First Computation of ⁴He Compton Scattering: the Transition-Density Formalism

H. W. Grießhammer

THE GEORGE WASHINGTON UNIVERSITY Institute for Nuclear Studies The George Washington University, DC, USA

with Alex Long & Junjie Liao (GW), Judith A. McGovern (U. Manchester), Andreas Nogga (FZ Jülich), Daniel R. Phillips (Ohio U.)

- Two-Photon Response Explores System Dynamics
- Per Aspera Ad Astra with the Transition-Density Formalism
- Confronting Reality: Compton Scattering on ⁴He
- 4 Concluding Questions

How do constituents of the nucleon react to external fields? How to reliably extract proton, neutron, spin polarisabilities? How to plan effective experiments & test theory?

Exp-Th Compton Roadmap in "Next-Gen γ **Source": IJMPG49 (2022) 010502** transition density formalism and ³He: hg/JMcG/AN/DRP: Few-Body Syst. **61** (2020) 61 ⁴He $\mathcal{O}(e^2\delta^3)$: Liao/hg/JMcG/AN/DRP: in preparation

Institute for Nuclear Studies

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

G

1. Two-Photon Response Explores System Dynamics

(a) Polarisabilities: Stiffness of Charged Constituents in El.- Mag. Fields

Example: induced electric dipole radiation from harmonically bound charge, damping Γ Lorentz/Drude 1900/1905

Energy- (ω)-dep. multipoles for *interaction scales, symmetries & mechanisms* with & among constituents. Clean, perturbative probe: χ iral symmetry of pion-cloud & its breaking, $\Delta(1232)$, spin-constituents.

Fundamental hadron properties, like charge, mass, mag. moment, $\langle r_N^2 \rangle$... PDG

$$\mathcal{L}_{\text{pol}} = 2\pi \begin{bmatrix} \alpha_{E1} \vec{E}^2 + \beta_{M1} \vec{B}^2 + \dots \end{bmatrix} \qquad \begin{array}{c} \alpha_{E1}: \text{ electric} \\ \beta_{M1}: \text{ magnetic} \end{array} \text{ scalar dipole polarisability}$$

elmag. self-energy part of nucleon mass splitting $M_{\gamma}^{\rm p} - M_{\gamma}^{\rm n} \approx [1.1 \pm 0.5] \, {
m MeV}$ with $\alpha_{E1}^{p-n} = -1.7 \pm 0.4_{
m tot}$ Hoferichter/Gasser/Leutwyler/Rusetzky 2015

(b) Scalar Polarisabilities from Consistent p & d Databases

database: JMcG/DRP/hg/ Feldman PPNP 2012

(c) All 1N Contributions to N⁴LO McGovern 2001, hg/Hemmert/Hildebrandt/Pasquini 2003 McGovern/Phillips/hg 2013 **Unified Amplitude:** accuracy decreases with ω : $\sim M_{\Delta} - M_N$ $\approx 300 \,\mathrm{MeV}$ in low régime $\omega \lesssim m_{\pi}$ at least N⁴LO ($e^2 \delta^4$): accuracy $\delta^5 \lesssim 2\%$; $\omega \leq m_{\pi}$ in high régime $\omega \sim M_{\Delta} - M_N$ at least NLO ($e^2 \delta^0$): accuracy $\delta^2 \leq 20\%$. or Thomson term: $-\frac{Z^2 \alpha_{EM}}{M}$ $e^2 \delta^0 \searrow$ NLO $e^2 \delta^0 LO$ $e^2 \delta^2 N^2 LO$ $e^2 \delta^1 N^2 LO$ with vertex covariant ····NLO LO $e^2 \delta^3 N^3 LO$ $e^2\delta^{-1}$ \nearrow LO N²LO corrections $e^2 \delta^3 N^3 LO$ $e^2 \delta^1 N^2 LO$ δα,δβ etc. $e^2 \delta^4 N^4 LO$ $e^2 \delta^2 N^3 I O$ etc. **Unknowns:** short-distance $\delta \alpha, \delta \beta \iff$ static α_{E1}, β_{M1} (offset) $\implies \omega$ -dependence predicted.

Bernard/Kaiser/Meißner 1992-4, Butler/Savage/Springer 1992-3, Hemmert/...1998

2. Per Aspera Ad Astra with the Transition-Density Formalism

hg/McGovern/Phillips/Nogga FewB Sys 61 (2020) 61 arXiv:2005.12207 Alex Long: PhD Project 2022-?

hg/McGovern/Phillips/Nogga FewB Sys 61 (2020) 61 arXiv:2005.12207 Alex Long: PhD Project 2022-?

hg/McGovern/Phillips/Nogga FewB Sys 61 (2020) 61 arXiv:2005.12207 Alex Long: PhD Project 2022-?

hg/McGovern/Phillips/Nogga FewB Sys 61 (2020) 61 arXiv:2005.12207 Alex Long: PhD Project 2022-?

only depends on quantum numbers of actives and mom. transfer

hg/McGovern/Phillips/Nogga FewB Sys 61 (2020) 61 arXiv:2005.12207 Alex Long: PhD Project 2022-?

Idea: Split calculation into

kernel: interaction with *n* active nucleons recycle same reaction for different nuclei Compton on ³He, ³H, ⁴He, ⁶Li, ...

structure: A - n spectators

recycle same nucleus for different reactions 4 He Compton, π prod., FFs, dark matter,...

 χ EFT hierarchy of few-body interactions: onebody, twobody \gg threebody \gg fourbody...

n-body transition density amplitude: *n* nucleons with intrinsic momenta and specific quantum numbers α absorb momentum transfer (q_0, \vec{q}) , re-arrange quantum numbers to α' , get absorbed back into nucleus. Computationally highly efficient: well-developed, sophisticated numerical few-body techniques. Density repository for ³He, ⁴He at datapub.fz-juelich.de/anogga – more (⁶Li) to come. ³He (arXiv:2005.12207): CPU time reduced from days to hours; extensive checks; same result as traditional. \implies Compute to higher numerical accuracy (integration mesh, $j_{12},...$): $\approx 1\%$ change)

$\omega = 50 \text{ MeV}, \theta = 30^{\circ}$					$\omega = 120 \text{ MeV}, \theta = 165^{\circ}$			
	Idaho N ³ LO+3NFb		AV18+UIX		Idaho N 3 LO+3NFb		AV18+UIX	
$\{M',M;\lambda',\lambda\}$	value $[fm^3]$	rel.dev.	value $[fm^3]$	rel.dev.	value $[fm^3]$	rel.dev.	value $[fm^3]$	rel.dev.
$\{\frac{1}{2}, \frac{1}{2}; 1, 1\}$	07132	0.1%	09343	0.2%	00149	0.0%	00188	0.2%
$\left\{\frac{1}{2},\frac{1}{2};-1,1\right\}$	00543	0.3%	00702	0.3%	10220	0.8%	12570	0.8%
$\left\{\frac{1}{2},\frac{1}{2};1,-1\right\}$	00543	0.3%	00702	0.3%	10220	0.8%	12570	0.8%
$\left\{\tfrac{1}{2}, \tfrac{1}{2}; -1, -1\right\}$	07132	0.1%	09343	0.2%	00149	0.0%	00188	0.2%

Table 7: Comparison of two-body matrix elements in the "density" approach and the "traditional" approach for potentials Idaho N³LO+3NFb and AV18+UIX with $j_{12} \leq 2$ at $\omega = 50$ MeV, $\theta = 30^{\circ}$ (where mostly diagonal matrix elements are probed) and $\omega = 120$ MeV, $\theta = 165^{\circ}$ (where off-diagonal matrix elements are probed more strongly). See also text and captions to tables 5 and 3 for further details.

3. Confronting Reality: Compton Scattering on ⁴He

(a) Perfect Scalar-Isoscalar: Sensitive *Only* to α^{p+n} , β^{p+n} – Not To Spinpols γ_i

(b) Dependence on Scalar Iso-Scalar Polarisabilities

(c) The "Only" Other Observable: Beam Asymmetry Σ^{lin}

hg/J. Liao/JAMcG/A. Nogga/DRP in preparation incl. math.nb

9-1

(d) Comparing ⁴He, ³He, Deuteron, Proton, Neutron

4. Concluding Questions

Polarisabilities: @-dependence maps out scales, symmetries & mechanisms of interactions:

 χ iral symmetry of pion-cloud, $\Delta(1232)$ properties. Impact on $M_p - M_n$, p-radius,...

Spin Polarisabilities: Stiffness of Spin Constituents; Nuclear Faraday Effect.

 χ EFT: systematic, parameter-free predictions with uncertainties; lattice QCD catching up.

Target	Opportunities	Theory Status for All Observables		
proton & neutron	nucleon spin polarisabilities	"done": N ⁴ LO $\omega \lesssim 230 \text{ MeV}$ for pols. math.nb jupyter.py		
deuteron	sensitive to $p + n$ average polarised, d-wave interference: mixed spin pols $\gamma_{E1M2}, \gamma_{M1E2}$	$\omega < m_{\pi} \ N^3$ LO done, N ⁴ LO this year math.nb $\omega \gtrsim m_{\pi}$ needs resources		
³ He: increased rates	unpolarised: sensitive to $2p + n$ polarised: " <i>n</i> -spin" $\implies \gamma_i^n$ only	densities method arXiv:2005.12207 ³ He:math.nb $\omega \in [50 \text{ MeV}; m_{\pi}] \text{ N}^{3} \text{ I } \Omega \checkmark \text{ N}^{4} \text{ I } \Omega$ like d		
⁴ He: increased rates	sensitive to $p+n$ average, not γ_i 's	$\omega \rightarrow 0$ under way — $\omega \gtrsim m_{\pi}$ needs resources		
$\gamma X ightarrow NY \gamma$ quasifree	tag n or p directly – both at once?	$\gamma d ightarrow np\gamma { m N}^4$ LO done; more needs resources		

We Need Data: elastic & inelastic cross-sections & asymmetries – reliable systematics!

Low- ω for scalar, high- ω for spin-polarisabilities, but always $\omega \lesssim 230$ MeV.

Only combination of dedicated experiments meaningful! (Not "one datum for one answer".)

⇒ Synergy of Experiment, Low-Energy Theory & Lattice QCD, competitive uncertainties!

⇒ Compton Community programme outlined in White Paper for a

Next Generation Laser Compton Gamma-ray Beam Facility arXiv:2012.10843 and DOE.

The efficient person gets the job done right. The effective person gets the right job done.

