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Introduction / Motivation

Verify if lattice QCD predictions for two and three nucleons 

are supported by effective calculations with separable potentials

Separable 2N potentials

S.R.Beane et al. [NPLQCD], Phys. Rev. C 88 (2013) 024003

S.R.Beane et al. [NPLQCD], Phys. Rev. D 87 (2013) 034506

(two-nucleons)

(three-nucleons)

Faddeev equation

Lattice QCD

Lüscher formula

for a review of 3N system, see works 
from Bochum, Krakow, Ohio groups 



Lattice QCD predictions

4. Three-nucleon system

The wavefunction for the three-nucleon system is antisymmetric under permutations of any of the three pairs of
nucleons. Both total spin S and total isospin T may be either 1/2 or 3/2. Here we concentrate on the triton, which
consists of one proton and two neutrons, with T = 1/2 and S = 1/2. In this case, there are contributions from two
channels, a nucleon pair being in a spin-singlet state s = 0 or in the triplet state s = 1. We take each channel to
be governed by an S-wave separable potential of the type discussed in Sec. 2 but allow for different parameters in
each two-nucleon channel, which we label with a subscript 0 or 1 according to its spin. Again, we expect ultraviolet
convergence without three-nucleon forces, in contrast to the situation in Pionless EFT with standard power counting
[52]. The wavefunction can then be written in terms of two components [48]
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The two profile functions obey a set of coupled integral equations,
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Again, the system described in Eq. (28) has a non-trivial solution provided
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where ¯Kss0(q,q
0;k3) = (1/2p)Kss0(q,q

0;k3)q
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0, and the profile functions are obtained from the eigenvectors of the

block matrix. The value of k3 for which the determinant is zero corresponds to the triton binding energy B = k2
3/mN ,

where mN is the nucleon mass.
In the following, we consider the case when there are two independent dimensionful parameters because a2s = 2r2s

for both s = 0,1. We typically find various bound states at the same values of the ratio r21/r20. We postpone a more
comprehensive analysis of the structure of these states to a future publication. In the following, we consider two cases
of interest to nuclear physics. We compare our results for the three-nucleon system with those obtained in LQCD at
an unphysical pion mass mp ' 806 MeV and with experiment at physical pion mass.

5. Lattice QCD predictions for two and three nucleons

At the quark masses for which mp ' 806 MeV, the nucleon mass is mN = 1.634(0)(0)(18) GeV, with errors
corresponding to statistics, fitting systematics, and lattice spacing [2]. The two-nucleon ERE parameters are found [8]
to be somewhat large on the scale set by the pion Compton wavelength m

�1
p ' 0.25 fm:

a21 = 1.82+0.14+0.17
�0.13�0.12 fm, r21 = 0.906+0.068+0.068

�0.075�0.084 fm, (31)

a20 = 2.33+0.19+0.27
�0.17�0.20 fm, r20 = 1.130+0.071+0.059

�0.077�0.063 fm, (32)

suggesting that a Pionless EFT with power counting based on r2s = O(¿�1) should hold. (The results from Ref. [9]
are consistent within errors.)

The ERE parameters satisfy a2s = 2r2s > 0 within errors. To the extent that higher ERE parameters are small [8],
we expect that for each two-nucleon S-wave channel there are two near-degenerate poles in the positive imaginary
axis, approximately described by the square-root potential. The two-nucleon binding energies obtained from these
ERE parameter values are given in Table 3 for the three separable potentials we consider here. There is a ⇡ 25%
spread in predictions, which fall into the errors of the direct LQCD determination [2], also shown in the table. Table
4 gives the values of the corresponding shape parameters, which lie well inside the range of values from Ref. [8]. For

7

mπ = 806 MeV mN = 1.634 (0) (0) (18) GeV

a ∼ 2 r

S.R.Beane et al. [NPLQCD], Phys. Rev. C 88 (2013) 024003

triplet:

singlet:



2N separable potentials

Separable two-nucleon potentials

A common characteristic of these LQCD calculations, which might survive improvements, is a positive effective
range that is large on the scale of m

�1
p , which presumably determines the range of the interaction. It is not difficult to

incorporate a large and negative effective range in Pionless EFT, which then excludes redundant poles [19, 20]. As we
discuss in this paper, allowing for a large and positive effective range with negligible shape parameters — and thus
two shallow two-body poles — demands a reformulation of Pionless EFT: a resummation of derivative interactions
and thus a nonlocal potential. In this case, only one A = 2 bound state exists; the other pole (if not degenerate) is
redundant in the sense of not being associated with a normalizable wavefunction.

When two shallow S-wave poles coalesce into a double pole on the positive imaginary axis of the complex-
momentum plane, the theory at LO has a single parameter, which we can take to be the effective range, or alternatively
the two-body binding energy B2. Contrary to the standard pionless power counting, the new LO potential ensures
many-body systems have well-defined ground states without a three-body force. The LO ratios 2BA/AB2 ⌘ VA are
then universal numbers, independent of the details of the short-range potential. Here we compute V3 in the case of a
single S-wave two-body channel.

When two S-wave channels (labeled 0 and 1) are present, as in the two-nucleon system, the VA are functions only
of the ratio of two-body binding energies, B21/B20. For nucleons, we entertain the possibility that the pole structure is
in some sense close to the double-pole situation found in Refs. [8, 9] and ask what its implications are for the three-
nucleon system from an EFT perspective. At unphysical pion mass, we predict the three-nucleon binding energy and
compare it with the result from Ref. [2].

The same LO potential, with a different constraint among two-body scattering lengths and effective ranges, has
been arrived at by quite different considerations in Ref. [21] and applied to the two-nucleon system at physical pion
mass to next-to-leading order (NLO). Similar approaches for nuclear systems with explicit pion fields [22–25] and for
halo nuclei with P-wave nucleon-core interactions [26] have also been explored recently. We therefore consider here
also the triton binding energy in the real world. At physical pion mass, a

(3
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2 /r
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S1)
2 ' 3.2 and a

(1
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2 /r
(1

S0)
2 ' �8.8.

These numbers are not particularly close to the value of 2 corresponding to the double pole. However, the relatively
large scattering lengths are due to fine tuning and hopefully can be corrected at higher orders.

This letter is organized as follows. In Sec. 2 we present the two-nucleon properties of our separable potential in
LO; we also introduce two other separable potentials that we use subsequently to gauge the sensitivity to higher ERE
parameters. Results for the system of three spinless particles are presented in Sec. 3. The generalization to three
nucleons in the triton channel is given in Sec. 4. It is applied to unphysical mp ' 806 MeV and physical mp ' 140
MeV in Secs. 5 and 6, respectively. Conclusions can be found in Sec. 7.

2. Two-body system

We are concerned with two particles of mass m � R
�1 which form S-wave bound states with size ¿�1 � R, where

R is the range of the underlying interaction. The standard power counting of Pionless EFT [3] is designed to account
for a single T -matrix pole, which can be such a shallow bound or virtual state. It demands a single, nonderivative
contact interaction at LO, which scales as ¿�1 [27–30]. Two shallow S-wave poles can be accounted for with an
additional two-derivative interaction at LO, which scales as ¿�3 [19, 20]. Renormalization requires r2  0 [31, 32]
and, in the various possible pole configurations that result, at most one pole is on the positive imaginary momentum
axis and corresponds to a bound state [19, 20]. In both cases, the EFT is local in the sense that at any order only a
finite number of derivatives enter interactions at any given order.

Unless we allow for energy-dependent interactions, two shallow S-wave poles on the positive imaginary axis
demand LO nonlocality in the sense of an infinite number of contact interactions. The origin of this strong nonlocality
is nebulous at best. It appears to go against the principles of EFT where the only nonlocal forces are produced by the
exchange of virtual particles, which are kept as explicit degrees of freedom. Assuming nevertheless that this situation
can be realized in physical systems, all contact interactions must have large, correlated parts whose strengths are set by
powers of ¿�1, so that they should be resummed into a nonanalytic function. It is simplest to search for a combination
of contact interactions that produces an (energy-independent) separable two-body potential supporting only these two
poles. In terms of the magnitudes of the incoming and outgoing relative momenta ~p and ~p0, this type of two-body
potential is written as [33]

V2(p
0, p) =

4p
m

l g(p
0)g(p) (1)

2
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which decreases as the radial coordinate r increases. The two possibilities arise from two choices in a one-parameter
family of separable potentials that reproduce the ERE at the effective-range level [34], of which the form (7) is the
simplest. The situation here is the counterpart to the phase-equivalent, exponentially decreasing local potentials of
Ref. [38], where different choices of parameters can make either the shallower or the deeper pole a bound state.
In-between these two cases, a double pole arises at k2 = a = 1/r2 = 2/a2 for l = �2/a . Despite the sign of the
S-matrix residue, the wavefunction

y2(r) = 4
⇣k2

p

⌘3/2
K0(k2r), (11)

where K0(x) is the modified Bessel function of the second kind, also decreases with distance albeit as exp(�k2r)/
p

r.
NLO two-body corrections, which allow for a perturbative shape parameter (the coefficient of the k

4 term in the
ERE), have been discussed in Refs. [21, 25]. For the purposes of benchmarking and of gauging the effects of higher
ERE parameters in the three-body system, we consider here also two other separable potentials with form factors g(x)
that go to 0 increasingly faster at large x. One choice is the original Yamaguchi potential [33],
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The Yamaguchi potential generates a (dimensionless) shape parameter P2 = �(la)�1(1� 4/la)�3
r

3
2, and for l <

�2/a there are three poles on the positive imaginary momentum axis: a double pole at k2 = a independently of l ,
and a bound state related to l by
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This bound state has the usual S-matrix residue sign and a Hulthén-type wavefunction [33]. It is shallower than the
double pole as long as l > �8/a , and found at k2 = (
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The other choice is the toy potential of Refs. [39–43], which consists of a Gaussian form factor
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where erfc is the complementary error function. The Gaussian potential gives rise to all ERE parameters and, since
g(p) has no poles, all poles of the T matrix on the positive imaginary axis are solutions of Eq. (17), i.e. bound states.
The attractive potential that generates a2 = 2r2 has l = �

p
2p/(1�p/4)/a ' �5.41/a . For this value there is a

bound state with k2 ' 0.795/r2.
While in general a choice of a2 and r2 leads to two possible set of values for a and l , for a2 = 2r2 only one

set produces finite-energy bound states. The constraint a2 = 2r2 imposes a relation between l and a: la = �c,
with c = 2,4,

p
2p/(1�p/4) for square-root, Yamaguchi, and Gaussian forms respectively. This leaves a single

independent, dimensionful parameter, which we may choose as r2. The ground-state binding energy can be written as
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with a strength l and a real function g(p) obeying g(0) = 1. The two-body T matrix at energy E = k
2/m is then
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Some of the poles of Eq. (2) are determined by the form of g(p) alone, while others depend on the strength l . The
strength that produces a pole on the positive imaginary axis, k = ik2 with k2 > 0, satisfies

l = L(k2). (5)

This relation can also be obtained from the Schrödinger equation, which yields a momentum-space wavefunction [33]
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A single shallow S-wave pole arises at k2 = 1/a2 for l = O(¿�1). Regularization can be effected with a mo-
mentum cutoff L introduced at intermediate stages of the calculation; one way to do so is through a g(p) which obeys
g(p � L)! 0 and is viewed as just a regulator. After renormalization, when the L dependence of l is chosen appro-
priately — for example, so that k2 in Eq. (5) be finite — the on-shell T matrix T2(k,k;k) takes the form of the ERE
truncated at the scattering length, R(k) being arbitrarily small. To generate instead the ERE truncated at the effective
range, which leads to two poles, we can take [32, 34, 35]
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If a =L, this g(p) is but one example of a regulator in the EFT for a single pole. In contrast, if a =O(¿) is a physical
parameter, the form factor (7) represents correlated parts of all higher-derivative contact interactions, which are now
LO: the effective range is finite and r2 > 0 for l < 0. On shell, the two-body T matrix is the same as that obtained
with a dimer field [36, 37], which is a ghost for r2 > 0. Off shell, it decreases faster with momenta on account of the
form factor.

This separable potential generates two poles on the positive imaginary momentum axis for l < �1/a: i) a pole
at k2 = a , which is redundant in the sense of being independent of l , and ii) a bound state at k2 related to l through
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For �2/a < l < �1/a , the bound state is the shallower pole, at which the S matrix has a negative imaginary
residue. For l <�2/a the bound state is deeper than the redundant pole. The opposite sign for the S-matrix residue
translates into an opposite sign for the full two-body propagator, which in turn means that if the state were considered
as elementary it would require an imaginary coupling to the two particles [35]. Nevertheless, both situations are
associated with a coordinate-space wavefunction
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2N T-matrix
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Table 1: Values for the coefficient b2 of the correlation (18) between the two-body binding energy and the effective range for the square-root,
Yamaguchi, and Gaussian separable potentials, when a2 = 2r2.
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Figure 1: Phase shifts (in degrees) as a function of the center-of-mass momentum in units of the inverse effective range for square-root (green line),
Yamaguchi (red line), and Gaussian (blue line) potentials. Physical values from the Granada phase-shift analysis [44] for two nucleons in the 3

S1
(brown squares) and 1

S0 (black squares) channels are shown for comparison.

where the dimensionless number b2, which depends on the potential, is given in Table 1.
Similarly, for each of the potentials the phase shifts are universal as a function of the momentum k in units of 1/r2.

The phase shifts for the three potentials we consider are plotted in Fig. 1. The square-root potential gives the same
phase shifts as the ERE truncated at the effective range. The Yamaguchi and Gaussian potentials give phase shifts
that are essentially the same as those of the square-root potential for small momenta but decrease more rapidly as a
consequence of increasing shape parameters. Despite the very different two-body pole structure, the dimensionless
shape parameters are relatively small: r

3
2/32 for the Yamaguchi potential and ' 0.05r

3
2 for the Gaussian potential.

Few-body results might then not be very different from the square-root potential.

3. Spinless three-body system

The EFT with a single two-body pole, characterized by a nonderivative two-body contact interaction at LO, pro-
duces three- and more-body observables with essential cutoff dependence, unless a nonderivative three-body contact
interaction is also present at LO [45, 46]. Incorporating the range at LO through a dimer field [36, 37], no three-body
force is needed for renormalization but the second pole leads to an unphysical three-body threshold that poses prob-
lems in the solution of the three-body equations [47]. Here, the LO two-body amplitude not only has a sufficiently soft
ultraviolet behavior but also does not suffer from an unphysical threshold because the redundant pole is not a solution
of the Schrödinger equation. Since there is no longer a renormalization rationale to assume three- or more-body forces
at LO, all energies should scale with the single two-body parameter controlling the a2 = 2r2 limit.

One of the first momentum-space calculations of the three-nucleon system was made by Sitenko and Kharchenko
[48]. Employing Jacobi momenta

~ki j =
1
2
(~pi �~p j) , ~ki =

1
3
(2~pi �~p j �~pk) , (19)

for i , j , k, where ~pi stands for the momentum of particle i in the center-of-mass frame of the three-body system,
they solved the Faddeev equations [49, 50] in the case of a separable two-body potential. We follow the formulation of
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The phase shifts for the three potentials we consider are plotted in Fig. 1. The square-root potential gives the same
phase shifts as the ERE truncated at the effective range. The Yamaguchi and Gaussian potentials give phase shifts
that are essentially the same as those of the square-root potential for small momenta but decrease more rapidly as a
consequence of increasing shape parameters. Despite the very different two-body pole structure, the dimensionless
shape parameters are relatively small: r

3
2/32 for the Yamaguchi potential and ' 0.05r

3
2 for the Gaussian potential.

Few-body results might then not be very different from the square-root potential.

3. Spinless three-body system

The EFT with a single two-body pole, characterized by a nonderivative two-body contact interaction at LO, pro-
duces three- and more-body observables with essential cutoff dependence, unless a nonderivative three-body contact
interaction is also present at LO [45, 46]. Incorporating the range at LO through a dimer field [36, 37], no three-body
force is needed for renormalization but the second pole leads to an unphysical three-body threshold that poses prob-
lems in the solution of the three-body equations [47]. Here, the LO two-body amplitude not only has a sufficiently soft
ultraviolet behavior but also does not suffer from an unphysical threshold because the redundant pole is not a solution
of the Schrödinger equation. Since there is no longer a renormalization rationale to assume three- or more-body forces
at LO, all energies should scale with the single two-body parameter controlling the a2 = 2r2 limit.

One of the first momentum-space calculations of the three-nucleon system was made by Sitenko and Kharchenko
[48]. Employing Jacobi momenta

~ki j =
1
2
(~pi �~p j) , ~ki =

1
3
(2~pi �~p j �~pk) , (19)

for i , j , k, where ~pi stands for the momentum of particle i in the center-of-mass frame of the three-body system,
they solved the Faddeev equations [49, 50] in the case of a separable two-body potential. We follow the formulation of
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Jacobi momenta

Square-Root Yamaguchi Gaussian
V3 3.73 3.80 3.54

Table 2: Slope V3 of the correlation (26) between three- and two-body binding energies per spinless particle for the square-root, Yamaguchi and
Gaussian separable potentials, when a2 = 2r2.

Ref. [48] closely — see also the pedagogical review [43] — to calculate the ground-state binding energy B3 = k3/m

when a2 = 2r2.
We start with the simplest case, that of three spinless particles. The wavefunction being symmetric under permu-

tation of any pair of particles, it can be written as

y3(~p1,~p2,~p3) = y(~k23,~k1)+y(~k31,~k2)+y(~k12,~k3), y(�~k,~ki) = y(~k,~ki). (20)

For a separable potential with only S-wave interactions, as we are interested in here, the wavefunction components
are given by
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a(q), (21)

where the profile function a(q) is governed by a one-dimensional integral equation
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q

q2/4+q02 +qq0y, p2 =
q

q2 +q02/4+qq0y. (24)

Thanks to the factors of g(p) in the kernel, Eq. (22) is ultraviolet convergent and, as anticipated, no three-body
force is needed for renormalization at LO. We compute the angular integration in Eq. (23) numerically. The integral
equation (22) is solved on a momentum grid (with points labeled by i), a non-trivial solution existing provided

det
⇥
di j � ¯K (qi,q

0
j
;k3)

⇤
= 0, (25)

where ¯K (qi,q0j;k3) = (2/p)K (qi,q0j;k3)q
2
j
Dq

0
j, j+1 is the weighted kernel. The problem becomes a search for the

value of k3 that makes the determinant vanish. The profile function a(q) is then obtained from the eigenvectors.
For a2 = 2r2, we typically find more than one solution. The single potential parameter implies that we can write

for the deepest three-body bound state, analogously to Eq. (18),
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, (26)

where V3 is another potential-dependent dimensionless parameter. The values for V3 are given in Table 2 for the
three potentials considered in this work. Our value for the square-root potential is not inconsistent with the results at
smaller r2/a2 shown in Ref. [51]. Surprisingly, it falls in-between the potentials with softer ultraviolet behavior (and
nonzero higher ERE parameters). The numbers for the various potentials are the same within about 5% despite the
difference in potential shapes, indicating an approximate universality. The small effects of higher ERE parameters
must be amenable to a distorted-wave perturbative treatment around the square-root potential.
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where V3 is another potential-dependent dimensionless parameter. The values for V3 are given in Table 2 for the
three potentials considered in this work. Our value for the square-root potential is not inconsistent with the results at
smaller r2/a2 shown in Ref. [51]. Surprisingly, it falls in-between the potentials with softer ultraviolet behavior (and
nonzero higher ERE parameters). The numbers for the various potentials are the same within about 5% despite the
difference in potential shapes, indicating an approximate universality. The small effects of higher ERE parameters
must be amenable to a distorted-wave perturbative treatment around the square-root potential.
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Thanks to the factors of g(p) in the kernel, Eq. (22) is ultraviolet convergent and, as anticipated, no three-body
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where V3 is another potential-dependent dimensionless parameter. The values for V3 are given in Table 2 for the
three potentials considered in this work. Our value for the square-root potential is not inconsistent with the results at
smaller r2/a2 shown in Ref. [51]. Surprisingly, it falls in-between the potentials with softer ultraviolet behavior (and
nonzero higher ERE parameters). The numbers for the various potentials are the same within about 5% despite the
difference in potential shapes, indicating an approximate universality. The small effects of higher ERE parameters
must be amenable to a distorted-wave perturbative treatment around the square-root potential.
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Table 2: Slope V3 of the correlation (26) between three- and two-body binding energies per spinless particle for the square-root, Yamaguchi and
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are given by
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a(q), (21)
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a(q) =
2
p

Z •

0
dq

0
q
02

K (q,q0;k3)a(q0), (22)

with the kernel

K (q,q0;k3) =

"
L�1

 r
k2

3 +
3q2

4

!
�l�1

#�1 Z 1

�1
dy

g(p2)g(p1)

k2
3 +q2 +q02 +qq0y

, (23)

p1 =
q

q2/4+q02 +qq0y, p2 =
q

q2 +q02/4+qq0y. (24)

Thanks to the factors of g(p) in the kernel, Eq. (22) is ultraviolet convergent and, as anticipated, no three-body
force is needed for renormalization at LO. We compute the angular integration in Eq. (23) numerically. The integral
equation (22) is solved on a momentum grid (with points labeled by i), a non-trivial solution existing provided
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where V3 is another potential-dependent dimensionless parameter. The values for V3 are given in Table 2 for the
three potentials considered in this work. Our value for the square-root potential is not inconsistent with the results at
smaller r2/a2 shown in Ref. [51]. Surprisingly, it falls in-between the potentials with softer ultraviolet behavior (and
nonzero higher ERE parameters). The numbers for the various potentials are the same within about 5% despite the
difference in potential shapes, indicating an approximate universality. The small effects of higher ERE parameters
must be amenable to a distorted-wave perturbative treatment around the square-root potential.
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where V3 is another potential-dependent dimensionless parameter. The values for V3 are given in Table 2 for the
three potentials considered in this work. Our value for the square-root potential is not inconsistent with the results at
smaller r2/a2 shown in Ref. [51]. Surprisingly, it falls in-between the potentials with softer ultraviolet behavior (and
nonzero higher ERE parameters). The numbers for the various potentials are the same within about 5% despite the
difference in potential shapes, indicating an approximate universality. The small effects of higher ERE parameters
must be amenable to a distorted-wave perturbative treatment around the square-root potential.
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Three-nucleon system

4. Three-nucleon system

The wavefunction for the three-nucleon system is antisymmetric under permutations of any of the three pairs of
nucleons. Both total spin S and total isospin T may be either 1/2 or 3/2. Here we concentrate on the triton, which
consists of one proton and two neutrons, with T = 1/2 and S = 1/2. In this case, there are contributions from two
channels, a nucleon pair being in a spin-singlet state s = 0 or in the triplet state s = 1. We take each channel to
be governed by an S-wave separable potential of the type discussed in Sec. 2 but allow for different parameters in
each two-nucleon channel, which we label with a subscript 0 or 1 according to its spin. Again, we expect ultraviolet
convergence without three-nucleon forces, in contrast to the situation in Pionless EFT with standard power counting
[52]. The wavefunction can then be written in terms of two components [48]

✓
y1
y0

◆
=� 1

k2
3 + p2 +3q2/4

✓
l1 g1(p)a(q)
l0 g0(p)b(q)

◆
. (27)

The two profile functions obey a set of coupled integral equations,
✓

a(q)
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Z •
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K11(q,q0;k3) 3K10(q,q0;k3)
3K01(q,q0;k3) K00(q,q0;k3)
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a(q0)
b(q0)

◆
, (28)

where

Kss0(q,q
0;k3) =
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s
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3 +3q2/4
◆
�l�1

s

��1 Z 1

�1
dy

gs(p2)gs0(p1)

k2
3 + p2 +q02 +qq0y

. (29)

Again, the system described in Eq. (28) has a non-trivial solution provided

det
✓

1� ¯K11(q,q0;k3) �3 ¯K10(q,q0;k3)
�3 ¯K01(q,q0;k3) 1� ¯K00(q,q0;k3)

◆
= 0, (30)

where ¯Kss0(q,q
0;k3) = (1/2p)Kss0(q,q

0;k3)q
02

dq
0, and the profile functions are obtained from the eigenvectors of the

block matrix. The value of k3 for which the determinant is zero corresponds to the triton binding energy B = k2
3/mN ,

where mN is the nucleon mass.
In the following, we consider the case when there are two independent dimensionful parameters because a2s = 2r2s

for both s = 0,1. We typically find various bound states at the same values of the ratio r21/r20. We postpone a more
comprehensive analysis of the structure of these states to a future publication. In the following, we consider two cases
of interest to nuclear physics. We compare our results for the three-nucleon system with those obtained in LQCD at
an unphysical pion mass mp ' 806 MeV and with experiment at physical pion mass.

5. Lattice QCD predictions for two and three nucleons

At the quark masses for which mp ' 806 MeV, the nucleon mass is mN = 1.634(0)(0)(18) GeV, with errors
corresponding to statistics, fitting systematics, and lattice spacing [2]. The two-nucleon ERE parameters are found [8]
to be somewhat large on the scale set by the pion Compton wavelength m

�1
p ' 0.25 fm:

a21 = 1.82+0.14+0.17
�0.13�0.12 fm, r21 = 0.906+0.068+0.068

�0.075�0.084 fm, (31)

a20 = 2.33+0.19+0.27
�0.17�0.20 fm, r20 = 1.130+0.071+0.059

�0.077�0.063 fm, (32)

suggesting that a Pionless EFT with power counting based on r2s = O(¿�1) should hold. (The results from Ref. [9]
are consistent within errors.)

The ERE parameters satisfy a2s = 2r2s > 0 within errors. To the extent that higher ERE parameters are small [8],
we expect that for each two-nucleon S-wave channel there are two near-degenerate poles in the positive imaginary
axis, approximately described by the square-root potential. The two-nucleon binding energies obtained from these
ERE parameter values are given in Table 3 for the three separable potentials we consider here. There is a ⇡ 25%
spread in predictions, which fall into the errors of the direct LQCD determination [2], also shown in the table. Table
4 gives the values of the corresponding shape parameters, which lie well inside the range of values from Ref. [8]. For
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nucleons. Both total spin S and total isospin T may be either 1/2 or 3/2. Here we concentrate on the triton, which
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be governed by an S-wave separable potential of the type discussed in Sec. 2 but allow for different parameters in
each two-nucleon channel, which we label with a subscript 0 or 1 according to its spin. Again, we expect ultraviolet
convergence without three-nucleon forces, in contrast to the situation in Pionless EFT with standard power counting
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Again, the system described in Eq. (28) has a non-trivial solution provided
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where mN is the nucleon mass.
In the following, we consider the case when there are two independent dimensionful parameters because a2s = 2r2s
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Two-Nucleon Binding Energies

Square-Root Yamaguchi Gaussian LQCD
B21/MeV 25.3 19.5 18.4 19.5 (3.6) (3.1) (0.2)
B20/MeV 12.7 11.1 10.7 15.9 (2.7) (2.7) (0.2)

Table 3: Two-nucleon binding energies B2s (in MeV) for the spin s = 0,1 channels supported by the square-root, Yamaguchi, and Gaussian
separable potentials with ERE parameters from lattice QCD [8], compared to the direct LQCD value [2].

Yamaguchi Gaussian LQCD
P1 (fm3) 0.023 0.037 [�0.147, 0.176]
P0 (fm3) 0.044 0.070 [�0.205, 0.117]

Table 4: Shape parameters Ps (in fm3) in spin s = 0,1 channels for the Yamaguchi and Gaussian separable potentials with ERE parameters from
lattice QCD [8], compared to the range of LQCD values [8].

a2s = 2r2s, the phase shifts in the two channels can be read off Fig. 1 when r2 is replaced by the respective effective-
range value. The phase shifts do not turn negative as suggested by the higher-energy LQCD data. Nevertheless, the
closeness of the predictions from the various potentials to each other and to direct LQCD values at low and moderate
energies suggest that the latter can be reproduced in perturbation theory around the LO square-root potential.

Table 5 shows results for the binding energy of the deepest three-body bound state we found with the Gaussian
separable potential, where we varied the ERE parameters (32) within error bars (errors added in quadrature). The
relatively large uncertainties in the effective ranges generate large uncertainties in binding energies. The Gaussian
potential yields the most stable results, but other potentials produce similar outcomes. In Table 6, central results for
the three potentials are compared with the direct LQCD value [2]. Although uncertainties are large, central values for
the three potentials are extremely close, and well within the range of values obtained directly from LQCD [2]. These
results add further support to the view that the NPLQCD results at these unphysical quark masses can be described by
a nonlocal potential with a near-degenerate double two-body pole.

6. Physical pion mass

At physical quark masses, the average nucleon mass is mN ' 938.92 MeV [53], while the two-nucleon ERE
parameters are extracted from data as [54, 55]

a21 = 5.4194(20) fm, r21 = 1.7536(25) fm, (33)
a20 =�23.7154(80) fm, r20 = 2.706(67) fm. (34)

While the scattering lengths are certainly large compared to m
�1
p ' 1.4 fm, the situation is less clear cut for the

effective ranges. It has been suggested [36, 37] that an expansion based on r2s = O(¿�1) might be more effective
than the standard Pionless EFT expansion with r2s = O(R). However, its implementation through energy-dependent
interactions is not optimal for many-body applications. The formulation through a separable potential considered here
and in Ref. [21] might be useful. Analogous statements can be made about Chiral EFT for energy- [56, 57] and
momentum- [22–25] dependent interactions.

3S1 \ 1S0 Lower Central Upper
Lower 26.1 57.4 52.0
Central 67.3 56.5 89.8
Upper 59.2 57.1 52.6

Table 5: Three-nucleon binding energy (in MeV) supported by the Gaussian separable potential with ERE parameters from lattice QCD values [8].
“Lower”, “central”, and “upper” refer to the minimum, central, and maximum values of the scattering lengths a2s and effective ranges r2s (in 3

S1
and 1

S0 channels) .
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Square-Root Yamaguchi Gaussian LQCD
B3/MeV 56.5 56.6 56.5 53.9 (7.1) (8.0) (0.6)

Table 6: Three-nucleon binding energy B3 (in MeV) supported by the square-root, Yamaguchi, and Gaussian separable potentials with ERE
parameters from lattice QCD values [8], compared to the direct LQCD value [2].

Square-Root Yamaguchi Gaussian experiment
B21/MeV 13.4949 9.26145 8.69714 2.224575(9)
B20/MeV 5.66342 3.88675 3.64993 —

Table 7: Two-nucleon binding energies B2s (in MeV) for the spin s = 0,1 channels, supported by the square-root, Yamaguchi, and Gaussian
separable potentials with empirical r2s parameters [54, 55] and a2s = 2r2s, compared to the experimental value [54].

The triton binding energy with input similar to Eqs. (33) and (34) has been discussed many times in the literature,
for example Ref. [35] for the square-root potential, Ref. [48] for Yamaguchi, and Ref. [43] for Gaussian. Results
fall in a wide range ' 7� 12 MeV, a sensitivity to the two-nucleon interaction that is encapsulated in the so-called
Phillips line [58]. We therefore focus here on the possibility of an expansion around a2s = 2r2s. The 3

S1 channel is
not far from this limit. In 1

S0, one finds a very shallow pole at negative imaginary momentum, while a20 = 2r20 gives
relatively shallow poles at positive imaginary momentum thanks to the relatively large effective range. One might
hope that these departures from two-body data at very low energies are not so important for the deeper ground states
of larger nuclei. It is known that for the Yamaguchi potential there is little sensitivity of the triton binding energy to
a20, at least when the latter is large and negative [59].

In Table 7 we give the two-body binding energies for our separable potentials when r2s is fixed by the empirical
values in Eqs. (33) and (34), and a2s = 2r2s. We also compare our results with the experimental binding energy of
the deuteron [54]. As one would expect from the shallowness of the observed deuteron and 1

S0 virtual state, our
unrealistic scattering lengths lead to deeper bound states in both cases. Clearly the very low-energy region cannot be
described well by our potentials. The issue is whether they capture the physics at higher energies and deeper bound
states as the triton. Indeed, for the three potentials we find a state with energy close to the triton’s [60], as shown in
Table 8. Again, the spread among potentials is relatively small and particularly close to experiment for Yamaguchi
and Gaussian.

This agreement is likely a manifestation of the folklore that nuclear ground states are not very sensitive to two-
nucleon scattering near threshold, which in conventional Pionless EFT is incorporated through an expansion around
the unitarity limit [61, 62]. The phase shifts for a2s = 2r2s can again be read off Fig. 1 once the physical values for r2s

are used. To facilitate the comparison with empirical values, we plot in Fig. 1 the results of the Granada phase-shift
analysis [44] for the 3

S1 and 1
S0 channels. We see that all three potentials are close to the empirical 3

S1 phase shifts
despite our scattering length not taking the experimental value. The three potentials also give 1

S0 phase shifts close to
empirical for kr20 >⇠ 1, differences at smaller momenta reflecting the existence of a bound state when a20 = 2r20 > 0.
The fact that these small-momentum differences do not dramatically affect our results for the triton binding energy
supports existing folklore. Still, it is surprising that such a good agreement is found in the same framework that
accommodates LQCD results.

Square-Root Yamaguchi Gaussian experiment
B3/MeV 7.496939 8.945608 8.397675 8.481798(2)

Table 8: Triton binding energy B3 (in MeV) supported by the square-root, Yamaguchi, and Gaussian separable potentials with empirical r2s

parameters [54, 55] and a2s = 2r2s, compared to experiment [60].
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Final Remarks

The results with unphysical masses are close to the lattice QCD calculations


The results with physical masses are close to the experimental values


Our calculations with effective potentials support the lattice QCD results



