Universität Münster

Observation of $e^+e^- \rightarrow \chi_{c1}$ at BESIII

MENU 2023 – Johannes Gutenberg University of Mainz

The 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

Anja Brüggemann on behalf of BESIII

University of Münster, Germany a_drie04@uni-muenster.de

17th October 2023

Direct Production of Hadronic Resonances in e^+e^- **Annihilations**

dominant process: production of vector resonances ($J^{PC} = 1^{--}$)

- e^+e^- annihilates dominantly into **one virtual photon** γ^* with $J_{\gamma^*}^{PC} = 1^{--}$
- virtual photon decays, e. g., into quark-antiquark pair ($q \bar{q}$ -quarkonium resonance)
- in electromagnetic processes: conservation of *P* and *C* parity
- $\rightarrow J^{PC}$ of resonance restricted to quantum numbers of virtual photon

Direct Production of Hadronic Resonances in e^+e^- **Annihilations**

supressed: production of C-even resonances $(0^{-+}, 0^{++}, 1^{++}, 2^{++}, ...)$

• forbidden via one virtual photon

via two virtual photons γ^*

• allowed via e^+e^- annihilation into two virtual photons γ^* or neutral current Z^0

e⁻

Observation of $e^+e^- \rightarrow \chi_{c1}$ at BESIII

 Z^0

via neutral current Z^0

Direct Production of Hadronic Resonances in e^+e^- **Annihilations**

supressed: production of C-even resonances $(0^{-+}, 0^{++}, 1^{++}, 2^{++}, ...)$

- first theoretical prediction in 1978 Kaplan, Kühn, PLB78, 252 (1978)
- experimental searches (so far unsuccessful): (most significant signal (2.5 σ) by SND M, N, Achasov et al., PLB800, 135074 (202) $\eta, \eta', f_0(980), f_0(1300), a_0(980), f_1(1285), \chi_{c1}(3872), f_2(1270), a_2(1320)$

 $\eta, \eta, f_{2}(980), f_{0}(1300), u_{0}(980), f_{1}(1283), \chi_{c1}(3872), f_{2}(1270), u_{2}(1270), u_{2}(1270)$

- direct production provides new approach for studying resonances properties
- promising candidate to search for at BESIII: $\chi_{c1}(1P)$

via two virtual photons γ^*

via neutral current Z^0

Theory Predictions for Direct χ_{c1} Production in e^+e^- Annihilations

- cross section of $e^+e^- \rightarrow \chi_{c1}$ unknown, but proportional to χ_{c1} electronic width Γ_{ee}
- theoretical predictions for Γ_{ee} :
 - ο lower limit based on unitarity: $\Gamma_{ee} > 0.044 \text{ eV}$ Kaplan, Kühn, PLB78, 252 (1978)
 - o using vector meson dominance model (VDM): $\Gamma_{ee} = 0.46 \text{ eV}$ Kaplan, Kühn, Safiani, NPB157, 125 (1979)
 - more recent calculations using VDM or non-relativistic QCD: $\Gamma_{ee} \approx 0.1 \text{ eV}$ Denig, Guo, Hanhart, Nefediev, PLB736, 221 (2014); Kivel, Vanderhaeghen, JHEP02, 032 (2016)
 - latest prediction: Γ_{ee} = 0.41 eV (+ study provides entire analysis strategy and predictions for experimental search for χ_{c1})

Czyz, Kühn, Tracz, PRD94, 034033 (2016)

via two virtual photons γ^*

via neutral current Z^0

 $\left|\frac{C}{\overline{c}}\right| \chi_{c1}$

Experimental Search for χ_{c1} as Proposed by H. Czyz, J. H. Kühn, S. Tracz (2016)

prediction accounts for interference between signal and irreducible ISR background processes having same final state

 amplitudes and their interference implemented into PHOKHARA¹ Monte Carlo (MC) event generator ¹ Czyz, Grzelinska, Kühn, PRD81, 094014 (2010)

depending on the relative phase ϕ between signal and background the cross section line shape σ^{MC} changes significantly

Experimental Search for χ_{c1} as Proposed by H. Czyz, J. H. Kühn, S. Tracz (2016)

prediction taking interference (int) between signal (χ_{c1}) and irreducible ISR background (ISR BG) into account:

- **below** χ_{c1} **mass** $M(\chi_{c1})$: constructive interference (excess of events)
- at χ_{c1} mass: minimal effect, almost no signal beyond irreducible background
- above χ_{c1} mass:
 deconstructive interference (reduction of events)
- if no interference: largest excess at χ_{c1} mass expected
- $\rightarrow \chi_{c1}$ production mainly observable as interference pattern
- \rightarrow signal of up to 75% of the irreducible ISR background

via energy scan in the χ_{c1} vicinity BESIII should be able to observe the interference pattern

Analysis Strategy at BESIII (Ablikim et al. (BESIII), PRL129, 122001 (2022))

Energy scan in χ_{c1} vicinity:

- four data points in χ_{c1} mass region collected at BESIII in 2017
- total integrated luminosity: $\mathcal{L}_{int}^{tot} = 446 \text{ pb}^{-1}$ (measured by large angle Bhabha events)
- uncertainty of center-of-mass energy: $\Delta E_{\rm cms} = \pm 50 \text{ keV}$
- energy spread of (736 ± 27) keV (both measured by beam energy measurement system)

data point E_{cms} (GeV) \mathcal{L}_{int} (pb⁻¹)13.5080 $181.79 \pm 0.04_{stat} \pm 1.04_{sys}$ 23.5097 $39.29 \pm 0.02_{stat} \pm 0.22_{sys}$ 33.5104 $183.64 \pm 0.04_{stat} \pm 1.05_{sys}$ 43.5146 $40.92 \pm 0.02_{stat} \pm 0.23_{sys}$

- 1. search for $e^+e^- \rightarrow \chi_{c1} \rightarrow \gamma(J/\psi \rightarrow \mu^+\mu^-)$
- 2. analyse/ reduce background processes
- 3. look for excess or reduction of signal beyond background via invariant mass $M_{\mu\mu}$ distribution of J/ψ candidates in all four data sets
- 4. compare with predicted interference pattern

BESIII Experiment (Beijing, China)

- BESIII (Beijing Spectrometer) = detector around the interaction point
 of the symmetric double ring e⁺e⁻ collider BEPCII (Beijing Electron Positron Collider)
- center-of-mass energy range of (2.00 4.95) GeV
- peak luminosity of $1\cdot 10^{33}\,cm^{-2}\,s^{-1}$
- solid angle coverage of 93% of 4π

© http://english.ihep.cas.cn/doc/1840.html

© http://english.ihep.cas.cn/bes/chnl/127/index.html

Anja Brüggemann

Event Selection for $e^+e^- \rightarrow \chi_{c1} \rightarrow \gamma J/\psi \rightarrow \gamma \mu^+\mu^-$

final state reconstruction:

- two good, oppositely charged tracks
- at least one good photon

general, standard BESIII event selection criteria

four constraint kinematic fit:

- constrain total four momentum of $\gamma \mu^+ \mu^-$ system to that of initial state for energy and momentum conservation (= four constraints)
- select out of reconstructed photon candidates the one with lowest χ^2 of kinematic fit

muon identification:

- require EMC energy deposition of $E_{\rm EMC} < 0.4 \, {\rm GeV}$
- exclude polar angles $0.8 < |cos \theta_{\mu}| < 0.86$ (where EMC is blind) to suppress Bhabha contamination

exclude good photon candidates in EMC end caps:

• exclude polar angles $|cos\theta_{\gamma}| > 0.80$ to suppress ISR background reactions

© http://english.ihep.cas.cn/bes/chnl/127/index.html

control data samples for background studies:

- four data points above χ_{c1} mass collected at BESIII
- no signal component
- total integrated luminosity: $\mathcal{L}_{int}^{tot} = 6294 \text{ pb}^{-1}$

Monte Carlo (MC) simulations at each energy point:

- exclusive MC samples of 200 Mio events each using PHOKHARA generator
 - signal simulation: $e^+e^- \rightarrow \chi_{c1} \rightarrow \gamma(J/\psi \rightarrow \mu^+\mu^-)$
 - $\circ~$ irreducible background simulation:

 $e^+e^-
ightarrow \gamma_{ISR}(J/\psi
ightarrow \mu^+\mu^-)$ and $e^+e^-
ightarrow \gamma_{ISR}\mu^+\mu^-$

- + interference (using electronic width $\Gamma_{ee}^{J/\psi}$ of J/ψ and fixed relative size)
- + interference sample between signal and background (using Γ_{ee} and ϕ as input parameters)
- inclusive MC samples at 3.773 GeV and 4.178 GeV

data points	$E_{\rm cms}$ (GeV)	\mathcal{L}_{int} (pb ⁻¹)
two points of $oldsymbol{\psi}'$ scan	3.581	$85.28 \pm 0.03_{\rm stat} \pm 0.58_{\rm sys}$
	3.670	$83.61 \pm 0.03_{stat} \pm 0.57_{sys}$
$oldsymbol{\psi}^{\prime\prime}$	3.773	$2932.39 \pm 0.17_{\rm stat} \pm 12.61_{\rm sys}$
high luminosity	4.178	$3192.49 \pm 0.20_{stat} \pm 15.99_{sys}$

irreducible ISR background MC

non- $\gamma_{(ISR)}\mu^+\mu^-$ background

- studied using inclusive MC and control data samples at 3.773 GeV and 4.178 GeV
- found to be negligible (< 0.2%)
- \rightarrow high purity data achieved of $\gamma \mu^+ \mu^-$ final state

<u>BUT:</u> remaining **irreducible background processes** as they feature the same final state

- \rightarrow precise description of these background reactions needed
- \rightarrow approach: use MC simulation of background by PHOKHARA

verification needed

Anja Brüggemann

prove of irreducible ISR background description of PHOKHARA event generator

• performance of unbinned two-dimensional fit to $M_{\mu\mu}$ and $|cos\theta_{\mu}|$ distributions of all four control data samples

- χ_{c1} signal line shape MC_{χ_{c1}} from signal MC at 3.5080 GeV, smeared with Gaussian
- **background line shape MC**_{ISR bg} from MC of irreducible background processes
- number of signal events $N_{\chi_{c1}}$ and irreducible background events N_{bg} are free fit parameters
- $N_{\chi_{c1}} = 0$ expected for all control data samples as they do not contain any signal

prove of irreducible ISR background description of PHOKHARA event generator

• unbinned 2-d fit to $M_{\mu\mu}$ and $|cos\theta_{\mu}|$ within [2.95, 3.25] GeV/ c^2 and [0, 1] of all four control data samples

prove of irreducible ISR background description of PHOKHARA event generator

• unbinned 2-d fit to $M_{\mu\mu}$ and $|cos\theta_{\mu}|$ within [2.95, 3.25] GeV/ c^2 and [0, 1] of all four control data samples

 $\rightarrow N_{\chi_{c1}} \neq 0$ observed, but $N_{\chi_{c1}} = 0$ expected

 \rightarrow discrepancy between data and MC of irreducible background (statistical significance < 2.3 σ , when normalized to 180 pb⁻¹)

- due to uncertainties of electronic width $\Gamma_{ee}^{J/\psi}$ of J/ψ
- due to limitations of PHOKHARA event generator

prove of irreducible ISR background description of PHOKHARA event generator

• unbinned 2-d fit to $M_{\mu\mu}$ and $|cos\theta_{\mu}|$ within [2.95, 3.25] GeV/ c^2 and [0, 1] of all four control data samples

 $\rightarrow N_{\chi_{c1}} \neq 0$ observed, but $N_{\chi_{c1}} = 0$ expected

 \rightarrow discrepancy between data and MC of irreducible background (statistical significance < 2.3 σ , when normalized to 180 pb⁻¹)

- due to uncertainties of electronic width $\Gamma_{ee}^{J/\psi}$ of J/ψ
- due to limitations of PHOKHARA event generator

prove of irreducible ISR background description of PHOKHARA event generator

• unbinned 2-d fit to $M_{\mu\mu}$ and $|cos\theta_{\mu}|$ within [2.95, 3.25] GeV/ c^2 and [0, 1] of all four control data samples

prove of irreducible ISR background description of PHOKHARA event generator

• unbinned 2-d fit to $M_{\mu\mu}$ and $|cos\theta_{\mu}|$ within [2.95, 3.25] GeV/ c^2 and [0, 1] of all four control data samples

Anja Brüggemann

• performance of 2-d unbinned maximum likelihood fit to $M_{\mu\mu}$ and $|cos\theta_{\mu}|$ of all four χ_{c1} data samples, individually

PDF: $N_{\chi_{c1}} \mathbf{MC}_{\chi_{c1}} + N_{bg} \mathbf{MC}_{\mathbf{ISR bg}} + \underbrace{N_{int} \mathbf{MC}_{int}}_{\text{interference included}}$ line shapes extracted from binned MC histograms

- χ_{c1} signal line shape $MC_{\chi_{c1}}$ from signal MC
- **background line shape MC**_{ISR bg} from **corrected MC** of irreducible background processes
- **interference line shape MC**_{int} from **corrected MC** of interference between signal and background (using square root of correction factors $\sqrt{f(M_{\mu\mu}, \cos\theta_{\mu})}$ for correction)
- interference constraint to¹⁾ $N_{int} = a(\Gamma_{ee}, \phi) \cdot \sqrt{N_{\chi_{c1}} \cdot N_{bg}}$ with a describing dependency of the coherent sum of signal and background processes from χ_{c1} electronic width Γ_{ee} and relative phase ϕ between signal and background, a is determined from signal MC using Γ_{ee} and ϕ (determination of Γ_{ee} and ϕ see later) 1) Czyz, Kühn, Tracz, PRD94, 034033 (2016)
- number of χ_{c1} signal events $N_{\chi_{c1}}$ and irreducible background events N_{bg} are free fit parameters

Anja Brüggemann

• 2-d unbinned maximum likelihood fit to $M_{\mu\mu}$ and $|cos\theta_{\mu}|$ within [2.95, 3.25] GeV/ c^2 and [0,1] of all four χ_{c1} data samples

determination of total cross section $\sigma_{\text{ISR bg}}^{\text{MC}} + (\sigma_{\chi_{c1}} + \sigma_{\text{int}})^{\text{data}} = \sigma_{\text{ISR bg}}^{\text{MC}} + N_{\text{sig}}/(\mathcal{L} \cdot \epsilon)$, with efficiencies ϵ obtained from signal MC simulations, \mathcal{L} being the integrated luminosity, $\sigma_{\text{ISR bg}}^{\text{MC}}$ calculated using PHOKHARA

determination of total cross section $\sigma_{\text{ISR bg}}^{\text{MC}} + (\sigma_{\chi_{c1}} + \sigma_{\text{int}})^{\text{data}} = \sigma_{\text{ISR bg}}^{\text{MC}} + N_{\text{sig}}/(\mathcal{L} \cdot \epsilon)$, with efficiencies ϵ obtained from signal MC simulations, \mathcal{L} being the integrated luminosity, $\sigma_{\rm ISR \ bg}^{\rm MC}$ calculated using PHOKHARA

- **statistical tests** to validate hypothesis including χ_{c1} signal
 - based on likelihood ratios and toy MC simulations
 - tests of binning strategy, as line shapes are extracted from binned MC histograms
 - **tests of fit method**, as fraction of $N_{\rm sig} \approx 2\%$
 - **cross check** via 1-d fit to $M_{\mu\mu}$
- **BUT:** observation of discrepancy between theory prediction and **experimental result**, due to differences in Γ_{ee} and ϕ

no

Extraction of Interference Parameters Γ_{ee} and ϕ

performance of simultaneous fits to all four χ_{c1} data samples scanning the (Γ_{ee}, ϕ) parameter phase space for best solution

() ()

- analytic description of σ_{tot} unknown, but depends on Γ_{ee} and $\phi \rightarrow$ use scan method to determine Γ_{ee} and ϕ
- generation of MC samples with 200 Mio events for each χ_{c1} data point and each (Γ_{ee} , ϕ) set (green circles)
- same fit approach as for extraction of χ_{c1} signal events: 2-d unbinned maximum likelihood fit to $M_{\mu\mu}$ and $|cos\theta_{\mu}|$

PDF: $N_{\chi_{c1}}\mathbf{MC}_{\chi_{c1}} + N_{bg}\mathbf{MC}_{ISR bg} + N_{int}\mathbf{MC}_{int}$

- but here:
 - common fit to all four χ_{c1} data samples for each (Γ_{ee}, ϕ) set
 - number of events $N_{\chi_{c1}}$, N_{bg} fixed to number of events
 obtained from MC

 \rightarrow for given (Γ_{ee}, ϕ) set: $N_{int} = a(\Gamma_{ee}, \phi) \cdot \sqrt{N_{\chi_{c1}} \cdot N_{bg}}$ fixed

• maximum likelihood value gives best solution for Γ_{ee} and ϕ (red dot)

Anja Brüggemann

Extraction of Interference Parameters Γ_{ee} and ϕ

performance of simultaneous fits to all four χ_{c1} data samples scanning the (Γ_{ee}, ϕ) parameter phase space for best solution

Summary

First observation of direct production of χ_{c1} resonance with $J^{PC} = 1^{++}$ in e^+e^- collisions

- statistical significance $> 5\sigma$
- first measurement of χ_{c1} electronic width $\Gamma_{ee} = (0.12^{+0.13}_{-0.08}) \text{ eV}$ (of same order as theory predictions)
- observation of interference pattern as predicted^{0.}
- published in PRL129, 122001 (2022)

- **new approach applied** for search for $J^{PC} \neq 1^{--}$ resonances, directly produced in e^+e^- annihilations
 - using energy scan data in the resonance's vicinity
 - \circ taking interference with irreducible background into account (Γ_{ee} , ϕ dependency)
 - \circ search for signal beyond background based on fits to data using validated MC line shapes und (Γ_{ee} , ϕ) scan method
- Outlook for BESIII: applying and proving analysis strategy to search for directly produced χ_{c2} resonance with $J^{PC} = 2^{++}$

Thank you for your attention!

Experimental Search for Directly Produced *C***-even States in** e^+e^- **Annihilations**

ND collaboration

• $\eta', f_0(980), f_0(1300), a_0(980), f_2(1270), a_2(1320)$ at VEPP-2M collider (Vorobev et al. (ND), SJNP48, 273 (1988))

SND collaboration

- $f_2(1270), a_2(1320)$ at VEPP-2M collider (Achasov et al. (SND), PLB492, 8 (2000))
- η at VEPP-2M collider (Achasov et al. (SND), PRD98, 052007 (2018))
- η' at VEPP-2000 collider (Achasov et al. (SND), PRD91, 092010 (2015))
- $f_1(1285)$ at VEPP-2000 collider (Achasov et al. (SND), PLB800, 135074 (2020))

CMD-3 collaboration

• η' at VEPP-2000 collider (Akhmetshin et al. (CMD-3), PLB740, 273 (2015))

BESIII collaboration

• $\chi_{c1}(3872)$ at BEPCII collider (Ablikim et al. (BESIII), PLB749, 414 (2015), Ablikim et al. (BESIII), PRD107, 032007 (2023))

BESIII Data Sets

- world's largest data sets at 1^{--} resonances: $J/\psi, \psi(2S), \psi(3770)$
- scans around resonances: $\chi_{c1}, \psi(2S), \psi(3770)$
- energy scan in the "XYZ" region: $4.0 \text{ GeV} \le \sqrt{s} \le 5.0 \text{ GeV}$
- additional data sets at lower energies: $2.0 \text{ GeV} \le \sqrt{s} \le 3.0 \text{ GeV}$

(2-d unbinned maximum likelihood fit to $M_{\mu\mu}$ and $|cos\theta_{\mu}|$ within [2.95, 3.25] GeV/ c^2 and [0,1] of all four χ_{c1} data samples) \rightarrow one-dimensional projections to the $M_{\mu\mu}$ and $|cos\theta_{\mu}|$ distributions:

