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Vortex, superfluid and
turbulence dynamics

Turbulent fluids is discussed in the Feynman Lectures on
Physics [pgs. 3-9, Vol. 1 (1963)] as a very old problem that has
not been solved till now, because in physics no one has been
able to analyze it from first principles.

The connection of turbulence with a superfluid via the
quantized vortex lines was also first suggested by Feynman.

Now, due to some similarities found with the corresponding
classical theory, a lot of expectation exists that Quantum
Turbulence (QT) can shed some light on the general solution of
such an old classical problem.,

QT actually is the name given to the turbulent flow of a fluid at
high flow rates, such as superfluids.




Classical and Quantum Turbulence

Quantum turbulence is an apparently random tangle of vortex lines
inside a quantum fluid, as indicated by experiments and numerical
solutions.

Some examples of quantum fluids include superfluid helium (*He and
Cooper pairs of 3He), Bose-Einstein condensates (BECs), polariton
condensates.

It is being noticed that quantum fluids exist at temperatures below the
critical temperature at which Bose-Einstein condensation takes place.

Two main guestions in the study of quantum turbulence:

Are vortex tangles really random, or do they contain some characteristic
organised structures?

How far one can compare quantum turbulence with classical turbulence?




Binary mass-imbalanced BEC systems
under stirring potential

® Vortex and turbulence generated by a stirring time-
dependent interaction in a two-species coupled mass-
Imbalanced condensates.

® For the perturbation we have considered a slightly
modified elliptically periodic potential.

® The approach is suggested to the experimentally
accessible binary mixtures 85Rb-133Cs and 85Rb-87RD,
which allow us to verify the effect of mass differences
In the dynamics.




Laser stirred Binary BEC

In our approach, the Gross-Pitaevskii coupled stirred model is

given by,
.0, —MM1 o 2
where —iV = —i (ém(% + éya%) is the 2D momentum operator,

with g;; being the two-body contact interactions, related to the
intra-species and inter-species scattering lengths, respectively,
ay; and a;;(j # ¢). It is given by
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where p;; = m;m;/(m; + m;) is the reduced mass.



Laser stirred Binary BEC

Laser stirring is represented by laboratory-frame time-dependent
elliptical trap perturbations in both z— and y—directions:

Vaolz.u,t) = [(i[: cos(Qpt) — 3,rsin(!QEt))2 — (zsin(Qpt) — ycos(QEt))z}

[(:1!:2 — y%) cos(2Qxt) — 2zy sin(QQEt)] ,

B | ™ B | m

with Qg being the stirring laser frequency and € the strength.

B N. G. Parker and C. S. Adams, Emergence and Decay of Turbulence in
Stirred Atomic BEC Phys. Rev. Lett. 95, 145301 (2005).



Dynamics of stirred vortex formation

In general, quantum gases are compressible fluids, such that their
corresponding density can change when submitted to a force. This is
true to a certain degree, as part of the fluid can behave as an
incompressible fluid, similar as a liquid. In our present case, the
condensate is submitted to a time-dependent stirring potential,
associated to a torque, which is mainly due to a part of the rotational
kinetic energy, that we can call as the compressible one.

For each component of the mixture, the total energies F;(t) are

o - fe]z

% ZZ f .G‘L' Y ) j(mty:t):

|2 +V($ Y, )ﬂ,z(iﬂ Y, )

where n;—1 o(z,y,t) = |1);|* are the time-dependent densities.



Dynamics of stirred vortex formation

With the current densities j;(x,y,t) in terms of the respective
densities and velocity fields v;(z,y,t), such that

ji(m& Y, t) = Ny Vi('I::r Y, t)a
Vil ,8) = oo (W T~ 9]

The associated kinetic energies,

mi

EX(t) = / drni(z, y, 1) vi(z, y, )2,

can be decomposed in compressible (c) and incompressible (nc),
E74(t) parts.

1



Dynamics of stirred vortex formation

For the decomposition, the density-weighted velocity field,
u;(z,y,t) = v/ni(z,y,t)vi(z,y,t), can be split:
Incompressible part, uénc) - uz(-m) (z,y,t) satisfying V.u
and

Compressible one, u

(nc) — 0;

()

(

1

9 =0.

i =

) = ugc)(m,y, t), satisfying V x u

Therefore, with u;(z,y,t) = ugnc) (z,y,t) + uz(-c) (z,y,t), the
corresponding Kinetic energies are

E;* (t) = EP°(t) + E;(t)

AL /dzr [\ugm)\z + \ugc)ﬁ] .
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In 2D momentum space, with k = (k,, k,) and d?k = dk,dk,,

and (a) = (c¢), (nc), we have

BV = g [ @KFE K P,

2m3
— mi /ko /ere—ik.ru(ﬂf)
Sﬂ'zmi ’

Both compressible and incompressible parts are used to verity
the sound waves and vorticity.

The torque experienced by the time-dependent stirring
potential, can be obtained through the operator,

(e t] = §9V(T 0,t) = e r?sin(20 + 2Qpt),

corresponding to a rotation in the elliptical time-dependent part
of the potential, with 2Qgt — 2Qgt — 7/2.
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It follows the expected values of the induced angular momenta,
(L,(t));, and respective moment of inertia, (I(t));:

: 0
Lo = =i [ g and (1O = [ dri
with the associated classical rotational velocity being

(L),
=T




The rotating-frame velocity field, at a given frequency (2 is
vo = v — (2 x r),. The associated particle current

jia(r,t) =ni(r,t)via(r,t) satisfies the continuity equation

on; (I‘, t)
ot

+V 'jig(r, ff) = 0

When considering a rotating frame, at a given frequency {1,

E (¢ :ﬂ/dﬂkﬂ“) k. { 25@/ dk B9 (k.1
z,ﬂ() sz | 1,,9( ) )| mi Jo 1,,52( 3 ):

which defines the velocity power spectral density in k space:
2
Bk =k [ donlFG 0
0

For computational methods for power spectra, see Bradley, Kumar, Pal and
Yu, Phys. Rev. A 106, 043322 (also in arXiv:2112.04012).




Binary 89Rb—133Cs mixture

Time evolution of the densities of ®** Rb-'?*Cs mixture. The upper panels are
for the ®*Rb (component 1), with the lower panels for ***Cs (component 2).

Scattering lengths are a;; = 60ag and a12 = 30ag, 2 = 1.25 with € = 0.025.




Binary 3°Rb—133Cs mixture

1042

The time-evolutions are presented (in the lab frame) for the total kinetic
energies [panel (a)] and corresponding compressed (FE;, indicated with bul-

lets) and uncompressed E;“, indicated with triangles) parts [panel (b)]. The

evoluition is shovwn till stable vortex natterns are verified



Binary 8°Rb—133Cs mixture
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Classical rotational velocity, 2;(t), for ®*Rb (solid-red line) and ***Cs (dot-
dashed-green line), with the corresponding averaged result, Q. (t) = [Q1(¢)+
Q2(t)]/2 (dashed-blue line). The vertical lines are approximately separating
three time intervals in the evolution: (I) shape deformations; (II) turbulent

regime, with vortex nucleations; and (III) with vortex lattices estabilized.
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Vortex-pattern solutions, obtained at ¢ = 27000 with the stirring poten-
tial, are compared with ground-state solutions of the GP equation, by
replacing in the formalism the stirring potential by an effective constant
rotational frequency Q¢ = 0.63: Vi(z,y,t) — QoL, = —iQ{)%.




Binary 3°Rb—'%3Cs mixture

Average Kinetic energy spectrum from Turbulent regime

Incompressible kinetic energy spec-
tra, E™¢ = E"¢(k,t), for the ®Rb-
133Cs mixture, obtained by averag-
ing over 50 samples in the turbu-
lent time-interval regime, confirm-
ing the Kolmogorov k~5/3 power
law behavior in this interval.




Binary 8°Rb—8"Rb mixture
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Time evolution of the densities **Rb-*"Rb mixture. The upper panels are
for the **Rb (component 1), with the lower panels for *Rb (component 2).
Qr = 1.25 with € = 0.025.




Binary ®Rb—%"Rb mixture

Average Kinetic energy spectrum from Turbulent regime

(ay) 1

Incompressible kinetic energy spec-
tra, E"¢ = E"¢(k,t), for the 3°Rb-
8"Rb mixture, by averaging over 50
samples in the turbulent regime.




Main remarks

@ Vortex patterns, produced dynamically by time-dependent elliptical
laser stirring, together with associated turbulent flow behaviors, are
studied for two kinds of mass-imbalanced coupled Bose-Einstein
condensates.

@ The first stage is the shape deformation introduced by the stirring
potential. This is followed by a symmetry-breaking turbulent regime,
in which vortex nucleations start to be generated at the surface of the
two-species condensates, which approximately agrees with the classical
Kolmogorov law. A final regime happens with cristallization of stable
vortex patterns, associated with the assumed rotational frequency of
the stirring potential.

For more details, see the preprint A. N. da Silva, R. K. Kumar, A. Bradley

and L.T., Vortex generation in stirred binary Bose-Einstein condensates,
Phys. Rev. A 107, 033314 (2023) [see also in arXiv:2205.14654].




Dipolar system under periodic
moving obstacle

® Vortex dynamics associated with moving Gaussian
obstacles, in pancake-like trapped dipolar BECs,
leading to vortex-antivortex and quantum turbulence

® The critical velocities, to produce vortex-antivortex
pairs and vortex clusters, for given repulsive dipolar-
dipolar interactions, are obtained by solving a nonlocal
2D GP formalism in real-time.




GP 3D Formalism

O¥(r,t)

1h
Y

= ( = %VE + V(r,t) + g3p |¥(r, t)]g)‘I'(r, t)
+N / Usa(r — ') [B(, )2 'O (x, 1),

where [ dr|¥(r,t)|? =1, with N =total number of atoms having
masses m, gsp = 4w hasN/m, (as = s—wave scattering length)

is the strength of the two-body contact interaction, with Ugq(r)

being the dipolar interaction.

The trap will be assumed with pancake-like cylindrical
symmetric harmonic shape perturbed in the transversal
direction by a Gaussian-shaped time-dependent interaction, as
V(I", t) = V-hu(mﬂ Y, E) + VG(:E: Y, t): where

Vaolz, 9 2) = (mwﬁ/Q)(ﬂ?g + y2 + A?22), where the trap aspect
ratio A > 1 will help us simplify the formalism.




Dipole-dipole interaction

The tunability is performed by time-dependent magnetic fields
with dipoles rapidly rotating around the z—axis. The magnetic
field is given by the combination of a static part along the
z—direction and a fast rotating part in the (z, y)—plane, with
frequency such that the atoms are not significantly moving
during each period. Once performed a time averaging of the
DDI within a period, the 3D averaged interaction between the
coupled dipolar atoms with magnetic dipoles p1 = p2 = p given
in terms of the Bohr magneton up, can be written as

<V{d}(l‘—r’)>: JUGHIQ 1 —3cos*d (3{3052{1—-1) |
CrE ﬁwlfi |I' < I'-"|3 2




Tuning of the dipole-dipole interaction

1/r3 = +ve 0, =n/2

For --—- o =0 =2 Ug(r) =+ ve
o =7/2 > Ugy(r) =-ve

interaction is

Where, o varies from 0 toxg/2

The new form of the dipole-

Caa (1 - 3cos® ) (3 cos® o — 1)

)= G




= Moving circularly a laser beam ‘
=z + [y — @)
QW2
Xo(t) =1, sin (v t) A(t) =Ag [1 +g,sin (0, 1) ]
Yo(t) =1y cos (v 1) €,=04 and 0, =2
When o, =0, A(t) = A, =236 (90% of p)

Vo = Aexp (

1)) =35
WO: 1.5

Velocity of the Gaussian potential

V=r,v

By varying r, v, we can find the
critical velocity Vc for the vortex
nucleation in the BECs.




= Moving circularly a laser beam ‘

Vo = A(t)exp (— [z — 2o ()" + [y — yo(¥)] )

2W§
Xo(t) =1y sin (v t) A(t)=Aq [1 +g,sin (04 1) |
yo(t) =1, cos (v t) €,=0.4 and v, =2

When o, =0, A(t) =A;=36(90% of p)

t = 0.0 ms




* Moving circularly a laser beam

a=0,v=0.5

a=0,v=0.8




* Moving circularly a laser beam

a=0,v=0.5

a=0,v=0.8

30F

@ B

A Vortex dipoles
10F  No vortex
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10 No vortex
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= Circular and linear movement comparison

Ve = A(t)exp (_ [ — wo(t)]2 %y — 9o (t)] )

Xy(t) =1y sin (v t) Xo(t) =1, sin (v t)
Yo(t) =1, cos (v t) yo(t) =0

-
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10F No vortex
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Vortex-pair nucleation - linear movement
0, =n/2

~ Cya (1-3cos’fy) (3cos® a— 1) a@=0
Ar |3 9

Vp < Ve Vp =Ve Vp > Ve




Vortex-pair nucleation

S. Sabari and R. KishorKumar, Eur. Phys. J. D 72, 48 (2018)



Nucleation of rarefaction pulses

18
9
o

—9

N (2 (b) (c)® (e) (g™ (h)

t20ms” 0.4 ms 2 ms 2.6 ms 4.9 ms 5.9 ms 6.7 ms 7.5 ms




Final remarks on dipolar BEC under periodic moving obstacle

@ It was shown a study on vortex dynamical production under

circularly moving obstacle, in a trapped dipolar BEC [such as
lE‘:SEr or 164[)}'].

@ The critical velocities to produce vortex-antivortex pairs, as well
as to produce clusters of vortices were verified that increase by
increasing the strength of the DDI.

@ In case of linear oscillating obstacle, rarefaction pulses are
observed due to interaction of dynamically migrating vortex
dipoles.

@ With the obstacle moving at fixed radius, it is not observed
vortex-antivortex cancellations, as it can happen in the linear
case (when the movement is in the x—direction with y = 0). In
this case, one should notice that the vortex and antivortex
emerge in parts of the fluid having not exactly the same density.

Actually, in our study on vortex production under periodic stirring potential,
we are also characterizing manifestation of quantum turbulence, from
analysis of the incompressible part of the corresponding kinetic energy.
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