

General overview of Hadron Spectroscopy at LHCb given by Zan this morning

This talk covers two brand-new analyses:

Observation of $\Lambda_b^0 \rightarrow \Lambda_c^+ \overline{D}^{(*)0} K^$ and $\Lambda_b^0 \rightarrow \Lambda_c^+ D_s^{--}$ decays [LHCb-PAPER-2023-034]

Observation of $\Xi_b^0 \to \Xi_c^+ D_s^$ and $\Xi_b^- \to \Xi_c^0 D_s^-$ decays [LHCb-PAPER-2023-017].

- Beauty to double open-charm decays probe factorization assumptions in HQET; their application is contestable due to the presence of two heavy quarks in the final state.
- Predictions of decay widths / branching fractions (\mathcal{B}) exist for the two-body $\Lambda_b^{o} \rightarrow \Lambda_c^+ D_s^{*-}$, $\Xi_b^{o} \rightarrow \Xi_c^+ D_s^-$ and $\Xi_b^- \rightarrow \Xi_c^0 D_s^-$ decays, but not for $\Lambda_b^o \rightarrow \Lambda_c^+ \overline{D}^{(*)o} K^-$.

Reference	$\frac{\mathcal{B}(\Lambda_b^{\mathrm{o}} \to \Lambda_c^+ D_{\mathrm{s}}^{*-})}{\mathcal{B}(\Lambda_b^{\mathrm{o}} \to \Lambda_c^+ D_{\mathrm{s}}^{-})}$	Reference	$\frac{\mathcal{B}(\Xi_b^{\mathrm{o}} \to \Xi_c^+ D_{\mathrm{s}}^-)}{\mathcal{B}(\Lambda_b^{\mathrm{o}} \to \Lambda_c^+ D_{\mathrm{s}}^-)}$	$\frac{\mathcal{B}(\Xi_b^-\to \Xi_c^{\rm o} D_{\rm s}^-)}{\mathcal{B}(\Lambda_b^{\rm o}\to \Lambda_c^+ D_{\rm s}^-)}$
T. Mannel and W. Roberts [Z. Phys. C 59, 179]	0.75	HY. Cheng [Phys. Rev. D 56, 2799]	1.	06
HY. Cheng [Phys. Rev. D 56, 2799]	0.83	ZX. Zhao [Chinese Phys. C 42 093101]	1.00	1.06
A. K. Giri, L. Maharana, and R. Mohanta [Mod. Phys. Lett. A 13, 23]	1.54	CK. Chua [Phys. Rev. D 100, 034025]	0.91	0.97
Fayyazuddin and Riazuddin [Phys. Rev. D 58, 014016]	1.46			
R. Mohanta et al. [Prog. Theor. Phys. 101, 959]	1.84		- c] (s	s)
J. Zhu, ZT. Wei, and HW. Ke [Phys. Rev. D 99, 054020]	0.85	W	$-s \int_{0}^{0} s$	\overline{c}
ZX. Zhao [Chinese Phys. C 42 093101]	1.49	(b →	- c] = E	Survey s
WH. Liang and E. Oset [Eur. Phys. J. C 78, 528]	1.23	Ξ _b u/d	$u/d \equiv_c b$	c } <u></u> c
T. Gutsche et al. [Phys. Rev. D 98, 074011]	1.70	s	_ s] [u/d	► u/d
HW. Ke, N. Hao, and XQ. Li [Eur. Phys. J. C 79, 540]	1.51		- ī	
CK. Chua [Phys. Rev. D 100, 034025]	1.47		Ws D	(*)- S
S. Rahmani, H. Hassanabadi, and J. Kříž [Eur. Phys. J. C 80, 636]	1.29	(b	د ا	
YW. Pan, MZ. Liu, and LS. Geng [arXiv:2309.12050]	2.25	Λ _b ^o d	d /	+ c

Motivation

 $\Lambda^+_{\rm c} \bar{D}^{(*)0} K^-$ Motivation for $\mathcal{A}^{ extsf{o}}_{b}$

3 / 19

[PRL 115, 072001], [PRL 117, 082002] [PRL 117, 082003]

• Search for P_c^+ s, seen in $\Lambda_b^0 \to J/\psi p K^-$ and $\Lambda_b^0 \to J/\psi p \pi^-$, in $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$

[PRL 122, 222001]

• Search for P_c^+ s, seen in $\Lambda_b^0 \rightarrow J/\psi p K^-$ and $\Lambda_b^0 \rightarrow J/\psi p \pi^-$, in $\Lambda_b^0 \rightarrow \Lambda_c^+ \overline{D}^{(*)0} K^-$ [PRL 122, 222001]

- $\Lambda_b^{o} \rightarrow \Lambda_c^+ \overline{D}^{(*)o} K^-$ and $\Lambda_b^{o} \rightarrow J/\psi p K^-$ directly comparable, since P_c^+ production the same.
- $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-)$ gauges predictions: $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)} = \frac{f_{J/\psi p}(P_c^+)}{f_{\Lambda_c^+ \overline{D}^{(*)0}}(P_c^+)} \cdot \frac{\mathcal{B}(P_c^+ \to \Lambda_c^+ \overline{D}^{(*)0})}{\mathcal{B}(P_c^+ \to J/\psi p)}$ $f_X(P_c^+)$ denotes the measured fit-fraction of P_c^+ in channel X
- Theory/pheno calculates $\frac{\mathcal{B}(P_c \to \Lambda_c^+ \overline{D}^{(*)})}{\mathcal{B}(P_c \to J/\psi N)}$

 \rightsquigarrow sensitivity estimate of $f_{\Lambda_c^+ \overline{D}^{(*)o}}(P_c^+)$.

... or wait for future measurement of f_{A⁺_cD^{(*)o}}(P⁺_c) to compare models.

- Measure B(Λ^o_b → Λ⁺_c D̄^{*o} κ⁻) and B(Λ^o_b → Λ⁺_c D^{*-}_s) through partial reconstruction π^o or γ from D̄^{*o} or D^{*-}_s decays not reconstructed.
- Shapes of partially reconstructed decays determined by kinematics **and dynamics** *i.e.* amplitude composition.

 $\Lambda_{\rm c}^+ \overline{D}^{(*)0} \kappa^-$

↑

 ^{0}V

- $\Delta I = 1$ of spectator diquark forbids $\Lambda_b^0 \rightarrow \Sigma_c^+ D_s^-$ [Phys. Lett. B450, 250].
- $\Lambda_b^{\rm o} \rightarrow \Sigma_c^+ \bar{D}^{\rm o} K^-$ color-suppressed. Enhanced by $\Xi_c^{*o} \bar{D}^{\rm o}$, P_c^+ ?

• Reconstruct both $\Lambda_c^+ \overline{D}^\circ K^-$ and $\Lambda_c^+ D_s^-$ candidates in $pK^- \pi^+ K^+ \pi^- K^-$ final state $\Lambda_c^+ \to pK^- \pi^+, \overline{D}^\circ \to K^+ \pi^-, D_s^- \to K^- K^+ \pi^-$.

• Measure
$$\frac{\mathcal{B}(\Lambda_b^{\text{o}} \to \Lambda_c^+ \bar{D}^{(*)\text{o}} K^-)}{\mathcal{B}(\Lambda_b^{\text{o}} \to \Lambda_c^+ D_s^-)} = \frac{N^{\Lambda_b^{\text{o}} \to \Lambda_c^+ \bar{D}^{(*)\text{o}} K^-}}{N^{\Lambda_b^{\text{o}} \to \Lambda_c^+ D_s^-}} \frac{\varepsilon^{\Lambda_b^{\text{o}} \to \Lambda_c^+ D_s^-}}{\varepsilon^{\Lambda_b^{\text{o}} \to \Lambda_c^+ \bar{D}^{(*)\text{o}} K^-}} \frac{\mathcal{B}(D_s^- \to K^- K^+ \pi^-)}{\mathcal{B}(\bar{D}^{\text{o}} \to K^+ \pi^-)}$$

- Datasets: Full 5.4 fb⁻¹ Run 2 data. Dedicated simulation (MC) samples.
- In principle an easy analysis: Cut, Count, Correct.

Challenges of $\Lambda_c^+ \overline{D}^0 K^-$ and $\Lambda_c^+ D_s^-$ vs. $J/\psi p K^-$

Final state: 6 hadrons vs. 2 hadrons and 2 muons. Hadronic hardware- and L1 triggers much less efficient than Dimuon triggers. Many more combinatorial backgrounds.

- Same reconstruction and trigger selection of $\Lambda_c^+ \overline{D}^\circ K^-$ and $\Lambda_c^+ D_s^-$ candidates; Different topological and particle identification (PID) requirements offline.
- Dedicated BDT for $\Lambda_c^+ \rightarrow p K^- \pi^+$ decays [PRL 112, 202001]; otherwise cutbased.
- Systematics from fit, multiple candidates, MC weighting, MC and calibration statistics.
- Validate result with 4 selection strategies, 3 bkg subtraction- and 3 weighting methods.

- Extensive veto selections underline complexity of $\Lambda_c^+ \overline{D}^\circ K^-$ and $\Lambda_c^+ D_s^-$ selection.
- Use PID information to efficiently suppress backgrounds validated by different selection strategies.

Explicitly rejected physics backgrounds. Some backgrounds are present only in the $\Lambda_c^+ \overline{D}^0 K^-$ or $\Lambda_c^+ D_s^-$ systems, others in both. A particle, M_{misID} , that decays through a real particle, a, which is reconstructed as a particle with different mass hypothesis, b, is denoted as $M_{misID} \rightarrow \{a \leftarrow b\}X$, where X corresponds to the rest of the decay. As there are two K^- in the final state, the subscripts " $\Lambda_c^+ n$ ", and "com" (for companion) or " D_s^- " denote the assignment in the nominal $\Lambda_c^+ \overline{D}^0 K^-$ or $\Lambda_c^+ D_s^-$ reconstruction chain.

$\Lambda_c^+ \overline{D}^{\mathrm{o}} \kappa^-$	$\Lambda_c^+ D_s^-$	Both
$\phi \rightarrow \{\kappa^+ \leftarrow p\}\kappa_{\rm com}^-$	$D^- \rightarrow \{\pi^- \leftarrow K^{D^s}\}K^+\pi^-$	$\phi \rightarrow {K^+ \leftarrow p} K^{\Lambda^+_c}$
$\mathcal{D}^{*+} \rightarrow \left[\{ \pi^+ \leftarrow p \} \mathcal{K}_{\operatorname{com}}^- \right]_{D^0} \pi^+$	$\overline{\Lambda}^c \rightarrow \{\overline{p} \leftarrow \kappa^{D^s}\}\kappa^+\pi^-$	$D^+_{(s)} \rightarrow \{K^+ \leftarrow p\}K^{\Lambda^+_c}\pi^+$
$D^{*+} \rightarrow \left[\{ K^+ \leftarrow p \} K^{\operatorname{com}} \right]_{D^0} \pi^+$	$\Lambda_c^+ \to \{\pi^+ \leftarrow p\} K_{\Lambda_c^+}^- \{p \leftarrow \pi^+\}$	$D^+ \rightarrow \{\pi^+ \leftarrow p\} K^{\Lambda^+_c} \pi^+$
$D^{*-} \rightarrow \{\pi^- \leftarrow K^{\rm com}\} \overline{D}^{\rm o}$		$D^{*+} \rightarrow \left[\{\pi^+ \leftarrow p\} K^{\Lambda^+_c} \right]_{D^0} \pi^+$
$D^{*-} \rightarrow \{\pi^- \leftarrow K^{\Lambda^+_c}\} \overline{D}^{o}$		$D^{*+} \rightarrow \left[\{K^+ \leftarrow p\} K^{\Lambda^*_c} \right]_{D^0} \pi^+$

- 3D fits determine charm mass requirements and normalization of $\Lambda_b^0 \to \Lambda_c^+ K^+ \pi^- K^-$.
- Linear dependency of $\Lambda_b^0 \to \Lambda_c^+ K^+ \pi^- K^-$ PDF in $m(\Lambda_c^+ \overline{D}^0 K^-)$ or $m(\Lambda_c^+ D_s^-)$ to $m(K^+ \pi^-)$ or $m(K^-K^+\pi^-)$ because of mass constraint.

mass

- Analytical models for $\Lambda_b^0 \rightarrow \Lambda_c^+ D_s^{*-}$, $\Lambda_b^0 \rightarrow \Lambda_c^+ D_{so}^* (2317)^-$ and $\Lambda_b^0 \rightarrow \Lambda_c^+ D_{s1} (2460)^-$.
- Normalizations of $\Lambda_b^0 \rightarrow \Lambda_c^+ D_{so}^* (2317)^-$ and $\Lambda_b^0 \rightarrow \Lambda_c^+ D_{s1} (2460)^-$ constrained from corresponding *B* meson decays and predicted baryon-meson ratios [Phys. Rev. D 69, 094002].
- $\Lambda_b^{o} \rightarrow \Sigma_c^+ \overline{D}^o K^-$, $\Lambda_b^{o} \rightarrow \Lambda_c^+ D_s^- \pi \pi$ and $\Lambda_b^{o} \rightarrow \Lambda_c^+ K^+ \pi^- K^-$ use kernel density (KDE) PDFs [comput. Phys. Commun. 136, 198] from fast simulation (RapidSim [comput. Phys. Commun. 214, 239]/AmpGen).
- Sum of $\Lambda_b^0 \to \Lambda_c^+ \left[\overline{D}^0 \pi^0 \right]_{\overline{D}^{*0}} K^-$ and $\Lambda_b^0 \to \Lambda_c^+ \left[\overline{D}^0 \gamma \right]_{\overline{D}^{*0}} K^-$ KDE PDFs from full simulation multiplied by polynomial for imperfectly

modeled decay dynamics/efficiency.

- Efficiency ratios are evaluated using simulation, corrected in production- and decay kinematics and track multiplicity.
- Data-driven calibration of the BDT response for $\Lambda_c^+ \rightarrow p K^- \pi^+$ decays [PRL 112, 202001].
- Validated by using different methods for the correction of simulated data, and by choosing selection requirements that probe certain aspects of the efficiency calculation.

$$\begin{split} & \varepsilon^{\Lambda_b^0 \to \Lambda_c^+ \tilde{D}^\circ K^-} / \varepsilon^{\Lambda_b^0 \to \Lambda_c^+ D_s^-} = 0.809 \pm 0.006 \text{ (MC stat.)}, \\ & \varepsilon^{\Lambda_b^0 \to \Lambda_c^+ \tilde{D}^{(*)} \circ K^-} / \varepsilon^{\Lambda_b^0 \to \Lambda_c^+ D_s^-} = 0.689 \pm 0.005 \text{ (MC stat.)}, \\ & \varepsilon^{\Lambda_b^0 \to \Lambda_c^+ D_s^{*-}} / \varepsilon^{\Lambda_b^0 \to \Lambda_c^+ D_s^-} = 0.785 \pm 0.005 \text{ (MC stat.)}. \end{split}$$

- Fit model: use discrete profiling [JINST 10 P04015].
 - Likelihoods corrected for number of parameters and pulls of fit-constraints.
 - Baseline fit has best corrected likelihood.
 - Vary 9 model choices for discrete profiling.
 - Approximate likelihoods with bifurcated parabolas \sim calculate envelope analytically.

Source / relative to	$\frac{\mathcal{B}(\Lambda_b^{\mathrm{o}} \to \Lambda_c^+ \bar{D}^{\mathrm{o}} K^-)}{\mathcal{B}(\Lambda_b^{\mathrm{o}} \to \Lambda_c^+ D_{\mathrm{s}}^-)}$ [%]	$\frac{\mathcal{B}(\Lambda_b^{\mathrm{o}} \to \Lambda_c^+ \bar{D}^{*\mathrm{o}} K^-)}{\mathcal{B}(\Lambda_b^{\mathrm{o}} \to \Lambda_c^+ D_{\mathrm{s}}^-)}$ [%]	$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^{*-})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)}$ [%]
Fit model	+0.5 -0.6	+2.8 -3.0	+3.6 -3.3
Weighting	0.1	0.1	0.0
Multiple candidates	0.0	0.0	0.1
Size of simulated samples	0.4	0.3	0.2
Size of generated samples	0.6	0.6	0.6
Total	0.9	+2.9 -3.1	+3.7 -3.3
Statistical	1.8	2.8	1.3

$$\frac{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}^{0} K^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}_{s}^{-})} = 0.1908^{+0.0036}_{-0.0034} (\text{stat.})^{+0.0016}_{-0.0018} (\text{sys.}) \pm 0.0038(\mathcal{B}),$$

$$\frac{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}_{s}^{+})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}_{s}^{-})} = 0.589^{+0.018}_{-0.017} (\text{stat.})^{+0.017}_{-0.018} (\text{sys.}) \pm 0.012(\mathcal{B}),$$

$$\frac{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}_{s}^{+})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}_{s}^{-})} = 1.668 \pm 0.022 (\text{stat.})^{+0.061}_{-0.055} (\text{sys.}).$$

$$\frac{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}_{s}^{+})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}_{s}^{-})} = 3.09^{+0.11}_{-0.10} (\text{stat.})^{+0.09}_{-0.10} (\text{sys.}).$$

$$(\text{compatible with coveral predictions chown earlier})$$

compatible with several predictions shown earlier.

$$\begin{aligned} \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \bar{D}^0 K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} & \cdot \frac{\mathcal{B}(\bar{D}^0 \to K^+ \pi^-)}{\mathcal{B}(D_s^- \to K^- K^+ \pi^-)} = 0.1400^{+0.0026}_{-0.0025} \text{ (stat.)}^{+0.0012}_{-0.0013} \text{ (sys.)}, \\ \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \bar{D}^{*0} K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} & \cdot \frac{\mathcal{B}(\bar{D}^0 \to K^+ \pi^-)}{\mathcal{B}(D_s^- \to K^- K^+ \pi^-)} = 0.432^{+0.013}_{-0.012} \text{ (stat.)} \pm 0.013 \text{ (sys.)}. \end{aligned}$$

• Reminder:
$$\frac{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}^{(*)0} K^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to J/\psi p K^{-})} = \frac{f_{J/\psi p}(P_{c}^{+})}{f_{\Lambda_{c}^{+} \overline{D}^{(*)0}}(P_{c}^{+})} \cdot \frac{\mathcal{B}(P_{c}^{+} \to \Lambda_{c}^{+} \overline{D}^{(*)0})}{\mathcal{B}(P_{c}^{+} \to J/\psi p)}$$
$$\frac{\mathcal{B}(\Lambda_{b}^{0} \to J/\psi p K^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}^{0} K^{-})} = 0.152^{+0.032}_{-0.028},$$
$$\frac{\mathcal{B}(\Lambda_{b}^{0} \to J/\psi p K^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}^{0} K^{-})} = 0.049^{+0.011}_{-0.009},$$
$$\frac{\mathcal{V}ields \Lambda_{b}^{0} \to J/\psi p K^{-} \Lambda_{b}^{0} \to \Lambda_{c}^{0}}{\mathcal{N}_{b}^{0} \to \Lambda_{c}^{+} \overline{D}^{0} K^{-})} = 0.049^{+0.011}_{-0.009},$$

 $\mathcal{B}(\Lambda^0 \rightarrow \Lambda^+ \overline{\rho}^{(*)0} \kappa^-)$

$$\begin{split} N^{\Lambda_{b}^{O} \to //\psi \rho K^{-}} &\approx 250\ 000\ [\text{PRL 122, 222001}] \\ N^{\Lambda_{b}^{O} \to \Lambda_{c}^{+} \overline{D}^{O} K^{-}} &\approx 4000, \quad N^{\Lambda_{b}^{O} \to \Lambda_{c}^{+} \overline{D}^{*O} K^{-}} &\approx 10\ 000 \end{split}$$

• Comparing $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-)$ to mesonic counterpart allows to estimate size/strength of color-suppressed amplitudes: which are absent for meson decays [Phys. Rev. D 106, 054029].

 $152^{+0.032}_{-0.028}$

• Define
$$\mathcal{DR}^{(*)}(M_b) \equiv \left[\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \bar{D}^{(*)0} \kappa^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} \right] / \left[\frac{\mathcal{B}(M_b \to M_c \bar{D}^{(*)0} \kappa^-)}{\mathcal{B}(M_b \to M_c D_s^-)} \right].$$

$$\mathcal{DR}(\bar{B}^0) = 1.29 \pm 0.20, \quad \mathcal{DR}^*(\bar{B}^0) = 1.28 \pm 0.19, \\ \mathcal{DR}(B^-) = 1.20 \pm 0.30, \quad \mathcal{DR}^*(B^-) = 0.87 \pm 0.12, \\ \mathcal{DR}(B_c^-) = 1.3 \pm 0.5, \quad \mathcal{DR}^*(B_c^-) = 0.8 \pm 0.4. \right].$$

Observation of $\Xi_b^{o} \rightarrow \Xi_c^+ D_s^$ and $\Xi_b^- \rightarrow \Xi_c^{o} D_s^-$ decays

AAA

İ

• Reconstruct $\Xi_c^+ D_s^-$ and $\Lambda_c^+ D_s^-$ candidates in $pK^- \pi^+ K^+ \pi^- K^-$ final state. Ξ_c^0 adds third K^- .

• Measure
$$\mathcal{R}\left(\frac{\Xi_b^{o}}{\Lambda_b^{o}}\right) \equiv \frac{\sigma(\Xi_b^{o})}{\sigma(\Lambda_b^{o})} \times \frac{\mathcal{B}(\Xi_b^{o} \to \Xi_c^+ D_s^-)}{\mathcal{B}(\Lambda_b^{o} \to \Lambda_c^+ D_s^-)} = \frac{N(\Xi_b^{o} \to \Xi_c^+ D_s^-)}{N(\Lambda_b^{o} \to \Lambda_c^+ D_s^-)} \frac{\varepsilon(\Lambda_b^{o} \to \Lambda_c^+ D_s^-)}{\varepsilon(\Xi_b^{o} \to \Xi_c^+ D_s^-)} \frac{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}{\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)}$$

$$\mathcal{R}\left(\frac{\Xi_{b}^{-}}{\Lambda_{b}^{0}}\right) \equiv \frac{\sigma(\Xi_{b}^{-})}{\sigma(\Lambda_{b}^{0})} \times \frac{\mathcal{B}(\Xi_{b}^{-} \to \Xi_{c}^{0}D_{s}^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+}D_{s}^{-})} = \frac{\mathcal{N}(\Xi_{b}^{-} \to \Xi_{c}^{0}D_{s}^{-})}{\mathcal{N}(\Lambda_{b}^{0} \to \Lambda_{c}^{+}D_{s}^{-})} \frac{\varepsilon(\Lambda_{b}^{0} \to \Lambda_{c}^{+}D_{s}^{-})}{\varepsilon(\Xi_{b}^{-} \to \Xi_{c}^{0}D_{s}^{-})} \frac{\mathcal{B}(\Lambda_{c}^{+} \to p\kappa^{-}\pi^{+})}{\mathcal{B}(\Xi_{c}^{0} \to p\kappa^{-}\kappa^{-}\pi^{+})}$$

$$\mathcal{R}\left(\frac{\Xi_{b}^{\circ}}{\Xi_{b}^{-}}\right) \equiv \frac{\sigma(\Xi_{b}^{\circ})}{\sigma(\Xi_{b}^{-})} \times \frac{\mathcal{B}(\Xi_{b}^{\circ} \to \Xi_{c}^{+} D_{s}^{-})}{\mathcal{B}(\Xi_{b}^{-} \to \Xi_{c}^{\circ} D_{s}^{-})} = \frac{\mathcal{N}(\Xi_{b}^{\circ} \to \Xi_{c}^{+} D_{s}^{-})}{\mathcal{N}(\Xi_{b}^{-} \to \Xi_{c}^{\circ} D_{s}^{-})} \frac{\varepsilon(\Xi_{b}^{\circ} \to \Xi_{c}^{\circ} D_{s}^{-})}{\varepsilon(\Xi_{b}^{\circ} \to \Xi_{c}^{+} D_{s}^{-})} \frac{\mathcal{B}(\Xi_{c}^{\circ} \to pK^{-} \pi^{+})}{\mathcal{B}(\Xi_{c}^{+} \to pK^{-} \pi^{+})}$$

- Direct measure of fragmentation fraction ratios $(\frac{\sigma(\Xi_b)}{\sigma(\Lambda_b^0)})$ assuming $\frac{\mathcal{B}(\Xi_b \to \Xi_c D_s^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = 1$.
- Analysis additionally measures Λ_b^{o} and Ξ_b masses. Not covered here.

- Reconstruction and trigger efficiencies do not cancel to first order as before, due to differences in lifetime, kinematics $(\Xi_c/\Lambda_c^+/\Xi_b/\Lambda_b^0)$ and/or additional track (Ξ_c^0) .
- Veto ϕ , D_s^+ , D^+ , D^o from proton misidentification, Λ_c^+ from a misidentified K^+ .
- Train dedicated gradient BDT classifier maximizing $S/\sqrt{S+B}$ with expected signal/background yields S/B.
- Efficiencies are taken from simulation, corrected for PID responses, track reconstruction efficiency, production- and decay-kinematics and track multiplicity.

$$\begin{split} & \frac{\varepsilon(\Xi_b^0 \to \Xi_c^+ D_s^-)}{\varepsilon(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = 1.101 \pm 0.010 \text{ (MC stat.)}, \\ & \frac{\varepsilon(\Xi_b^- \to \Xi_c^0 D_s^-)}{\varepsilon(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = 0.515 \pm 0.005 \text{ (MC stat.)}, \\ & \frac{\varepsilon(\Xi_b^0 \to \Xi_c^+ D_s^-)}{\varepsilon(\Xi_b^- \to \Xi_c^0 D_s^-)} = 2.138 \pm 0.017 \text{ (MC stat.)}. \end{split}$$

- Partially reconstructed signal consistent with $\Lambda_b^0/\Xi_b \to \Lambda_c^+/\Xi_c D_s^{*-}$ with $D_s^{*-} \to D_s^- \gamma$.
- Simulated samples with D_s^{*-} helicities ± 1 and 0 model partially reconstructed decays.
- Fractions of $\Lambda_b^{o}/\Xi_b \rightarrow \Lambda_c^{+}/\Xi_c K^- K^+ \pi^-$ decays $f_{\text{single } c}$ estimated from sidebands.

$$\begin{split} & N(\Lambda_b^0 \to \Lambda_c^+ D_s^{*-}) = 26\,090 \pm 170 \text{ (stat.)}, \\ & N(\Xi_b^0 \to \Xi_c^+ D_s^-) = 462 \pm 29 \text{ (stat.)}, \\ & N(\Xi_b^- \to \Xi_c^0 D_s^-) = 175 \pm 14 \text{ (stat.)}, \end{split}$$

fits

Mass

$$\begin{split} f_{\text{single } c}(\Lambda_b^0) &= (5.70 \pm 0.13 \text{ (stat.)})\%, \\ f_{\text{single } c}(\Lambda_b^0) &= (8.39 \pm 1.75 \text{ (stat.)})\%, \\ f_{\text{single } c}(\Lambda_b^0) &= (6.44 \pm 10.48 \text{ (stat.)})\%. \end{split}$$

- Fit model: vary signal and background model, remove partially reconstructed signal by adjusting fitted mass range. Take maximum deviation as uncertainty.
- Single charm background fraction $f_{\text{single }c}$ from different sideband region.
- Corrections to simulations dominated by weighting to match data in track multiplicity, production- and decay-kinematics; uncertainties evaluated with pseudoexperiments.

Source / relative to	$\mathcal{R}\left(\frac{\Xi_{b}^{o}}{\Lambda_{b}^{o}}\right)$ [%]	$\mathcal{R}\left(\frac{\overline{\Xi}_{b}^{-}}{\Lambda_{b}^{o}}\right)$ [%]	$\mathcal{R}\left(\frac{\overline{\Xi}_{b}^{o}}{\overline{\Xi}_{b}^{-}}\right)[\%]$
Fit model	2.7	1.3	3.4
$f_{single c}$	2.0	1.6	2.5
Limited simulation sample size	0.9	1.0	0.8
Trigger efficiency	1.5	1.5	1.5
Reconstruction efficiency	0.1	1.6	1.7
Corrections to simulations	1.3	4.3	4.3
Total	3.8	5.4	6.5

$$\mathcal{R}\left(\frac{\Xi_b^{\circ}}{\Lambda_b^{\circ}}\right) = (15.8 \pm 1.1 \text{ (stat.)} \pm 0.6 \text{ (sys.)} \pm 7.7 (\mathcal{B}))\%$$
$$\mathcal{R}\left(\frac{\Xi_b^{\circ}}{\Lambda_b^{\circ}}\right) = (16.9 \pm 1.3 \text{ (stat.)} \pm 0.9 \text{ (sys.)} \pm 4.3 (\mathcal{B}))\%$$
$$\mathcal{R}\left(\frac{\Xi_b^{\circ}}{\Xi_b^{\circ}}\right) = (94 \pm 10 \text{ (stat.)} \pm 6 \text{ (sys.)} \pm 51 (\mathcal{B}))\%$$

- $\mathcal{R}(\Xi_b^{o}/\Xi_b^{-})$ consistent with *SU*(3) flavour symmetry.
- Closing in on ratio of Λ_b^0 and Ξ_b fragmentation fractions.
- Related LHCb measurements

$$\frac{f_{\Xi_{b}^{o}}}{f_{\Lambda_{b}^{o}}} \cdot \frac{\mathcal{B}(\Xi_{b}^{o} \to \Xi_{c}^{+}\pi^{-})}{\mathcal{B}(\Lambda_{b}^{o} \to \Lambda_{c}^{+}\pi^{-})} \cdot \frac{\mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})} = (1.88 \pm 0.04 \pm 0.03)\% (\sqrt{s} = 7, 8 \text{ TeV}) \text{ [Phys. Rev. Lett. 113, 032001]}$$

$$\frac{f_{\Xi_{b}^{-}}}{f_{\Lambda_{b}^{o}}} \cdot \frac{\mathcal{B}(\Xi_{b}^{-} \to J/\psi\Xi^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to J/\psi\Lambda)} = (10.8 \pm 0.9 \pm 0.8)\% (7, 8 \text{ TeV}), (13.1 \pm 1.1 \pm 1.0)\% (13 \text{ TeV}) \text{ [Phys. Rev. D 99, 052006]}$$

- LHCb is capable of reconstructing fully hadronic beauty to double open-charm decays with 6 and 7 particles in the final state, reaching down to percent-level precision!
- The presented branching fractions probe factorization assumptions in effective theories.
- $\mathcal{B}(\Lambda_b^{o} \to \Lambda_c^+ \overline{D}^{(*)o} K^-)$ needed for upcoming pentaquark searches in these channels.
- $\Xi_b^{o} \to \Xi_c^+ D_s^-$ and $\Xi_b^- \to \Xi_c^o D_s^-$ decays are valuable input to Ξ_b / Λ_b^o fragmentation fractions.
- Great improvement of reconstruction and trigger efficiencies for fully hadronic decays in Run 3, due to triggerless readout of detector.

