Benchmarking electron-nucleus scattering within coupled cluster theory on ⁴He

Joanna Sobczyk

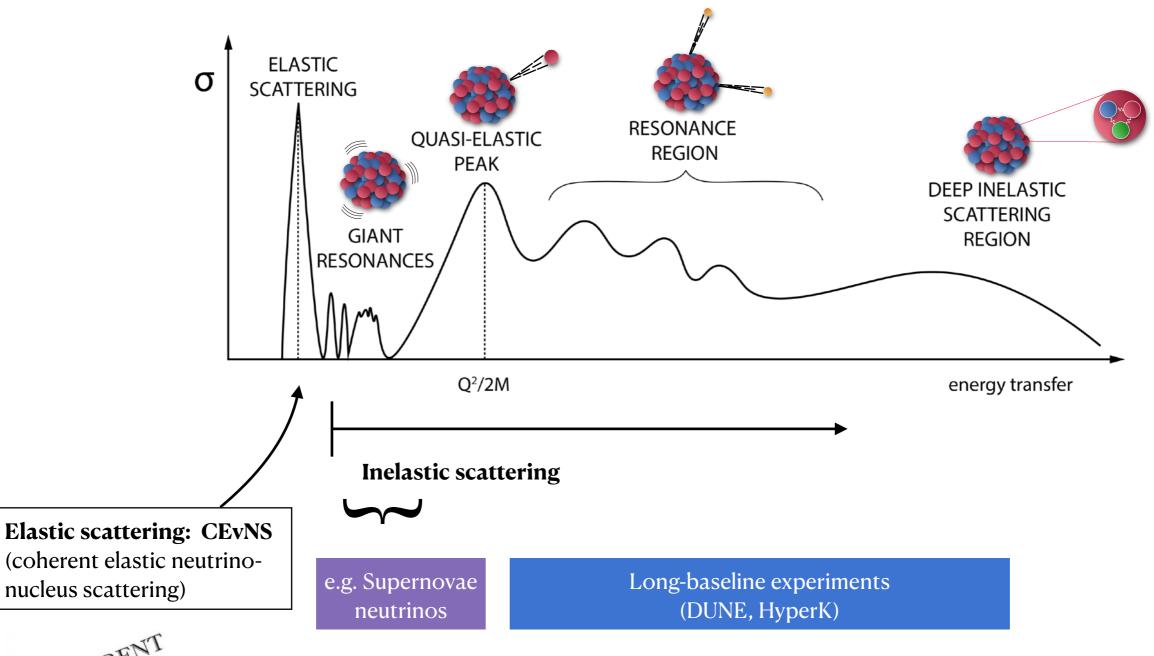
In collaboration with:
Bijaya Acharya (ORNL)
Sonia Bacca (JGU)
Gaute Hagen (ORNL)

EFB25, Mainz, 1/08/2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101026014

Motivation

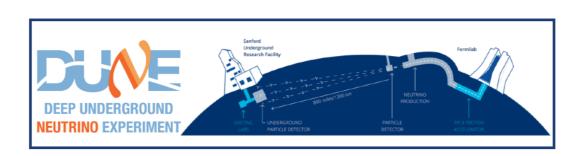
Electro(weak) nuclear responses

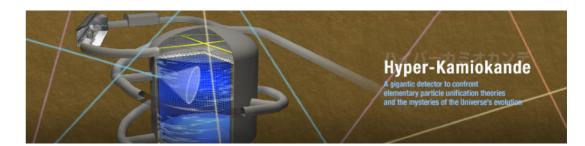


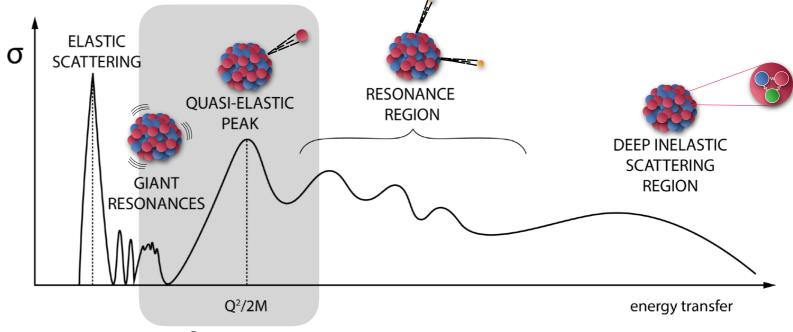
Quasielastic response

Long-baseline ν experiments

- ✓ Momentum transfer ~hundreds MeV
- ✓ Upper limit for ab initio methods
- ✓ Important mechanism for HyperK, DUNE
- ✓ Role of final state interactions
- ✓ Role of 1-body and2-body currents







Nuclear response

$$J_{\mu} = (\rho, \vec{j}) \mid \Psi \rangle$$

$$\sigma \propto L^{\mu\nu} R_{\mu\nu}$$
 lepton nuclear tensor responses

$$\gamma, W^{\pm}, Z^0$$

$$R_{\mu\nu}(\omega,q) = \sum_{f} \langle \Psi | J_{\mu}^{\dagger}(q) | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu}(q) | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

$$\frac{d\sigma}{d\omega dq}\bigg|_{v/\bar{v}} = \sigma_0 \left(v_{CC} R_{CC} + v_{CL} R_{CL} + v_{LL} R_{LL} + v_{T} R_{T} \pm v_{T'} R_{T'} \right)$$

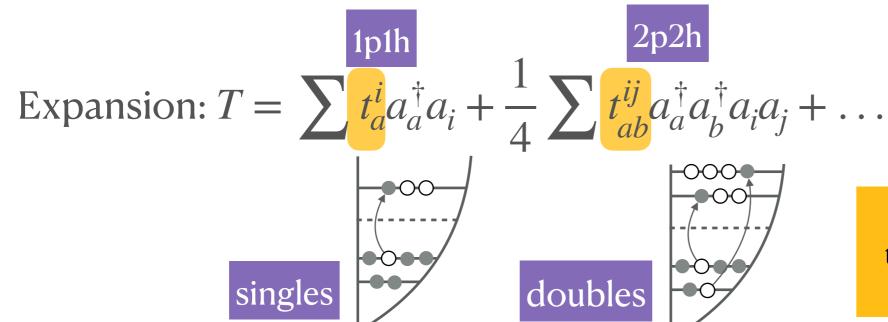
$$\frac{d\sigma}{d\omega dq}\bigg|_{e} = \sigma_M \left(v_{L} R_{L} + v_{T} R_{T} \right) \quad \leftarrow \text{Rosenbluth separation}$$

Coupled cluster method

Reference state (Hartree-Fock): $|\Psi\rangle = a_i^{\dagger} a_j^{\dagger} \dots a_k^{\dagger} |0\rangle$

Include correlations through e^T operator

$$\mathcal{H}_N e^T |\Psi\rangle = E e^T |\Psi\rangle$$



coefficients obtained through coupled cluster equations

Coupled cluster method

Reference state (Hartree-Fock): $|\Psi\rangle = a_i^{\dagger} a_j^{\dagger} \dots a_k^{\dagger} |0\rangle$

Include correlations through e^T operator

$$\mathcal{H}_N e^T |\Psi\rangle = E e^T |\Psi\rangle$$

- \checkmark Controlled approximation through truncation in T
- ✓ Polynomial scaling with *A* (predictions for ¹3²Sn and ²08Pb)

Expansion:
$$T = \sum_{a} t_{a}^{i} a_{a}^{\dagger} a_{i} + \frac{1}{4} \sum_{a} t_{ab}^{ij} a_{a}^{\dagger} a_{i}^{\dagger} a_{j} + \dots$$
singles

coefficients obtained through coupled cluster equations

Hamiltonian & electroweak currents

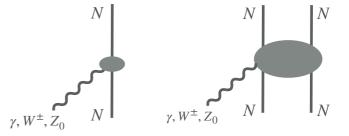
Chiral Hamiltonians

$$\mathcal{H} = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

	2N force	3N force	4N force
LO	X +-+		
NLO	X		
N2LO	• • • • • • • • • • • • • • • • • • • •	 	
N3LO		<u> </u>	

Electroweak current (consistent with the Hamiltonian)

$$J = \sum_{i} j_{i} + \sum_{i < j} j_{ij} + \dots$$



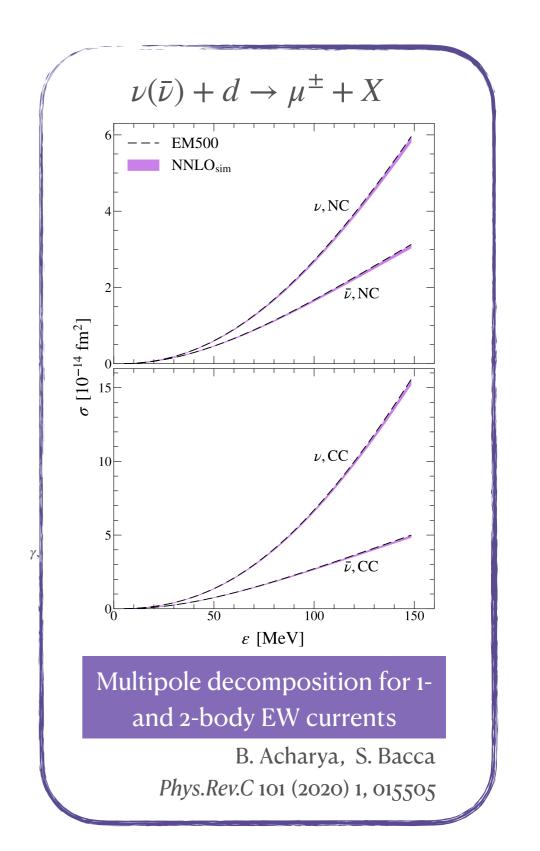
known to give significant contribution for neutrino-nucleus scattering

Hamiltonian & electroweak currents

Chiral Hamiltonians

$$\mathcal{H} = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

	2N force	3N force	4N force
LO	X +-+		
NLO			
N2LO	•(`) •(')	++++-	
N3LO		<u> </u>	



Coulomb sum rule

$$m_0(q) = \int d\omega R_L(\omega, q) = \sum_{f \neq 0} |\langle \Psi_f | \hat{\rho} | \Psi \rangle|^2 = \langle \Psi | \hat{\rho}^{\dagger} | \hat{\rho} | \Psi \rangle - |F_{el}(q)|^2$$

easier to calculate since we do not need $|\Psi_f\rangle$

Coulomb sum rule

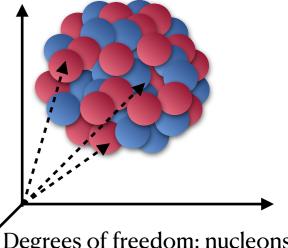
$$m_0(q) = \int d\omega R_L(\omega, q) = \sum_{f \neq 0} |\langle \Psi_f | \hat{\rho} | \Psi \rangle|^2 = \langle \Psi | \hat{\rho}^{\dagger} | \hat{\rho} | \Psi \rangle - |F_{el}(q)|^2$$

easier to calculate since we do not need $|\Psi_f\rangle$

center of mass problem

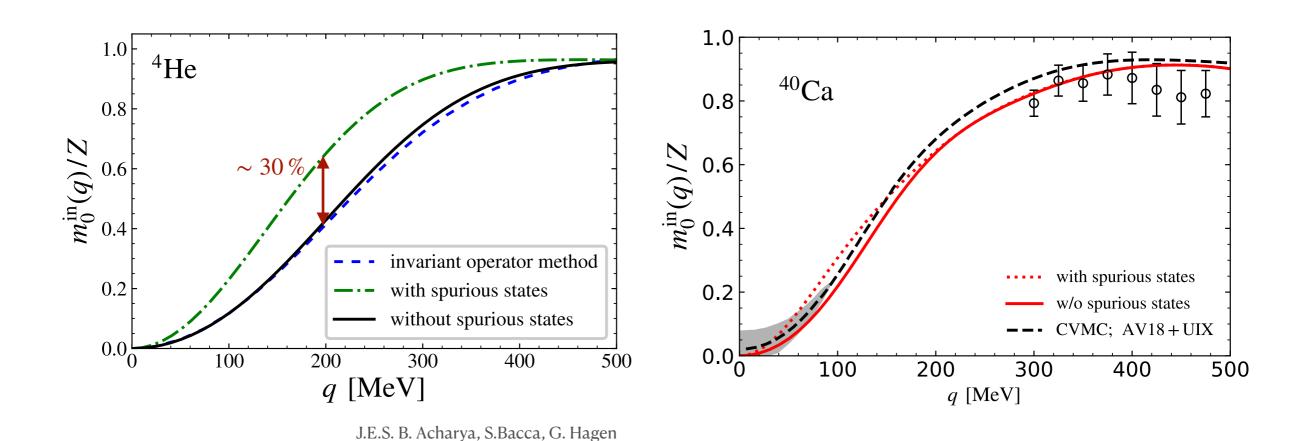
intrinsic
$$|\Psi\rangle$$
 has 3A coordinates \rightarrow 3(A-1) coordinates $+\overrightarrow{R}=\frac{1}{A}\sum_{i}^{A}\overrightarrow{r}_{i}$

With translationally non-invariant operators we may excite spurious states



Degrees of freedom: nucleons

Coulomb sum rule



CoM spurious states dominate for light nuclei

Phys.Rev.C 102 (2020) 064312

Electromagnetic responses

Lorentz Integral Transform + Coupled Cluster

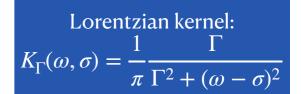
$$R_{\mu\nu}(\omega,q) = \sum_{f}^{\uparrow} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

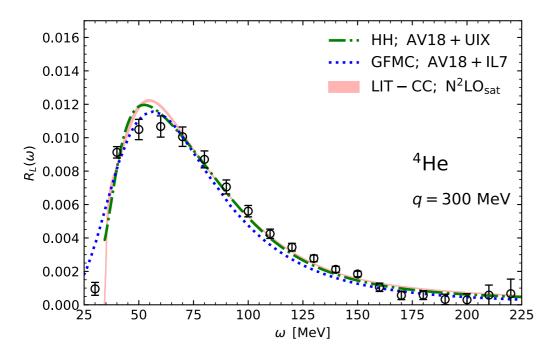
Consistent treatment of final state interactions.

Integral transform:

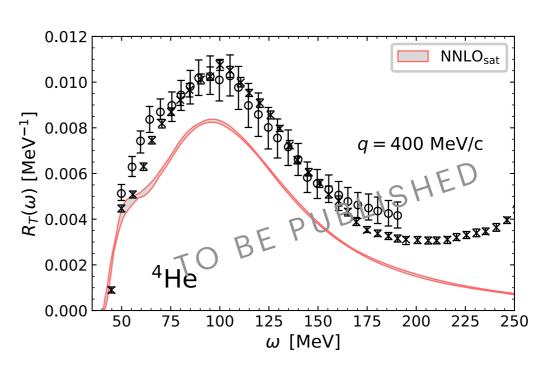
$$S_{\mu\nu}(\sigma,q) = \int d\omega K(\omega,\sigma) R_{\mu\nu}(\omega,q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathcal{H} - E_0,\sigma) J_{\nu} | \Psi \rangle \qquad \text{Lorentz}$$

$$K_{\Gamma}(\omega,\sigma) = \int d\omega K(\omega,\sigma) R_{\mu\nu}(\omega,q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathcal{H} - E_0,\sigma) J_{\nu} | \Psi \rangle$$





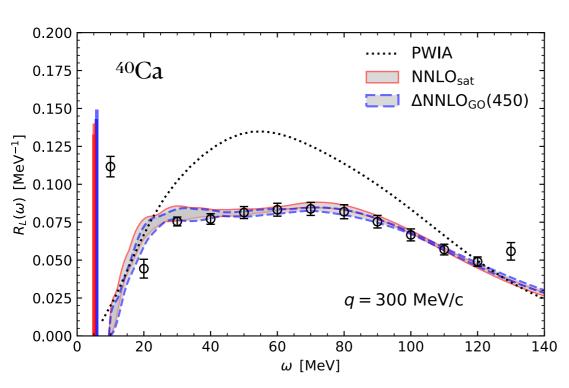
JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501



(Only 1-body current)

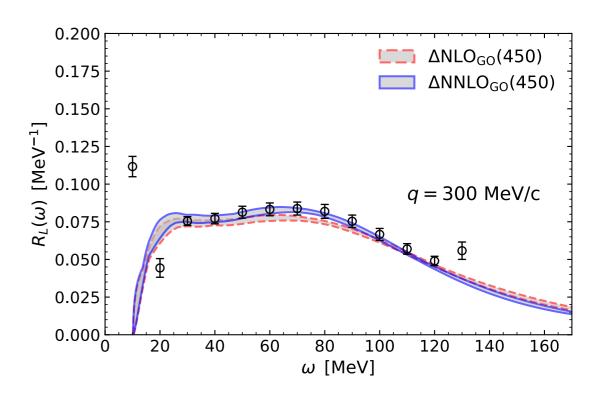
Longitudinal response ⁴⁰Ca

Lorentz Integral Transform + Coupled Cluster



JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

- ✓ CC singles & doubles
- ✓ varying underlying harmonic oscillator frequency
- √ two different chiral Hamiltonians
- **✓** inversion procedure



B. Acharya, S. Bacca, JES et al. Front. Phys. 1066035(2022)

First ab-initio results for many-body system of 40 nucleons

Exclusive cross-sections

- LIT-CC calculations for $q \lesssim 450 \text{ MeV}$
- Inclusive cross sections
- No pion production

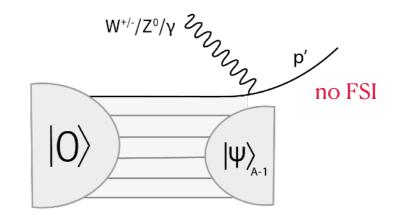
• Ideas (and approximations) needed to address relevant physics for ν oscillation experiments

Exclusive cross-sections

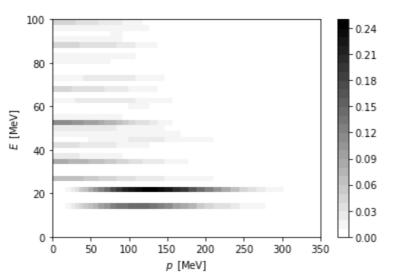
- LIT-CC calculations for $q \lesssim 450 \text{ MeV}$
- Inclusive cross sections
- No pion production

• Ideas (and approximations) needed to address relevant physics for ν oscillation experiments

SPECTRAL FUNCTION



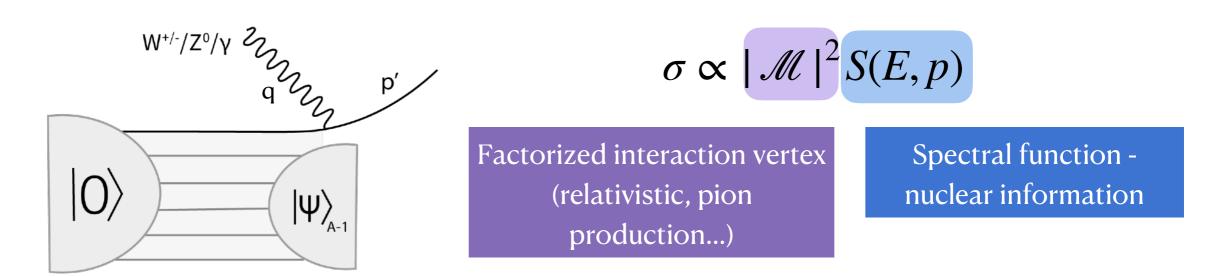
Impulse Approximation



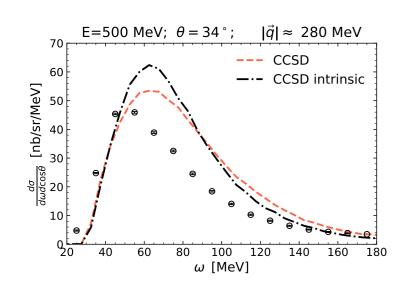
Probability density of finding nucleon (E, \mathbf{p}) in ground state nucleus

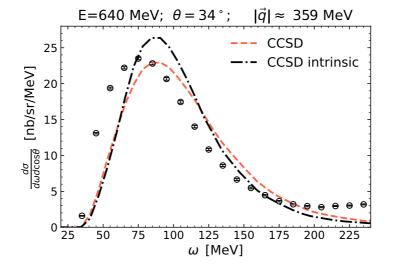
Spectral functions

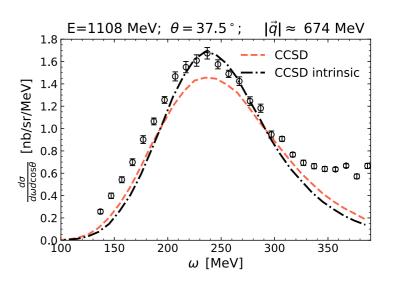
Coupled Cluster + ChEK method



growing \mathbf{q} momentum transfer \rightarrow final state interactions play minor role







Outlook

- LIT-CC benchmark for electron scattering → ready for neutrino
- Role of 2-body currents for medium-mass nuclei
- Extending the response calculation to ⁴⁰Ar
- Spectral functions (within Impulse Approximation):
 - Relativistic regime
 - Semi-inclusive processes
 - Further steps: 2-body spectral functions, accounting for FSI

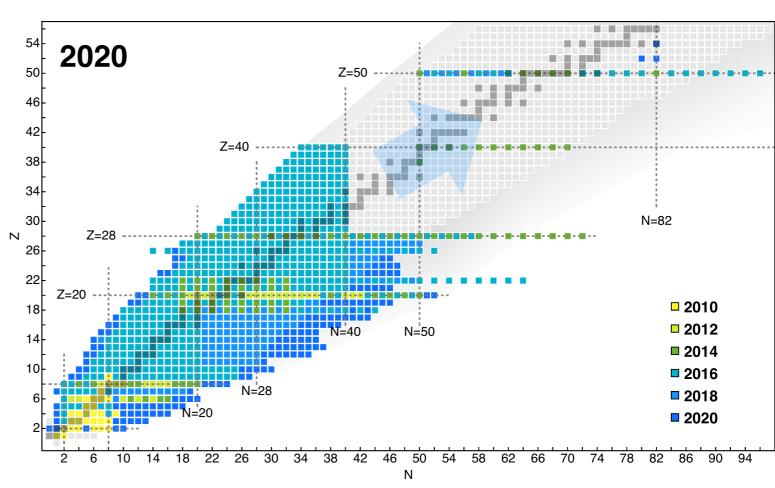
Backup

An initio nuclear methods

$$\mathcal{H}|\Psi\rangle = E|\Psi\rangle$$

"we interpret the ab initio method to be a systematically improvable approach for quantitatively describing nuclei using the finest resolution scale possible while maximizing its predictive capabilities."

A. Ekström et al, Front. Phys.11 (2023) 29094



- H. Hergert, Front.in Phys. 8 (2020) 379
- → Developments on the side of many body methods (IMSRG, CC, SCGF, QMC, etc.)
- → Developments of chiral nuclear forces (->faster convergence)

Lorentz Integral Transform (LIT)

$$R_{\mu\nu}(\omega,q) = \sum_{f} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$
 continuum spectrum

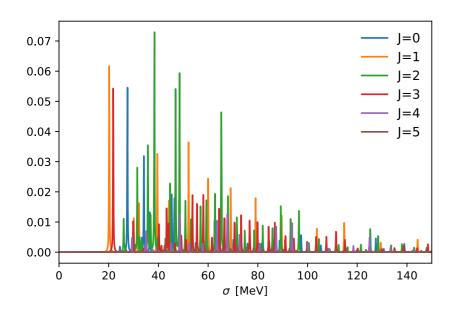
Integral transform

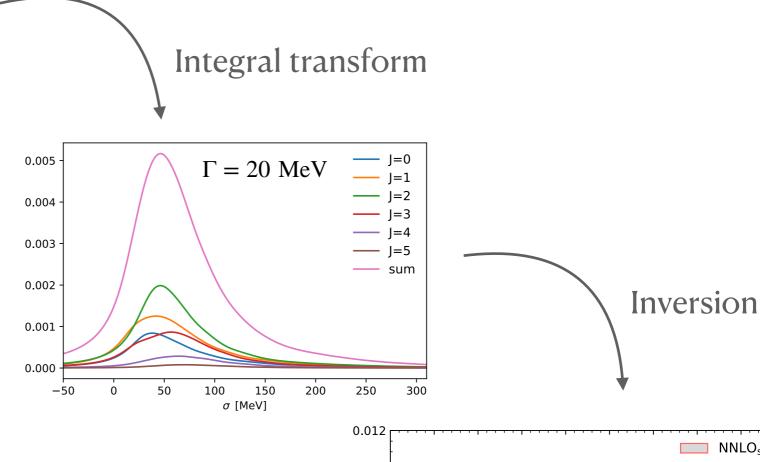
$$S_{\mu\nu}(\sigma,q) = \int d\omega K(\omega,\sigma) R_{\mu\nu}(\omega,q) = \langle \Psi \,|\, J_{\mu}^{\dagger} \, K(\mathcal{H}-E_0,\sigma) \,J_{\nu} \,|\, \Psi \rangle$$

Lorentzian kernel: $K_{\Gamma}(\omega, \sigma) = \frac{1}{\pi} \frac{\Gamma}{\Gamma^2 + (\omega - \sigma)^2}$

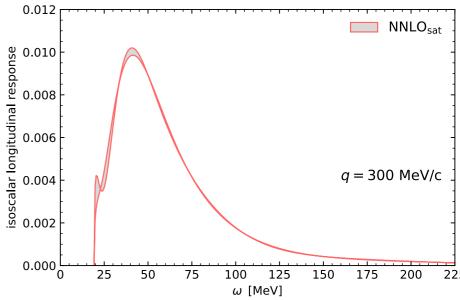
 $S_{\mu\nu}$ has to be inverted to get access to $R_{\mu\nu}$

Lorentz Integral Transform



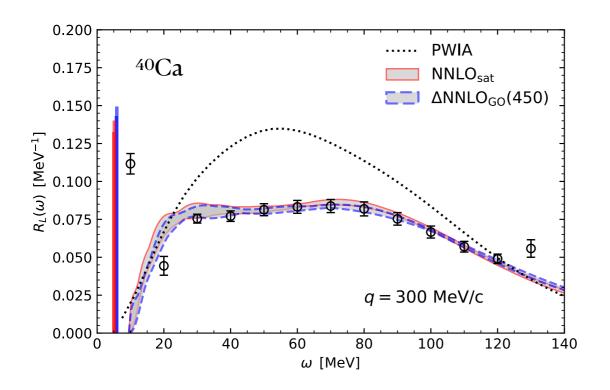


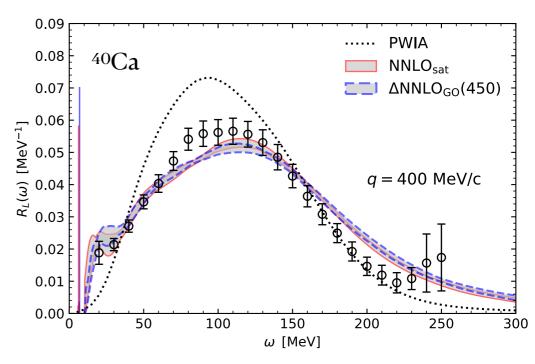
Longitudinal isoscalar response on 4He at q=300 MeV



Longitudinal response ⁴⁰Ca

Lorentz Integral Transform + Coupled Cluster





JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501