Emergence of ${ }^{4} \mathrm{H}\left(J^{\pi}=1^{-}\right)$resonance in contact theories (Phys. Lett. B 840 (2023) 137840)

Martin Schäfer

Nuclear Physics Institute, CAS, Řež, Czech Republic

EFB

L. Contessi, J. Kirscher, R. Lazauskas, and J. Carbonell

25th European Conference on Few-body problems in Physics 3rd August 2023

Introduction

LO \ddagger EFT

$$
\begin{gathered}
\hat{V}=\sum_{S T} C_{0}^{S T} \sum_{i<j} e^{-\frac{\Lambda^{2}}{4} r_{i j}^{2}} \\
\hat{W}=D_{0} \sum_{i<j<k} \sum_{c y c} e^{-\frac{\Lambda^{2}}{4}\left(r_{i j}^{2}+r_{i k}^{2}\right)}
\end{gathered}
$$

Impresive amount of various studies for $A \leq 3$ at LO $\not \subset E F T$ and its higher orders.

At this conference :

LO đEFT for hypernuclei (talk of L. Contessi)
Few-nucleon scattering at NLO \neq EFT for $A \leq 4$ (talk of B. Bazak) S-wave $n^{4} \mathrm{He}$ scattering at NLO $\neq \mathrm{EFT}$ (poster of M. Bagnarol) Getting LQCD calculations outside the box (poster of T. Weiss-Attia)
... What about p-shell or even heavier nuclear systems ?

LO \neq EFT calculation of ${ }^{6} \mathrm{Li}$

(I. Stetcu, B. R. Barrett, and U. van Kolck, Phys. Lett. B 653 (2007) 358)

\rightarrow NCSM calculation
$\rightarrow 3$ LECs in LO $\not \subset E F T$ fitted such that exp. ground state $B\left({ }^{2} \mathrm{H}\right), B\left({ }^{3} \mathrm{H}\right)$, and $B\left({ }^{4} \mathrm{He}\right)$ are reproduced
\rightarrow for large $\wedge B\left({ }^{6} \mathrm{Li}\right)$ estimated as $\sim 23 \mathrm{MeV}$

LO đEFT calculation of ${ }^{16} \mathrm{O}$

(L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, and U. van Kolck, Phys. Lett. B 772 (2017) 839)
\rightarrow AFDMC (Monte Carlo)
\rightarrow ground state binding energy for $\Lambda=2,4,6,8 \mathrm{fm}^{-1}$
\rightarrow bound at $\Lambda=2 \mathrm{fm}^{-1}$
\rightarrow for $\Lambda \geq 4 \mathrm{fm}^{-1}$ wave function of ${ }^{16} \mathrm{O}$ breaks into 4 mutually unbound α clusters
\rightarrow the same outcome for ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$ using coupled-cluster method
(A. Bansal, S. Binder, A. Ekström, G. Hagen,
G. R. Jansen, and T. Papenbrock, Phys. Rev. C

98, 054301, 2018)

LO contact EFT calculation of 8 four-component unitary

 fermions (W. G. Dawkins, J. Carlson, U. van Kolck, and A. Gezerlis, Phys. Rev. Lett. 124 (2020) 143402)\rightarrow ressemblence to Wigner LO SU(4)-symmetric đEFT (${ }^{8} \mathrm{Be}$)
\rightarrow DMC (Monte Carlo)
\rightarrow zero-range limit $\mu R_{4}(\bar{\mu}) \rightarrow \infty$
$\rightarrow E_{8} / E_{4}(\infty)=2.04 \pm 0.05$
$\rightarrow E_{8} / E_{4}(\infty)$ ratio consistent with the disintegration threshold into two 4-body clusters

LO đEFT calculations of several p-shell nuclei up to ${ }^{8} \mathrm{Be}$
(M. Schäfer, L. Contessi, J. Kirscher, and J. Mareš, Phys. Lett. B 816 (2021) 136194)

At certain small and finite Λ all p-shell nuclear systems up to ${ }^{8} \mathrm{Be}$ break into mutually unbound s-shell subclusters.

IntermezZO (M. Schäfer, L. Contessi, J. Kirscher, and J. Mareš, Phys. Lett. B 816 (2021) 136194)

Conjecture based on the numerical evidence :

Beyond s-shell nuclear systems break in the zero-range limit into $p, n,{ }^{2} \mathrm{H},{ }^{3} \mathrm{H} /{ }^{3} \mathrm{He}$, and ${ }^{4}$ He. (free nucleon(s) + spherically-symmetric fragments)

Option 1 :

LO shallow continuum pole; RG invariant; can be mutated into a bound state with perturbative insertions of sub-leading operators.

Option 2 :

Identical as above; nonperturbative mechanism required to move the pole into a bound-state region.

Option 3 :

No LO RG invariant continuum pole in the EFT's convergence radius; must be created nonperturbatively by modifying the LO.

${ }^{4} \mathrm{H}$ resonances

Experimental evidence :

$\rightarrow n^{3} \mathrm{H}$ elastic cross-sections
(Ann. Phys. 74 (1972) 250;Phys. Rev. C 22 (1980) 384)
$\rightarrow \pi^{-}$absorption experiments
(Phys. Lett. B 103 (1981) 409; Nucl. Phys. A 531 (1991) 613)
\rightarrow transfer reactions
(Phys. Rev. C 33 (1986) 2204; Nucl. Phys. A 719 (2003) C229)
\rightarrow extracted resonance positions significantly differ

Theory :

\rightarrow RGM with complex scaling
(Phys. Rev. C 68 (2003) 034303)
\rightarrow Spin-dipole strength functions
(Phys. Rev C 87 (2013) 034001)
\rightarrow Faddeev-Yakubovsky equations
(Phys. Lett. B 791 (2019) 335)
\rightarrow No-core Gamov Shell Model
(Phys. Rev. C 104 (2021) 024319)

J^{π}	$E_{r}[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$
2^{-}	$1.15(5)$	$3.97(7)$
1_{I}^{-}	$0.90(3)$	$3.80(8)$
0^{-}	$0.78(15)$	$7.7(7)$
$1_{I I}^{-}$	$0.2(2)$	$4.6(1)$

INOY; (Phys. Lett. B 791 (2019) 335)

One LO interaction ... three different methods

(L. Contessi, M. Schäfer, J. Kirscher, R. Lazauskas, J. Carbonell, Phys. Lett. B 840 (2023) 137840)

```
Faddeev-Yakubovsky formalism
(Phys. Rev. C }70\mathrm{ (2004) 044002)
(Front. Phys. (2020) 251)
n}\mp@subsup{}{}{3}\textrm{H}\mathrm{ scattering, }\mp@subsup{}{}{4}\textrm{H}S\mathrm{ -matrix pole
```

SU(4)-symmetric LO $\not \subset$ EFT

$$
\hat{V}=C_{0} \sum_{i<j} e^{-\frac{r_{i j}^{2} \lambda^{2}}{4}}
$$

$\hat{W}=D_{0} \sum_{i<j<k} \sum_{c y c} e^{-\frac{\left(r_{i j}^{2}+r_{i k}^{2}\right) \Lambda^{2}}{4}}$
$B\left({ }^{2} \mathrm{H}\right) /$ unitarity and $B\left({ }^{3} \mathrm{H}\right)$

Harmonic oscillator trap

(Phys. Rev. A 80 (2009) 033601)
(Phys. Rev. C 85 (2012) 034003)
(Phys. Rev. Lett. 125 (2020) 112503)
$n^{3} \mathrm{H}$ scattering

Resonating group method

(Phys. Rev. 52 (1937) 1107)
(K. Wildermuth, Y. T'ang, A unified theory of the nucleus (1977) Vieweg+Teubner Verlag)
$n^{3} \mathrm{H}$ scattering

S-wave and p-wave $n^{3} \mathrm{H}$ elastic scattering

(L. Contessi, M. Schäfer, J. Kirscher, R. Lazauskas, J. Carbonell, Phys. Lett. B 840 (2023) 137840)

RGM insight into $n^{3} \mathrm{H}$ potential

(L. Contessi, M. Schäfer, J. Kirscher, R. Lazauskas, J. Carbonell, Phys. Lett. B 840 (2023) 137840)

Figure: Left panel: Diagonal part of the effective "nuclear" RGM potential in the $L=1$ partial wave, $\hat{U}_{\text {diag }}(y):=L(L+1) y^{-2}+\frac{2 \mu}{\hbar^{2}}\left[\hat{U}_{\text {eff }}^{(2)}(y)+\hat{U}_{\text {eff }}^{(3)}(y, y) y^{2}\right] \frac{1 f m}{N_{3}}$, where N_{3} is the norm of the triton wave function and $1.5 \mathrm{fm}^{-1} \leq \Lambda \leq 10 \mathrm{fm}^{-1}$. Right panel: Topography of the non-local part $\hat{U}_{\mathrm{eff}}^{(3)}\left(y, y^{\prime}\right)\left(\Lambda=10 \mathrm{fm}^{-1}\right)$ exhibiting an off-diagonal attractive pocket (second quadrant of the contour plot) which does not vanishes in the zero-range limit. The potentials were obtained at $E=0$ with a five-dimensional Gaussian calibration of the core wave function to SVM ground states.

Emergence of ${ }^{4} \mathrm{H} J^{\pi}=1^{-}$resonance in LO $\not \subset E F T$

(L. Contessi, M. Schäfer, J. Kirscher, R. Lazauskas, J. Carbonell, Phys. Lett. B 840 (2023) 137840)

$$
k_{\mathrm{res}}=\sqrt{2 \mu \tilde{E}_{\mathrm{res}}}, \quad \tilde{E}_{\mathrm{res}}=E_{\mathrm{res}}-E_{t}
$$

Summary

- Beyond s-shell nuclear systems break in the zero-range limit into $p, n,{ }^{2} \mathrm{H}$, ${ }^{3} \mathrm{H} /{ }^{3} \mathrm{He}$, and ${ }^{4} \mathrm{He}$ (conjecture based on the numerical evidence)
- Suprisingly, the same type of instability for ${ }^{6} \mathrm{Li}$ and ${ }^{16} \mathrm{O}$ found using RG-invariant power-counting scheme at LO in χ EFT (Phys. Rev. C 103 (2021) 054304)
- Calculation of ${ }^{4} \mathrm{H} J^{\pi}=1^{-}$resonance within $\mathrm{SU}(4)$-symmetric LO $\not \approx \mathrm{EFT}$ using three different methods
- Numerical evidence of stabilization of ${ }^{4} \mathrm{H} J^{\pi}=1^{-}$resonance pole with increasing momentum cutoff
\rightarrow Reasonable to expect that the same stabilization occurs also in heavier p-shell systems, if so, we can speculate :

$$
\begin{array}{ll}
{ }^{6} \mathrm{Li} \rightarrow \alpha+\mathrm{d} & (\text { likely } 4+2 \text { virtual(antibound) state) } \\
{ }^{6} \mathrm{He} \rightarrow \alpha+\mathrm{n}+\mathrm{n} & \text { (likely } 4+1+1 \text { resonance) } \\
{ }^{7} \mathrm{Li} \rightarrow \alpha+\mathrm{t} & \text { (likely } 4+3 \text { resonance) } \\
{ }^{8} \mathrm{Be} \rightarrow \alpha+\alpha & \text { (likely } 4+4 \text { virtual(antibound) state) } \\
{ }^{16} \mathrm{O} \rightarrow \alpha+\alpha+\alpha+\alpha & \text { (likely } 4+4+4+4 \text { resonance) }
\end{array}
$$

