(9)	18(3)	28(5)
PDG 2022	1655 ± 15	135 ± 35	29 ± 3	134 ± 10

 $\rightarrow \eta N \mbox{ residue } N(1650)1/2^- \mbox{ much larger (similarly observed by BnGa)}$

 Σ Afzal PRL 125, 152002 (2020): Backward peak in data

 \rightarrow Observation of $\eta'N$ cusp + importance of $N(1895)1/2^-$ (BnGa)

JüBo2022:

- no η' N channel (or cusp), to be included in the future
- no N(1895)1/2⁻ (not needed)
- backward peak from N(1720) & N(1900)3/2+

New data for $\gamma p ightarrow \eta p$ from CBELSA/TAPS

included in JüBo2O22 Eur.Phys.J.A 58 (2022) 229

T, P, H, G, E Müller PLB 803, 135323 (2020): very first data on H, G (and P) in this channel

			$r^{1/2}r^{1/2}$	
N(1535) 1/2 ⁻	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma \pi N^{T} \eta N}{\Gamma_{tot}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1504(0)	74 (1)	50(3)	118(3)
2017	1495(2)	112(1)	51(1)	105(3)
PDG 2022	1510 ± 10	130 ± 20	43 ± 3	-76 ± 5
N(1650) 1/2 ⁻	Re E ₀	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1678(3)	127(3)	34(12)	71(45)
2017	1674(3)	130(9)	18(3)	28(5)
PDG 2022	1655 ± 15	135 ± 35	29 ± 3	134 ± 10

 $\rightarrow \eta N \mbox{ residue } N(1650)1/2^- \mbox{ much larger (similarly observed by BnGa)}$

 Σ Afzal PRL 125, 152002 (2020): Backward peak in data

 \rightarrow Observation of $\eta'N$ cusp + importance of $N(1895)1/2^-$ (BnGa)

JüBo2022:

- no η' N channel (or cusp), to be included in the future
- no N(1895)1/2⁻ (not needed)
- backward peak from N(1720) & N(1900)3/2+ (turquoise lines: both states off)

Uncertainties of extracted resonance parameters

Challenges in determining resonance uncertainties, e.g.:

■ elastic π N channel: not data but GWU SAID PWA are used by most groups → correlated χ^2 fit including the covariance matrix $\hat{\Sigma}$ [PRC 93, 065205 (2016)]

$$\chi^2(A) = \chi^2(\hat{A}) + (A - \hat{A})^T \hat{\Sigma}^{-1}(A - \hat{A})$$

 $A \sim {\rm vector} ~{\rm of} ~{\rm fitted} ~{\rm PWs}, \hat{A} \sim {\rm vector} ~{\rm of} ~{\rm SAID} ~{\rm SE} ~{\rm PWs}$

 \rightarrow same χ^2 as fitting to data up to nonlinear and normalization corrections

- error propagation data → fit parameters → derived quantities: bootstrap method: generate pseudo data around actual data, repeat fit
 - \rightarrow numerically very challenging

model selection, significance of resonance signals:

determine minimal resonance content using Bayesian evidence [PRL 108, 182002; PRC 86, 015212 (2012)] or the LASSO method [J. R. Stat. Soc. B 58, 267 (1996), PRC 95, 015203 (2017)]:

$$\chi_T^2 = \chi^2 + \lambda \sum_{i=1}^{i_{max}} |a_i| ,$$

 $\lambda \sim$ penalty factor, $a_i \sim$ fit parameter

⇒ very challenging for coupled-channel analyses!

The SAID, MAID, BnGa and JüBo approaches

Detailed comparison: EPJ A 52, 284 (2016)

SAID PWA (gwdac.phys.gwu.edu)

based on Chew-Mandelstam K-matrix

- K-matrix elements parameterized as energy-dependent polynomials
- resonance poles are dynamically generated (except for the $\Delta(1232)$)
- = masses, width and hadronic couplings from fits to pion-induced πN and ηN production
- photocouplings from photoproduction

Bonn-Gatchina (BnGa) PWA

(pwa.hiskp.uni-bonn.de)

Multi-channel PWA based on K-matrix (N/D)

- mostly phenomenological model
- resonances added by hand
- resonance parameters determined from large experimental data base: pion-, photon-induced reactions, 3-body final states
- PWA of K
 N scattering, hyperon spectrum EPJA 55,179 & 180 (2019)

MAID PWA (maid.kph.uni-mainz.de)

unitary isobar model

- resonances as multi-channel Breit-Wigner amplitudes
- background: Born terms + Regge exchanges
- photo- and electroproduction of pions, etas & kaons
- Mainz-Tuzla-Zagreb collaboration: MAID + fixed-t dispersion relations, L+P (pwatuzla.com/p/mtz-collab.html)

Jülich-Bonn (JüBo) DCC model

(collaborations.fz-juelich.de/ikp/meson-baryon/main) Lippmann-Schwinger eq. formulated in TOPT

- hadronic potential from effective Lagrangians
- photoproduction as energy-dependent polynomials
- resonances as s-channel states ("by hand"), dynamical generation possible
- resonance parameters from pion- and photon-induced data
- Jülich-Bonn-Washington model: CC electroproduction analysis (jbw.phys.gwu.edu)

Slide 319

Excited states / Resonances

Points: SAID 2006 and CM12

Breit-Wigner parameterization:

$$\mathcal{M}_{ba}^{Res} = -rac{g_b g_a}{E^2 - M_{BW}^2 + iE\Gamma_{BW}}$$

- M_{BW} , Γ_{BW} channel dependent - background? overlapping resonances? thresholds?

Resonances: poles in the T-matrix

- Pole position *E*₀ is the same in all channels
- thresholds: branch points

Excited states / Resonances

Points: SAID 2006 and CM12

Breit-Wigner parameterization:

$$\mathcal{M}_{ba}^{Res} = -rac{g_b g_a}{E^2 - M_{BW}^2 + iE\Gamma_{BW}}$$

- M_{BW} , Γ_{BW} channel dependent - background? overlapping resonances? thresholds?

Resonances: poles in the T-matrix

- Pole position *E*₀ is the same in all channels
- thresholds: branch points

Details of the formalism

Polynomials:

$$P_{i}^{\mathsf{p}}(E) = \sum_{j=1}^{n} g_{i,j}^{\mathsf{p}} \left(\frac{E - E_{0}}{m_{N}}\right)^{j} e^{-g_{i,n+1}^{\rho}(E - E_{0})}$$

$$P_{\mu}^{\rm NP}(E) = \sum_{j=0}^{n} g_{\mu,j}^{\rm NP} \left(\frac{E-E_0}{m_N}\right)^j e^{-g_{\mu,n+1}^{\rm NP}(E-E_0)}$$

JÜLICH Forschungszentrum

The scattering potential: *s*-channel resonances

$$V^{\mathsf{P}} = \sum_{i=0}^{n} \frac{\gamma^{a}_{\mu;i} \gamma^{c}_{\nu;i}}{z - m^{b}_{i}}$$

- $\gamma_{\nu;i}^{c}$ ($\gamma_{\mu;i}^{a}$): creation (annihilation) vertex function with **bare coupling** *f* (free parameter)
- z: center-of-mass energy
- m_i^b: bare mass (free parameter)

Vertex	\mathcal{L}_{int}
$N^*(S_{11})N\pi$	$rac{f}{m_\pi} ar{\Psi}_{N^*} \gamma^\mu ec{ au} \partial_\mu ec{\pi} \Psi + ext{h.c.}$
$N^*(S_{11})N\eta$	$rac{f}{m_\pi} ar{\Psi}_{N^st} \gamma^\mu \partial_\mu \eta \ \Psi \ + \ { m h.c.}$
$N^*(S_{11})N\rho$	$far{\Psi}_{N^*}\gamma^5\gamma^\muec{ au}ar{ ho}_\mu\Psi~+~{ m h.c.}$
$N^*(S_{11})\Delta\pi$	$\frac{f}{m\pi}\bar{\Psi}_{N^*}\gamma^5\vec{S}\partial_\mu\vec{\pi}\Delta^\mu + \text{ h.c.}$

5/2 ≤ J ≤ 9/2: correct dependence on L (centrifugal barrier)

 $\gamma_{\mu \cdot i}^{c} (\gamma_{\mu \cdot i}^{a})$ from effective \mathcal{L}

$$\begin{split} \left(\gamma^{a,c}\right)_{\frac{5}{2}-} &= \frac{k}{M} \left(\gamma^{a,c}\right)_{\frac{3}{2}+} \\ \left(\gamma^{a,c}\right)_{\frac{7}{2}-} &= \frac{k^2}{M^2} \left(\gamma^{a,c}\right)_{\frac{3}{2}-} \\ \left(\gamma^{a,c}\right)_{\frac{9}{2}-} &= \frac{k^3}{M^3} \left(\gamma^{a,c}\right)_{\frac{3}{2}+} \end{split}$$

$$(\gamma^{a,c})_{\frac{5}{2}} + = \frac{k}{M} (\gamma^{a,c})_{\frac{3}{2}} - (\gamma^{a,c})_{\frac{7}{2}} + = \frac{k^2}{M^2} (\gamma^{a,c})_{\frac{3}{2}} + (\gamma^{a,c})_{\frac{9}{2}} + = \frac{k^3}{M^3} (\gamma^{a,c})_{\frac{3}{2}} -$$
Slide 619

Member of the Helmholtz Association

J < 3/2:

October 17, 2023

The scattering potential: *t*- and *u*-channel exchanges

	πΝ	ρΝ	ηΝ	$\pi\Delta$	σΝ	KΛ	ΚΣ
πN	$\begin{array}{l} \mathrm{N,}\Delta,\!\left(\pi\pi\right)_{\!\sigma},\\ \left(\pi\pi\right)_{\!\rho}\end{array}$	N, Δ, Ct., π, ω, a ₁	N, a ₀	Ν, Δ, ρ	Ν, π	Σ, Σ^*, K^*	Λ, Σ, Σ*, Κ*
ρΝ		N, Δ, Ct., ρ	-	Ν, π	-	-	-
ηΝ			N, f ₀	-	-	Κ*, Λ	Σ, Σ^*, K^*
$\pi\Delta$				Ν, Δ, ρ	π	-	-
σΝ					Ν, σ	-	-
ΚΛ						Ξ, Ξ*, f ₀ , ω, φ	Ξ, Ξ*, ρ
ΚΣ							Ξ, Ξ*, f ₀ , ω, φ, ρ

Free parameters: cutoffs
$$\Lambda$$
 in the form factors: $F(q) = \left(\frac{\Lambda^2 - m_{\chi}^2}{\Lambda^2 + q^2}\right)^n$, $n = 1, 2$

Interaction potential from effective Lagrangian

J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967); U.-G. Meißner, Phys. Rept. 161, 213 (1988); B. Borasoy and U.-G. Meißner, Int. J. Mod. Phys. A 11, 5183 (1996).

consistent with the approximate (broken) chiral $SU(2) \times SU(2)$ symmetry of QCD

Vertex	\mathcal{L}_{int}	Vertex	\mathcal{L}_{int}
$NN\pi$	$-rac{g_{NN\pi}}{m_\pi}\Psi\gamma^5\gamma^\muec au\cdot\partial_\muec \pi\Psi$	NNω	$-g_{NN\omega}ar{\Psi}[\gamma^{\mu}-rac{\kappa\omega}{2m_N}\sigma^{\mu u}\partial_{ u}]\omega_{\mu}\Psi$
$N\Delta\pi$	$rac{g_N\Delta\pi}{m_\pi}ar{\Delta}^\muec{S}^\dagger\cdot\partial_\muec{\pi}\Psi~+$ h.c.	$\omega \pi \rho$	$\frac{g_{\omega\pi ho}}{m_{\omega}}\epsilon_{lphaeta\mu u}\partial^{lpha}ec{ ho}^{eta}\cdot\partial^{\mu}ec{\pi}\omega^{ u}$
$\rho\pi\pi$	$-g_{ ho\pi\pi}(ec{\pi} imes\partial_\muec{\pi})\cdotec{ ho}^\mu$	$N\Delta\rho$	$-i\frac{g_{N\Delta\rho}}{m_{\rho}}\bar{\Delta}^{\mu}\gamma^{5}\gamma^{\mu}\vec{S}^{\dagger}\cdot\vec{\rho}_{\mu\nu}\Psi + \text{h.c.}$
$NN\rho$	$-g_{NN ho}\Psi[\gamma^{\mu}-rac{\kappa_{ ho}}{2m_{N}}\sigma^{\mu u}\partial_{ u}]ec{ au}\cdotec{ ho}_{\mu}\Psi$	ρρρ	$g_{NN ho}(ec{ ho}_{\mu} imesec{ ho}_{ u})\cdotec{ ho}^{\mu u}$
$NN\sigma$	$-g_{NN\sigma}ar{\Psi}\Psi\sigma$	ΝΝρρ	$rac{\kappa_{ ho}g_{NN ho}^{2}}{2m_{N}}ar{\Psi}\sigma^{\mu u}ec{ au}\Psi(ec{ ho}_{\mu} imesec{ ho}_{ u})$
$\sigma\pi\pi$	$rac{g_{\sigma\pi\pi}}{2m_{\pi}}\partial_{\mu}ec{\pi}\cdot\partial^{\mu}ec{\pi}\sigma$	$\Delta\Delta\pi$	$\frac{g_{\Delta\Delta\pi}}{m_{\pi}} \bar{\Delta}_{\mu} \gamma^5 \gamma^{\nu} \vec{T} \Delta^{\mu} \partial_{\nu} \vec{\pi}$
$\sigma\sigma\sigma$	$-g_{\sigma\sigma\sigma}m_{\sigma}\sigma\sigma\sigma$	$\Delta\Delta\rho$	$-g_{\Delta\Delta\rho}\bar{\Delta}_{\tau}(\gamma^{\mu}-i\frac{\kappa_{\Delta\Delta\rho}}{2m_{\Delta}}\sigma^{\mu\nu}\partial_{\nu})$
			$\cdot \vec{ ho}_{\mu} \cdot \vec{T} \Delta^{ au}$
$NN ho\pi$	$rac{g_{NN\pi}}{m_{\pi}} 2g_{NN ho} ar{\Psi} \gamma^5 \gamma^{\mu} ec{ au} \Psi(ec{ ho}_{\mu} imes ec{\pi})$	$NN\eta$	$-rac{g_{NN\eta}}{m_\pi}ar{\Psi}\gamma^5\gamma^\mu\partial_\mu\eta\Psi$
NNa ₁	$-rac{g_{NN\pi}}{m_{\pi}}m_{a_{1}}ar{\Psi}\gamma^{5}\gamma^{\mu}ec{ au}\Psiec{a}_{\mu}$	NNa ₀	$g_{NNa_0} m_{\pi} \bar{\Psi} \vec{\tau} \Psi \vec{a_0}$
$a_1\pi\rho$	$-\frac{2g_{\pi a_1\rho}}{m_{a_1}}[\partial_{\mu}\vec{\pi}\times\vec{a}_{\nu}-\partial_{\nu}\vec{\pi}\times\vec{a}_{\mu}]\cdot[\partial^{\mu}\vec{\rho}^{\nu}-\partial^{\nu}\vec{\rho}^{\mu}]$	$\pi \eta a_0$	$g_{\pi\eta a_0} m_\pi \eta \vec{\pi} \cdot \vec{a}_0$
	$+\frac{\frac{2g_{\pi a_1}\rho}{2m_{a_1}}}{[\vec{\pi}\times(\partial_{\mu}\vec{\rho}_{\nu}-\partial_{\nu}\vec{\rho}_{\mu})]\cdot[\partial^{\mu}\vec{a}^{\nu}-\partial^{\nu}\vec{a}^{\mu}]}$		

Ξ

Theoretical constraints of the S-matrix

Unitarity: probability conservation

- 2-body unitarity
- 3-body unitarity:
 - discontinuities from t-channel exchanges
 - → Meson exchange from requirements of the S-matrix [Aaron, Almado, Young, Phys. Rev. 174, 2022 (1968)]

Analyticity: from unitarity and causality

- correct structure of branch point, right-hand cut (real, dispersive parts)
- to approximate left-hand cut \rightarrow Baryon *u*-channel exchange

