

Contribution ID: 74

Type: Invited Talk

Universality of Three Identical Bosons with Large, Negative Effective Range

Friday, 4 August 2023 10:10 (35 minutes)

A consistent nonrelativistic Effective Field Theory exists for which the scattering length a is large and the effective range r_0 is large in magnitude but negative. Such systems can for example be found in heavy mesons. Observables depend then only on the universal ratio $\xi = 2r_0/a$, with $|r_0|$ fixing the overall distance scale. The two-body scattering amplitude displays two shallow S-wave poles whose position in the complex plane is determined by ξ . We investigate here how the bound-state energies of three identical bosons depend on ξ , for a two-body system with one bound and one virtual state, or with two virtual states. We compare our results with

those of Efimov's discrete scale invariance, as $|r_0| \to 0$ is reduced. In ontradistinction to that case, no threebody interaction is needed to stabilise the system. Instead, a well-defined ground state exists for a limited range of ξ around the "quasi-unitarity point" $\xi = 0$, and excitations for even smaller ranges. Interpreting the Efimov version $r_0 = 0$ as a low-energy theory, one matches the spectra to determine its scale-breaking parameter $\overline{\Lambda}$. We also compare the phase shifts for the

scattering of a boson on the two-boson bound state with that of the equivalent Efimov system.

Work conducted in collaboration with U.~van Kolck (Universit\´e Paris-Saclay, CNRS/IN2P3 and University of Arizona)

Primary author: GRIESSHAMMER, Harald W. (George Washington University)

Presenter: GRIESSHAMMER, Harald W. (George Washington University)

Session Classification: Friday Plenary Session