

On the nature of the N^{*} and \triangle resonances via coupled-channel dynamics
The 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2023)
16/10/2023 | Yu-Fei Wang | Institute for Advanced Simulation, FZJ

Outline

1 Introduction
2 Theoretical Framework
3 Numerical results
4 Conclusion and Outlook
Based on arXiv: 2307.06799 [nucl-th]
In collaboration with U.-G. Meißner, D. Rönchen, and C.-W. Shen

Introduction

Criteria of Compositeness

Weinberg's criterion

- Hadrons \rightarrow
quarks \& gluons v.s. hadron exchanges?
- Weinberg's criterion (deuteron) [Weinberg, PR 137, B6772 (1965)]

$$
\begin{aligned}
& a=-\frac{2(1-Z)}{2-Z} R+\mathcal{O}(L) \\
& r=-\frac{Z}{1-Z} R+\mathcal{O}(L)
\end{aligned}
$$

Z: "elementariness". $R \sim 4.3 \mathrm{fm}$: deuteron radius. $L \sim m_{\pi}^{-1}$ interaction range.
a : scattering length. r : effective range.

- Conditions:
- S-wave

■ near-threshold

- stable

Modern generalization

■ Modern hadron spectroscopy \& exotic states \rightarrow unstable resonances, coupled-channel

- Deviation from naive quark models \rightarrow likely hadronic molecules [Guo et al., RMP 90, 015004 (2018)]
- Criteria
- pole-counting rule [morgan, NPA 543, 632 (1992)]: hadron exchanges \rightarrow one near-threshold pole (S-wave only)
- spectral density functions [Baruetal., pLB 586,53 (2004)]
- complex elementariness of Gamow states
[Hyodo, PRL 111, 132002 (2013)] [Guo and Oller, PRD 93, 096001 (2016)] [Sekihara, PRC 95, 025206 (2017)]

■ Higher partial waves, broad resonances, not close to thresholds \rightarrow extremely difficult

- Comprehensive data driven models
\rightarrow meaningful results

Introduction

Spectroscopy \& Jülich-Bonn Model

(See also Deborah's talk tomorrow)

■ Jülich-Bonn model \rightarrow coupled-channel partial-wave analyses and resonance extraction
■ Hadron exchange potentials $+s$-channel states + scattering equation
■ Fit to a worldwide collection of data
■ Unitarity, Analyticity \rightarrow searching resonance poles on the second sheet [Döring et. al., NPA 829, 100 (2009)]

- Applications

■ Hadronic part: πN induced reactions $\rightarrow N^{*}$ and Δ spectral
[Schütz et. al., PRC 51, 1374 (1995)] [Schütz et. al., PRC 49, 2671 (1994)][Schütz et. al., PRC 57, 1464 (1998)] [Krehl et. al., PRC 62, 025207 (2000)]
[Gasparyan et. al., PRC 68, 045207 (2003)][Döring et. al., NPA 851, 58 (2011)] [Rönchen et. al., EPJA 49, 44 (2013)][Wang et. al., PRD 106, 094031 (2022)]

- Photoproduction \rightarrow much more data
[Rönchen et. al., EPJA 50, 101 (2014)] [Rönchen et. al., EPJA 51, 70 (2015)][Rönchen et. al., EPJA 54, 110 (2018)] [Rönchen et. al., EPJA 58, 229 (2022)]
■ Electroproduction (Jülich-Bonn-Washington) [Mai et. al., PRC 103, 065204 (2021)] [Mai et. al., PRC 106, 015201 (2022)]
- Hidden charm sector and P_{C} states [Shen et. al., CPC 42, 023106 (2018)] [Wang et. al., EPJC 82, 497 (2022)]
- The N^{*} and Δ structures
- meaningful for understanding QCD
- spectral density functions \& Gamow states \rightarrow direct outputs of the model

Theoretical Framework

Toy model

Hilbert space

- Orthogonal and complete basis
\rightarrow bare state $\left|\psi_{0}\right\rangle$
+ continuous two-body states $|\psi(\mathbf{k})\rangle$
- Hamiltonian (μ : reduced mass. $E_{0}>0$: bare state energy. g: coupling constant.
$F(k, \Lambda)=\frac{\Lambda^{2}}{k^{2}+\Lambda^{2}}$: regulator)
$\hat{H}_{0}=E_{0}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|+\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{k^{2}}{2 \mu}|\psi(\mathbf{k})\rangle\langle\psi(\mathbf{k})|$
$\hat{H}_{l}=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} g F(k, \Lambda)|\psi(\mathbf{k})\rangle\left\langle\psi_{0}\right|+$ h.c.
- Easy to be extended to coupled-channels

Solutions

- Eigenstates $|\Phi\rangle=c_{0}\left|\psi_{0}\right\rangle+\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \chi(\mathbf{k})|\psi(\mathbf{k})\rangle$
- bound states: $\hat{H}|\Phi(B)\rangle=-B|\Phi(B)\rangle$
- scattering states: $\hat{H}|\Phi(\mathcal{E})\rangle=\mathcal{E}|\Phi(\mathcal{E})\rangle$
- completeness:

$$
|\Phi(B)\rangle\langle\Phi(B)|+\int_{0}^{+\infty} d \mathcal{E}|\Phi(\mathcal{E})\rangle\langle\Phi(\mathcal{E})|=\hat{\imath}
$$

- elementariness \& compositeness:

$$
Z \sim\left|c_{0}\right|^{2}, X \sim \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}|\chi(\mathbf{k})|^{2}
$$

- Scattering amplitude $\hat{T}=\hat{V}+\hat{V} \hat{G} \hat{T}$, $\hat{V}=\hat{H}_{l} \frac{\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|}{\mathcal{E}-E_{0}+i 0^{+}} \hat{H}_{1}$
- Elementariness of a bound state: normalization $\langle\Phi(B) \mid \Phi(B)\rangle=1$
$Z=\left(1-\Sigma^{\prime}\right)^{-1}, \Sigma \equiv \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{g^{2} F^{2}(k, \Lambda)}{\varepsilon-k^{2} /(2 \mu)}$

Theoretical Framework

Spectral density functions

■ Elementariness of a bound state: $Z_{B} \equiv\left|\left\langle\psi_{0} \mid \Phi(B)\right\rangle\right|^{2}$
$■$ Spectral density function (Källén-Lehmann spectral representation): w(EE) $\equiv\left|\left\langle\psi_{0} \mid \Phi(\mathcal{E})\right\rangle\right|^{2}=-\frac{1}{\pi} \operatorname{ImD}(\mathcal{E})$

- Bare state propagator: $D(\mathcal{E})=\left(\mathcal{E}-E_{0}-\Sigma\right)^{-1}$
- Quasi-bound states $\mathcal{E}_{R}=E_{R}-i \frac{\Gamma_{R}}{2}$ (narrow resonances close to and below a threshold):
$w\left(\mathcal{E} \simeq E_{R}\right)=\frac{z_{B}}{\pi} \frac{\Gamma_{R} / 2}{\left(\mathcal{E}-E_{R}\right)^{2}+\left(\Gamma_{R} / 2\right)^{2}}$
Z_{B} : the elementariness of the bound state when the decay channel is switched off
- When $\Gamma_{R} \rightarrow 0, w\left(\mathcal{E} \simeq E_{R}\right) \rightarrow Z_{B} \delta\left(\mathcal{E}-E_{R}\right)$: compatible with Weinberg's criterion

■ Estimation of the elementariness $\left(\Delta E \sim \Gamma_{R}\right)$:

$$
Z \simeq \frac{\int_{E_{R}-\Delta E}^{E_{R}+\Delta E} w(\mathcal{E}) d \mathcal{E}}{\int_{E_{R}-\Delta E}^{E_{R}+\Delta E} B W(\mathcal{E}) d \mathcal{E}}, B W(\mathcal{E}) \equiv \frac{1}{\pi} \frac{\Gamma_{R} / 2}{\left(\mathcal{E}-E_{R}\right)^{2}+\left(\Gamma_{R} / 2\right)^{2}}
$$

■ Applications: [Barue etal., PLE 586,53 (2004)] [Baru et all., EPAA 44, 93 (2010)|[Hanhart et all., PRD 81, 094028 (2010)] [Hanhart et al., EPA 47, 101 (2011)]...

Theoretical Framework

Gamow states

- Resonances \rightarrow poles on the second Riemann sheet

■ Analytical continuation \rightarrow contour deformation (complex scaling): $\int_{0}^{+\infty} k^{2} d k \rightarrow \int_{C} k^{2} d k$
■ Gamow states [Gamov, Zeitschrift tür Physik 51,204 (1928)] [civitarese and Gadella, Physics Reports 396, 41(2004)]

- with contour deformation when performing inner product:

$$
\left.\mid \Phi_{R}\right)=c_{0}\left[\left|\psi_{0}\right\rangle-\int_{C} \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{g F(k, \Lambda)}{\frac{k^{2}}{2 \mu}-\mathcal{E}_{R}}|\psi(\mathbf{k})\rangle\right]
$$

- complex eigenvalue $\left.\left.\hat{H} \mid \Phi_{R}\right)=\mathcal{E}_{R} \mid \Phi_{R}\right) \rightarrow$ cannot be normalized $\rightarrow\left(\Phi_{R}^{*} \mid \Phi_{R}\right)=1$
- elementariness: $Z_{R}=\left(1-\left.\Sigma^{\prime}\right|_{2 \text { nd sheet }}\right)^{-1} \rightarrow$ complex, not a probability

■ Complex compositeness \rightarrow off-shell residues $r(k)$ [sekihara, PRC 95, $025206(2017)$):

$$
T^{\prime \prime}\left(k, k^{\prime}, \mathcal{E}\right)=\frac{r(k) r\left(k^{\prime}\right)}{\mathcal{E}-\mathcal{E}_{R}}+\cdots, X_{R}=1-Z_{R}=\int_{C} \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{r^{2}(k)}{\left[\mathcal{E}_{R}-k^{2} /(2 \mu)\right]^{2}}
$$

Theoretical Framework

The Jülich-Bonn model

The model

■ Scattering Eq. with CM energy z

$$
\begin{aligned}
& T_{\mu \nu}\left(p^{\prime \prime}, p^{\prime}, z\right)=V_{\mu \nu}\left(p^{\prime \prime}, p^{\prime}, z\right)+ \\
& \sum_{\kappa} \int_{0}^{\infty} p^{2} d p V_{\mu \kappa}\left(p^{\prime \prime}, p, z\right) G_{\kappa}(p, z) T_{\kappa \nu}\left(p, p^{\prime}, z\right)
\end{aligned}
$$

- Effective three-body channels: $\rho N, \pi \Delta$ and σN
- s-channel bare states \rightarrow separation

$$
T=T^{P}+T^{N P}
$$

- Potentials \rightarrow hadron exchanges

■ Technical details [Wang et. al., PRD 106, 094031 (2022)]

Study of the structures

ditur

- Compared with the toy model
- coupled-channel
- more s-channel bare states
- hadron-exchange potentials
- Spectral density functions \rightarrow readily extracted from self-energies $w_{i}(z)=-\frac{1}{\pi} \operatorname{Im} D_{i}(z)$
■ "Total elementariness" $\rightarrow Z=1-\prod_{i}\left(1-Z_{i}\right)$
■ Partial compositeness (Gamow states) \rightarrow off-shell residues

$$
X_{\kappa}=\int_{C} p^{2} d p r_{\kappa}^{2}(p) G_{\kappa}^{2}\left(p, z_{\text {pole }}\right)
$$

Numerical results

Numerical details

■ Selection of the resonances
■ JüBo2O22 solution ($K \Sigma$ photoproduction, no ωN) [Ränchenet. al., EPAA 58, 229 (2022)]

- For $N^{*} J \leq 5 / 2$, for $\Delta J \leq 3 / 2$
- Width $\Gamma_{R}<300 \mathrm{MeV}$

■ Uncertainties \rightarrow comparison of three results

- spectral density functions directly from the model
- locally constructed spectral density functions only by the pole position and residues (L_{κ} : loop functions)

$$
w^{\mathrm{lc}}(z)=-\frac{1}{\pi} \operatorname{Im}\left[z-M_{0}-\sum_{\kappa} g_{\kappa}^{2} L_{\kappa}(z)\right]^{-1}
$$

- complex compositeness of the Gamow state, with naive measure [sekihara, PRC 104,035202 (2021)]

$$
\tilde{X}_{\kappa} \equiv \frac{\left|X_{\kappa}\right|}{\sum_{\alpha}\left|X_{\alpha}\right|+|Z|}, \tilde{Z} \equiv \frac{|Z|}{\sum_{\alpha}\left|X_{\alpha}\right|+|Z|}
$$

Numerical results

Spectral density functions - Δ states

Blue solid line: the Breit-Wigner denominator. Orange dashed (green dash-dotted) line: the 1st (2nd) spectral density function (model). Red dotted line: the locally constructed function. Vertical lines: the integral region.

Numerical results

Spectral density functions $-N^{*}$ states

Numerical results

Compositeness

State	Pole position (MeV)	$\mathcal{Z}_{\text {tot }}$	$\mathcal{Z}^{\text {lc }}$	Z
$N(1535) \frac{1}{2}^{-}$	1504-37i	29.0\%	50.8\%	39.4\%
$N(1650) \frac{1}{2}^{-}$	$1678-64 i$	92.8\%	70.5\%	8.5\%
$N(1440) \frac{1}{2}^{+}$	1353-102i	49.5\%	31.5\%	36.9\%
$N(1710) \frac{1}{2}^{+}$	$1605-58 i$	20.6\%	10.2\%	40.3\%
$N(1720) \frac{3}{2}^{+}$	$1726-93 i$	79.3\%	62.5\%	41.4\%
$N(1900) \frac{3}{2}^{+}$	1905-47i	100\%	99.9\%	38.5\%
$N(1520) \frac{3}{2}^{-}$	$1482-63 i$	29.4\%	7.2\%	40.4\%
$N(1675) \frac{5}{2}^{-}$	$1652-60 i$	16.6\%	(F)	61.8\%
$N(1680) \frac{5}{2}^{+}$	$1657-60 i$	67.9\%	69.9\%	55.0\%
$\Delta(1620) \frac{1}{2}^{-}$	$1607-42 i$	18.9\%	50.0\%	69.4\%
$\Delta(1232) \frac{3}{2}^{+}$	$1215-46 i$	53.8\%	(F)	30.5\%
$\Delta(1600) \frac{3}{2}^{+}$	$1590-68 i$	47.8\%	77.5\%	69.7\%
$\Delta(1700) \frac{3}{2}^{-}$	$1637-148 i$	59.7\%	44.9\%	47.8\%

Numerical results

Results \& Discussions

Results

■ At least two results suggest high compositeness: $N(1535) \frac{1}{2}^{-}, N(1440) \frac{1}{2}^{+}, N(1710) \frac{1_{2}}{}{ }^{+}, N(1520) \frac{3}{2}-$

- At least two results suggest high elementariness: $N(1650) \frac{1_{2}}{}{ }^{-}, N(1900) \frac{3^{2}}{}{ }^{+}, N(1680) \frac{5}{2}{ }^{+}, \Delta(1600) \frac{3}{2}+$
■ Hints of compositions (Gamow states)
■ $N^{*}(1535): X_{\eta N}=35.8 \%$
■ $N^{*}(1440): X_{\pi N}=59.0 \%$
■ $N^{*}(1710): X_{\eta N}=44.9 \%$
- $N^{*}(1520): X_{\pi \pi N}=43.7 \%$
- The compositions may be model-dependent: in this model all the σN bare couplings are switched off

On the states

- $N(1535) \frac{1}{2}^{-}$
- might be dynamically generated
[Kaiser et. al., PLB 362, 23 (1995)] [Bruns et. al., PLB 697, 254 (2011)]
- $\omega \mathrm{N}$ might be important [Wanget. al., PRD 106, 094031 (2022)]
- $N(1440) \frac{1}{2}^{+}$
- always dynamically generated in this model [Krehl et. al., PRC 62, 025207 (2000)]
- "radial excitation of the nucleon" is not favoured [Meißner and Durso, NPA 430, 670 (1984)]
- a large σN component [Sekihara, PRC 104, 035202 (2021)]
- $\Delta(1232) \frac{3}{2}{ }^{+}$: three Δ 's (s-channel bare, initial/final $\pi \Delta$, u-channel exchange) \rightarrow technical difficulties in this study

Conclusion and Outlook

- Jülich-Bonn model is a comprehensive coupled-channel model for partial-wave analyses and resonance extraction.
- In this work we let the model say something more: the information of the structures of the N^{*} and Δ states.
- The results for 8 states are relatively certain:
- tend to be composite $-N^{*}(1535), N^{*}(1440), N^{*}(1710), N^{*}(1520)$;
- tend to be elementary $-N^{*}(1650), N^{*}(1900), N^{*}(1680), \Delta(1600)$.
- Open questions:
- understanding the relation between the spectral density functions and the Gamow states, e.g. the results for N^{*} (1650);
- understanding different descriptions, e.g. hadronic models and quark models.
- In the future:
- study of the P_{c} states;
- upgrade of the results when ωN photoproduction is included.
Thank

Backups

Details of the model

Dynamics I

Central part of this model: hadronic (πN induced) reactions
The Lippmann-Schwinger-like equation (CM frame)
$T_{\mu \nu}\left(p^{\prime \prime}, p^{\prime}, z\right)=V_{\mu \nu}\left(p^{\prime \prime}, p^{\prime}, z\right)+\sum_{\kappa} \int_{0}^{\infty} p^{2} d p V_{\mu \kappa}\left(p^{\prime \prime}, p, z\right) G_{\kappa}(p, z) T_{\kappa \nu}\left(p, p^{\prime}, z\right)$
■ Reaction channels $\nu \rightarrow \kappa \rightarrow \mu$ (after PW and isospin projection, JLS basis (Jacob \& Wick, Annals Phys.7, 404 (1959)],J $\leq 9 / 2$)

- Propagator: $G(\pi \pi N$ channel: effective channels $\rho N, \sigma N, \pi \Delta$. E / ω - energy of the baryon/meson.)

$$
G_{\kappa}(z, p)= \begin{cases}\left(z-E_{\kappa}-\omega_{\kappa}+i 0^{+}\right)^{-1} & (\text { if } \kappa \text { is a two-body channel }) \\ {\left[z-E_{\kappa}-\omega_{\kappa}-\Sigma_{\kappa}(z, p)+i 0^{+}\right]^{-1}} & (\text { if } \kappa \text { is an effective channel })\end{cases}
$$

■ Observables \rightarrow dimensionless amplitude $\tau_{\mu \nu}=-\pi \sqrt{\rho_{\mu} \rho_{\nu}} T_{\mu \nu}, \rho \rightarrow$ kinematic factor
■ Separating the amplitude \rightarrow with/without s-channel poles $T=T^{P}+T^{N P}$

Details of the model

Dynamics II

■ $T^{N P}=V^{N P}+\sum \int p^{2} d p V^{N P} G T^{N P}$
■ $T_{\mu \nu}^{P}\left(p^{\prime \prime}, p^{\prime}, z\right)=\sum_{i, j} \Gamma_{\mu, i}^{a}\left(p^{\prime \prime}\right) D_{i j}(z) \Gamma_{\nu, j}^{c}\left(p^{\prime}\right)$, $\left(D^{-1}\right)_{i j}=\delta_{i j}\left(z-m_{i}^{b}\right)-\Sigma_{i j}(z)$

■ $\Gamma(\gamma)$: the dressed (bare) vertices (a - annihilation, c - creation)

- Σ : self-energy functions (nucleon mass renormalization)

■ $\mathrm{V}^{N P}, \gamma \rightarrow$ constructed from effective Lagrangians + regulators (cut-offs)
(details: Supplemental material of
[Wang et. al., PRD 106, 094031 (2022)])
■ s-channel contact terms: $D \sim(1-\Sigma)^{-1}$
[Rönchen et. al., EPJA 51, 70 (2015)]

(a) The vertex.

(b) The self energy.

Local construction of the spectral density functions

- Local simulation of the amplitude

$$
T_{\alpha \beta}^{\mathrm{c}}(z)=\frac{c g_{\alpha} g_{\beta} f_{\alpha}^{a}\left(q_{\alpha z}\right) f_{\beta}^{c}\left(q_{\beta z}\right)}{z-M_{0}-\sum_{\kappa} g_{\kappa}^{2} L_{\kappa}(z)}+\cdots
$$

- Loop functions (f: vertex function in this model)

$$
L_{\kappa}(z) \equiv \int_{0}^{\infty} p^{2} d p G_{\kappa}(p, z) f_{\alpha}^{a}\left(q_{\kappa z}\right) f_{\alpha}^{c}\left(q_{\kappa z}\right)
$$

- Parameters

$$
\begin{aligned}
& h_{\kappa} \equiv \frac{g_{\kappa}^{2}}{g_{1}^{2}}=\left|\frac{r_{\kappa} f_{1}^{a}}{r_{1} f_{\kappa}^{a}}\right|^{2} \\
& g_{1}^{2}=-\frac{\Gamma_{R}}{2 \sum_{\kappa} h_{\kappa} \operatorname{lm}\left(L_{\kappa}^{\prime \prime}\right)} \\
& M_{0}=M_{R}-g_{1}^{2} \sum_{\kappa} h_{\kappa} \operatorname{Re}\left(L_{\kappa}^{\prime \prime}\right), \\
& c=\frac{r_{1}^{2}}{g_{1}^{2} f_{1}^{a} f_{1}^{c}}\left(1-\left.g_{1}^{2} \sum_{\kappa} h_{\kappa} \frac{d}{d z} L_{\kappa}^{\prime \prime}\right|_{z=M_{R}-i \Gamma_{R} / 2}\right) .
\end{aligned}
$$

- $g^{2}<0 \rightarrow$ construction fails. Estimation:

$$
g_{\kappa}^{2} \rightarrow\left|\sqrt{\frac{2 \pi \rho_{\kappa}}{\Gamma_{R}}} r_{\kappa}\right|^{2}, M_{0} \rightarrow M_{0}-i \frac{\Gamma_{0}}{2}
$$

Complex compositions of $\mathrm{N}^{* \prime} \mathrm{~s}$ - two-body channels

State	$X_{\pi N}$	$X_{\eta N}$	$X_{K \wedge}$	$X_{K \Sigma}$	Z
$N(1535) \frac{1}{2}^{-}$	$\begin{gathered} 0.12+0.14 i \\ (7.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.67+0.57 i \\ (35.8 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.03-0.01 i \\ (1.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.01-0.03 i \\ (1.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.32-0.92 i \\ (39.4 \%) \\ \hline \end{gathered}$
$N(1650) \frac{1}{2}^{-}$	$\begin{gathered} 0.17+0.28 i \\ (22.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.60-0.15 i \\ (41.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.03+0.03 i \\ (3.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.15-0.03 i \\ (10.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.12+0.02 i \\ (8.5 \%) \\ \hline \end{gathered}$
$N(1440) \frac{1}{2}^{+}$	$\begin{gathered} 0.69+0.37 i \\ (59.0 \%) \end{gathered}$	$\begin{gathered} 0.00+0.00 i \\ (0.2 \%) \end{gathered}$	$\begin{gathered} 0.00-0.00 i \\ (0.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.00+0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{gathered} 0.34-0.36 i \\ (36.9 \%) \end{gathered}$
$N(1710) \frac{1}{2}^{+}$	$\begin{gathered} 0.04-0.00 i \\ (1.4 \%) \end{gathered}$	$\begin{gathered} 0.87+0.97 i \\ (44.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} -0.10+0.18 i \\ (6.9 \%) \end{gathered}$	$\begin{gathered} -0.00+0.01 i \\ (0.3 \%) \end{gathered}$	$\begin{gathered} 0.02-1.17 i \\ (40.3 \%) \\ \hline \end{gathered}$
$N(1720) \frac{3}{2}^{+}$	$\begin{gathered} -1.16-3.01 i \\ (32.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.04-0.04 i \\ (0.5 \%) \end{gathered}$	$\begin{gathered} 0.03+0.05 i \\ (0.6 \%) \end{gathered}$	$\begin{gathered} -0.08+0.13 i \\ (1.5 \%) \end{gathered}$	$\begin{gathered} 2.71+3.09 i \\ (41.4 \%) \\ \hline \end{gathered}$
$N(1900) \frac{3}{2}^{+}$	$\begin{gathered} -0.00+0.00 i \\ (0.1 \%) \end{gathered}$	$\begin{gathered} -0.02+0.00 i \\ (0.2 \%) \end{gathered}$	$\begin{gathered} 0.39+0.33 i \\ (6.0 \%) \end{gathered}$	$\begin{gathered} 0.90-0.17 i \\ (10.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} -3.04+1.22 i \\ (38.5 \%) \end{gathered}$
$N(1520) \frac{3}{2}^{-}$	$\begin{gathered} 0.19+0.39 i \\ (15.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} -0.00+0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{gathered} 0.00+0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{gathered} 0.00-0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{gathered} 0.87-0.66 i \\ (40.4 \%) \\ \hline \end{gathered}$
$N(1675) \frac{5}{2}^{-}$	$\begin{gathered} 0.02+0.17 i \\ (9.4 \%) \end{gathered}$	$\begin{gathered} 0.02-0.06 i \\ (3.3 \%) \end{gathered}$	$\begin{gathered} -0.00+0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{gathered} 0.00+0.00 i \\ (0.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.01-0.49 i \\ (61.8 \%) \\ \hline \end{gathered}$
$N(1680) \frac{5}{2}^{+}$	$\begin{gathered} 0.22+0.50 i \\ (36.3 \%) \end{gathered}$	$\begin{gathered} -0.00-0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{aligned} & 0.00-0.00 i \\ & (0.0 \%) \end{aligned}$	$\begin{aligned} & 0.00-0.00 i \\ & (0.0 \%) \end{aligned}$	$\begin{gathered} 0.68-0.48 i \\ (55.0 \%) \end{gathered}$

Complex compositions of $N^{* \prime} s$ - effective channels

State	$X_{\rho N}(1)$	$\chi_{\rho N}(2)$	$\chi_{\rho N}(3)$	$X_{\pi \Delta}(1)$	$X_{\pi \Delta}(2)$
$N(1535) \frac{1}{2}^{-}$	$\begin{gathered} -0.17+0.27 i \\ (13.0 \%) \end{gathered}$		$\begin{gathered} -0.00+0.00 i \\ (0.2 \%) \end{gathered}$		$\begin{gathered} 0.02-0.04 i \\ (1.6 \%) \\ \hline \end{gathered}$
$N(1650) \frac{1}{2}^{-}$	$\begin{gathered} -0.02-0.11 i \\ (7.4 \%) \\ \hline \end{gathered}$		$\begin{gathered} -0.01-0.06 i \\ (4.3 \%) \end{gathered}$		$\begin{gathered} -0.04+0.02 i \\ (3.0 \%) \\ \hline \end{gathered}$
$N(1440) \frac{1}{2}^{+}$	$\begin{gathered} -0.00+0.01 i \\ (0.6 \%) \end{gathered}$	$\begin{gathered} -0.01+0.00 i \\ (0.6 \%) \end{gathered}$		$\begin{gathered} -0.02-0.03 i \\ (2.7 \%) \end{gathered}$	
$N(1710) \frac{1}{2}^{+}$	$\begin{gathered} 0.00-0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{gathered} -0.01+0.01 i \\ (0.3 \%) \end{gathered}$		$\begin{gathered} 0.17+0.01 i \\ (5.9 \%) \end{gathered}$	
$N(1720) \frac{3}{2}^{+}$	$\begin{gathered} 0.19-0.07 i \\ (2.1 \%) \end{gathered}$	$\begin{gathered} 0.58-0.07 i \\ (5.9 \%) \end{gathered}$	$\begin{gathered} 0.10-0.07 i \\ (1.2 \%) \end{gathered}$	$\begin{gathered} -1.40+0.01 i \\ (14.1 \%) \end{gathered}$	$\begin{gathered} -0.01-0.01 i \\ (0.1 \%) \end{gathered}$
$N(1900) \frac{3}{2}^{+}$	$\begin{gathered} 0.01-0.01 i \\ (0.1 \%) \end{gathered}$	$\begin{gathered} 3.04-1.60 i \\ (40.3 \%) \end{gathered}$	$\begin{gathered} -0.00-0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{gathered} -0.27+0.22 i \\ (4.1 \%) \end{gathered}$	$\begin{gathered} -0.00-0.00 i \\ (0.0 \%) \end{gathered}$
$N(1520) \frac{3}{2}^{-}$	$\begin{gathered} 0.00+0.00 i \\ (0.1 \%) \end{gathered}$	$\begin{gathered} -0.01+0.01 i \\ (0.5 \%) \end{gathered}$	$\begin{gathered} -0.58+0.26 i \\ (23.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.01-0.00 i \\ (0.3 \%) \end{gathered}$	$\begin{gathered} 0.52-0.00 \mathrm{i} \\ (19.3 \%) \end{gathered}$
$N(1675) \frac{5}{2}^{-}$	$\begin{gathered} -0.00-0.00 i \\ (0.1 \%) \end{gathered}$	$\begin{gathered} -0.14+0.26 i \\ (16.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.00-0.01 i \\ (0.4 \%) \end{gathered}$	$\begin{gathered} 0.10+0.12 i \\ (8.8 \%) \end{gathered}$	$\begin{gathered} -0.00+0.00 i \\ (0.0 \%) \end{gathered}$
$N(1680) \frac{5}{2}^{+}$	$\begin{gathered} 0.00-0.01 i \\ (0.4 \%) \end{gathered}$	$\begin{gathered} 0.00-0.00 i \\ (0.2 \%) \end{gathered}$	$\begin{gathered} -0.01-0.00 i \\ (0.7 \%) \end{gathered}$	$\begin{gathered} 0.00+0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{gathered} 0.11-0.01 i \\ (7.4 \%) \end{gathered}$

Complex compositions of Δ 's

State	$X_{\pi N}$	$X_{\rho N}(1)$	$X_{\rho N}(2)$	$X_{\rho N}(3)$	$X_{\pi \Delta}(1)$	$X_{\pi \Delta}(2)$	$X_{K \Sigma}$	Z
$\Delta(1620) \frac{1}{2}^{-}$	$\begin{gathered} 0.10-0.03 i \\ (8.6 \%) \end{gathered}$	$\begin{gathered} -0.02-0.09 i \\ (8.0 \%) \end{gathered}$		$\begin{gathered} -0.00-0.00 i \\ (0.3 \%) \end{gathered}$		$\begin{gathered} 0.13-0.09 i \\ (13.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.01+0.00 i \\ (0.7 \%) \end{gathered}$	$\begin{gathered} 0.79+0.20 i \\ (69.4 \%) \end{gathered}$
$\Delta(1232) \frac{3^{2}}{}{ }^{+}$	$\begin{gathered} 0.63+1.16 i \\ (28.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.02-0.01 i \\ (0.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} -0.00+0.01 i \\ (0.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 0.06-0.03 i \\ (1.4 \%) \end{gathered}$	$\begin{gathered} 1.54-0.58 i \\ (35.4 \%) \end{gathered}$	$\begin{gathered} -0.01-0.01 i \\ (0.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} -0.00+0.15 i \\ (3.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} -1.24-0.70 i \\ (30.5 \%) \\ \hline \end{gathered}$
$\Delta(1600) \frac{3}{2}^{+}$	$\begin{gathered} -0.04+0.07 i \\ (3.5 \%) \end{gathered}$	$\begin{gathered} 0.00-0.01 i \\ (0.3 \%) \end{gathered}$	$\begin{gathered} 0.01-0.03 i \\ (1.3 \%) \end{gathered}$	$\begin{gathered} -0.00-0.00 i \\ (0.1 \%) \end{gathered}$	$\begin{gathered} -0.42+0.21 i \\ (21.0 \%) \end{gathered}$	$\begin{gathered} -0.00-0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{gathered} -0.08+0.05 i \\ (4.1 \%) \end{gathered}$	$\begin{gathered} 1.53-0.29 i \\ (69.7 \%) \\ \hline \end{gathered}$
$\Delta(1700) \frac{3}{2}^{-}$	$\begin{gathered} -0.03+0.05 i \\ (2.3 \%) \end{gathered}$	$\begin{gathered} -0.00+0.01 i \\ (0.4 \%) \end{gathered}$	$\begin{gathered} -0.03+0.02 i \\ (1.3 \%) \end{gathered}$	$\begin{gathered} -0.03+0.00 i \\ (1.3 \%) \end{gathered}$	$\begin{gathered} -0.01-0.03 i \\ (1.5 \%) \end{gathered}$	$\begin{gathered} 0.45-0.95 i \\ (45.4 \%) \end{gathered}$	$\begin{gathered} 0.00+0.00 i \\ (0.0 \%) \end{gathered}$	$\begin{gathered} 0.64+0.91 i \\ (47.8 \%) \end{gathered}$

TABLE VII: The compositeness and elementariness of the selected Δ Gamow states. The percentages in the brackets are the naive measures from Eq. (87). The meaning of the channel indices are: $\rho N(1) \rightarrow|J-L|=\frac{1}{2}, S=\frac{1}{2}$; $\rho N(2) \rightarrow|J-L|=\frac{1}{2}, S=\frac{3}{2} ; \rho N(3) \rightarrow|J-L|=\frac{3}{2}, S=\frac{3}{2} ; \pi \Delta(1) \rightarrow|J-L|=\frac{1}{2} ; \pi \Delta(2) \rightarrow|J-L|=\frac{3}{2}$.

Three Δ (1232)'s in this model

■ s-channel $\Delta(1232)$

- generates the final $\Delta(1232)$ pole
- spectral density functions \rightarrow mostly elementary (53.8\%)
- complex compositeness \rightarrow large πN and $\pi \Delta$ component ($28.5 \%, 35.7 \%$)

■ u-channel $\Delta(1232)$: naive stable particle with mass $m=1232 \mathrm{MeV}$
■ initial/final state $\Delta(1232)$

- only simulating the πN system
- spectral density functions $\rightarrow 69.6 \%$ elementariness
- complex compositeness $\rightarrow X_{\pi N}=0.36+0.32 i, Z \sim 59.5 \%$

