The impact of quark many-body effects on exotic hadrons

Sachiko Takeuchi (Japan College of Social Work) Makoto Takizawa (Showa Pharmaceutical Univ.) Yasuhiro Yamaguchi (Nagoya Univ.) Atsushi Hosaka (RCNP)

effect).

Q: Where and how can we see the quark degrees of freedom in the low-energy region?

- A: By looking into the symmetry.
 - There are 10 spin-3/2 baryons but the number of spin-1/2 baryons is 8.

Some of the two-baryon systems have a large short-range repulsion caused by the Pauli-blocking.
 (Experiments, Quark models, the Lattice QCD)

Two-hadron systems get a large short-range attraction

because hadrons are composed of multiple quarks (many-body

also in the exotic hadrons!

Motivation

- (a) Pauli-Blocking effects between quarks, and (b) Quark many-body effects
- Rough size of the effects
- Hadron potential from the Quark antisymmetrization
 - How to derive (a) and (b)
- Channel dependence of the effects
- Examples
- $T_{cc} I(J^P) = 0(1^+)$
- Dynamic calculation with the color-spin interaction Summary and Outlook

Motivation

The interaction between the hadrons originated from the quark degrees of freedom consists of ...

(a) Pauli-Blocking effects between quarks

- gives strong repulsion to some of the two-baryon channels, e.g.,
 (consistent with the experiments, LQCD).
- (b) Quark many body effects
 - gives attraction between the hadrons in the scattering states or shallow bound states. (spectroscopic factor, S-factor)
- (c) color-spin interaction (color-magnetic interaction)
 - The one-gluon exchange or instanton induced interactions that give the hyperfine splittings, say, N- Δ , or D-D* mass difference.

For compact states, (c) matters. But for scattering or loosely bound states, (a) \simeq (b) > (c) in size in general. To investigate the mechanism to bind two hadrons one has to look also into (a) and (b).

Size of the effects (a)+(b)

 Both of the hadron masses are 1GeV, all quark masses are equal.

Hadron potential from the Quark

antisymmetrization (How to derive (a) and (b))

Suppose quark antisymmetrization occurs only within the $(0s)^n$ states.

- Single hadrons
 - $|B\rangle = \mathscr{A}_q^{(3)} |q^3\rangle, |M\rangle = |q\bar{q}\rangle$, with $\langle B|B\rangle = 1, \langle M|M\rangle = 1$
- Wave function of two hadron states with the number of antiquarks is 0 or 1:

$$| \Psi(hh') \rangle \propto \mathscr{A}_q^{(n)} | hh' \rangle \propto (1 - n_h n_{h'} P_{14}^{ex} | 0s \rangle \langle 0s |) | hh' \rangle$$

with n_h the number of quarks in hadron h, and P_{14}^{ex} express the one-quark interchange between the two hadrons, and $|0s\rangle = |(0s)^n\rangle$.

• Note that $P_{14}^{ex,orb}$ does not change the orbital $(0s)^n$ configuration,

$$P_{14}^{ex}|0s\rangle\langle 0s| = |0s\rangle\langle 0s|P_{14}^{ex} = P_{14}^{ex,sfc}|0s\rangle\langle 0s|,$$

so the wave function becomes:

$$|\Psi(hh')\rangle \propto \left(\overline{|0s\rangle\langle 0s|} + \nu_{hh'}^{sfc}|0s\rangle\langle 0s|\right)|hh'\rangle$$

with
$$\nu_{hh'}^{sfc} = \langle hh'0s | \mathscr{A} | hh'0s \rangle = \langle hh' | (1 - n_h n_{h'} P_{14}^{ex,sfc}) | hh' \rangle_{sfc}$$

Or, operator 1 for the quarks becomes operator N for the hadrons

 $1 = \left(\overline{|0s\rangle\langle 0s|} + |0s\rangle\langle 0s|\right) \quad \rightarrow \quad N = \left(\overline{|0s\rangle\langle 0s|} + \nu_{hh'}^{sfc} |0s\rangle\langle 0s|\right)$

Suppose quark antisymmetrization occurs only within the $(0s)^n$ states.

- Wave function of two hadron states with the number of antiquarks is 0 or 1:
 - Kinetic operator for quarks becomes

$$H_{0} = \sum m_{i} + \sum_{i \in h} K_{i} + \sum_{i \in h'} K_{i} + K_{hh'}, \quad \mathscr{A}_{q}H_{0} = H_{0}\mathscr{A}_{q}$$
$$\langle hh'0s | \mathscr{A}H_{0} = \nu_{hh'}^{sfc} \langle hh'0s | H_{0}, \quad H_{0}\mathscr{A} | hh'0s \rangle = \nu_{hh'}^{sfc} H_{0} | hh'0s \rangle$$

• So. the kinetic operator for hadrons becomes $H_0 \to H_{h0} = \left(M_h + M'_h \right) N + \left[0s \right) \nu_{hh'}^{sfc} \frac{3}{4} \hbar \omega \langle 0s | + \nu_{hh'}^{sfc} \frac{\sqrt{6}}{4} \hbar \omega (|1s\rangle \langle 0s | + |0s\rangle \langle 1s |) + \text{rest of } K_{hh'} \right)$

Suppose quark antisymmetrization occurs only within the $(0s)^n$ states.

- Sch-eq for the hadron states:
 - $(H_0 E) |\Psi(hh')\rangle = 0 \rightarrow (K_h EN) |hh'\rangle = 0$ $K_h = (|0s\rangle \nu_{hh'}^{sfc} \frac{3}{4} \hbar \omega \langle 0s| + \nu_{hh'}^{sfc} \frac{\sqrt{6}}{4} \hbar \omega (|1s\rangle \langle 0s| + |0s\rangle \langle 1s|)) + \text{rest of } H_0$
 - To remove the energy dependent exchange term, we rewrite the eq $asN^{1/2}(N^{-1/2}K_hN^{-1/2} E)N^{1/2} | hh' \rangle = 0$ $N^x = \overline{|0s\rangle\langle 0s|} + (\nu_{hh'}^{sfc})^x | 0s\rangle\langle 0s|$, We can consider $|hh'\rangle\rangle = N^{1/2} | hh' \rangle$ as the hadron wave function in stead of $|hh'\rangle$. Then the Sch-eq becomes $(N^{-1/2}K_hN^{-1/2} - E) | hh' \rangle = 0$ No effects on the compact states
 - The matrix element between 0s states becomes $\langle\!\langle hh'0s \,|\, N^{-1/2}K_h N^{-1/2} \,|\, hh'0s \rangle\!\rangle = \langle\!\langle hh' \,|\, \nu^{-1/2} \frac{3}{4} \hbar \omega \,\nu \nu^{-1/2} \,|\, hh' \rangle\!\rangle = \frac{3}{4} \hbar \omega$
 - Matrix element between 0s and 1s states becomes $\langle\langle hh' 1s | N^{-1/2} K_h N^{-1/2} | hh' 0s \rangle\rangle = \langle\langle hh' | 1^{-1/2} \frac{\sqrt{6}}{4} \hbar \omega \nu \nu^{-1/2} | hh' \rangle\rangle = \frac{\sqrt{6}}{4} \hbar \omega \nu^{1/2}$

Effects on the scattering states or loosely bound states

8

Suppose quark antisymmetrization occurs only within the $(0s)^n$ states.

- Sch-eq for the hadron states:
 - $(H_0 E) |\Psi(hh')\rangle = 0 \rightarrow (K_h EN) |hh'\rangle = 0$ $K_h = (|0s\rangle \nu_{hh'}^{sfc} \frac{3}{4} \hbar \omega \langle 0s| + \nu_{hh'}^{sfc} \frac{\sqrt{6}}{4} \hbar \omega (|1s\rangle \langle 0s| + |0s\rangle \langle 1s|)) + \text{rest of } H_0$
 - To remove the energy dependent exchange term, we rewrite the eq as $N^{1/2}(N^{-1/2}K_hN^{-1/2} E)N^{1/2}|hh'\rangle = 0$ $N^x = \overline{|0s\rangle\langle 0s|} + (\nu_{hh'}^{sfc})^x |0s\rangle\langle 0s|$, We can consider $|hh'\rangle\rangle = N^{1/2}|hh'\rangle$ as the hadron wave function in stead of $|hh'\rangle$. Then the Sch-eq becomes $(N^{-1/2}K_hN^{-1/2} - E)|hh'\rangle\rangle = 0$ No effects on the compact states
 - The matrix element between 0s states becomes $\langle\!\langle hh'0s \,|\, N^{-1/2}K_h N^{-1/2} \,|\, hh'0s \rangle\!\rangle = \langle\!\langle hh' \,|\, \nu^{-1/2} \frac{3}{4} \hbar \omega \,\nu \nu^{-1/2} \,|\, hh' \rangle\!\rangle = \frac{3}{4} \hbar \omega$
 - Matrix element between 0s and 1s states becomes $\langle\langle hh' 1s | N^{-1/2} K_h N^{-1/2} | hh' 0s \rangle\rangle = \langle\langle hh' | 1^{-1/2} \frac{\sqrt{6}}{4} \hbar \omega \nu \nu^{-1/2} | hh' \rangle\rangle = \frac{\sqrt{6}}{4} \hbar \omega \nu^{1/2}$

Effects on the scattering states or loosely bound states

8

Suppose quark antisymmetrization occurs only within the $(0s)^n$ states.

- Sch-eq for the hadron states:
 - $(H_0 E) |\Psi(hh')\rangle = 0 \rightarrow (K_h EN) |hh'\rangle = 0$ $K_h = (|0s\rangle \nu_{hh'}^{sfc} \frac{3}{4} \hbar \omega \langle 0s| + \nu_{hh'}^{sfc} \frac{\sqrt{6}}{4} \hbar \omega (|1s\rangle \langle 0s| + |0s\rangle \langle 1s|)) + \text{rest of } H_0$
 - To remove the energy dependent exchange term, we rewrite the eq $asN^{1/2}(N^{-1/2}K_hN^{-1/2} - E)N^{1/2} |hh'\rangle = 0$ $N^x = \overline{|0s\rangle\langle 0s|} + (\nu_{hh'}^{sfc})^x |0s\rangle\langle 0s|, \text{ We can consider } |hh'\rangle\rangle = N^{1/2} |hh'\rangle \text{ as the hadron wave function in stead of } |hh'\rangle. \text{ Then the Sch-eq becomes}$ $(N^{-1/2}K_hN^{-1/2} - E) |hh'\rangle\rangle = 0$ No effects on the compact states
 - The matrix element between 0s states becomes $\langle\!\langle hh'0s \,|\, N^{-1/2}K_h N^{-1/2} \,|\, hh'0s \rangle\!\rangle = \langle\!\langle hh' \,|\, \nu^{-1/2} \frac{3}{4} \hbar \omega \,\nu \nu^{-1/2} \,|\, hh' \rangle\!\rangle = \frac{3}{4} \hbar \omega$
 - Matrix element between 0s and 1s states becomes $\langle\!\langle hh'1s \,|\, N^{-1/2}K_h N^{-1/2} \,|\, hh'0s \rangle\!\rangle = \langle\!\langle hh' \,|\, 1^{-1/2} \frac{\sqrt{6}}{4} \hbar \omega \,\nu \nu^{-1/2} \,|\, hh' \rangle\!\rangle = \frac{\sqrt{6}}{4} \hbar \omega \,\nu^{1/2}$

Effects on the scattering states or loosely bound states

8

Channel dependence of the effects

Size of the effects can be evaluated by $(\nu_{hh'}^{sfc} - 1)$ $K_h = \sum_{nm} |ns\rangle K_{nm} \langle ms|$

- - Os-1s mixing enhances \rightarrow attraction
- $\nu_{hh'}^{sfc}$ is determined by the color-flavor-spin symmetry $\nu_{hh'}^{sfc} = \langle hh'0s | \mathscr{A} | hh'0s \rangle = \langle hh' | (1 - n_h n_{h'} P_{14}^{ex,sfc}) | hh' \rangle_{sfc}$
- Examples:
 - Two baryon systems (q^3-q^3) $0 \le \nu_{hh'}^{sfc} \le 2$
 - Pentaquarks ($q^3 q\bar{q}$) $0 \le \nu_{hh'}^{sfc} \le \frac{4}{3}$
 - Two meson systems $(q\bar{q}-q\bar{q})$ $0 \le \nu_{hh'}^{sfc} \le \frac{4}{3}$
- 'taking one hadron out of 2 hadrons' is different from 'taking qqq out of qqqq (+ \bar{q}) or $q\bar{q}$ out of $q\bar{q}q\bar{q}$.

 $(\nu_{hh'}^{sfc} - 1) < 0: (a) \text{ Pauli-blocking effect}$ $0 \text{ Solven in the second states and the second states are precised on the second states are precised at the second states at the second stat$

Two baryon systems

• *H* dihyperon, $d^*(2380) I(J^P) = 0(3^+)$

color [222]

 $P_{14} = \frac{1}{3}$

- ν = 2, strongly attractive.
 the color-spin term is also strongly attractive.
- NN(TS) = (10), (01) $\nu = \frac{10}{9}$, small effect. the color-spin term is repulsive. $N\Sigma(TS) = (\frac{1}{2}, 0)$ $\nu = \frac{1}{9}$, strongly repulsive. Though etal, HAL QCD Collab, *PRL106*(2011)162002

T.Inoue etal, HAL QCD Collaboration, PTP 124(2010)591

spin-flavor [33]

spin-flavor [51]

25th European Conf. on Few-Body Problems in Physics@Mainz, Jul. 31, 2023

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Potential, summary

Harmonic expansion of the nonrela kinetic term, $\frac{1}{2}k^2$:

- The Os state is isolated if $\nu=0$
- The mixing enhances for $\nu > 1$

$$K = \begin{pmatrix} \frac{3}{2} & \sqrt{\frac{3}{2}}\sqrt{\nu} & 0 & \cdots \\ \sqrt{\frac{3}{2}}\sqrt{\nu} & \frac{7}{2} & \cdots \\ 0 & \cdots & \frac{11}{2} & \cdots \end{pmatrix} \hbar\omega$$

Potential that gives this effect has a node. In the above K, the effects are written only between 0s-1s, but we performed a full calculation, which is necessary when mq=mqbar.

 $T_{cc} I(J^P) = 0(1^+)$

LHCb, Many theoretical references

2 meson system

$(c\bar{u})_{color \ singlet} \ (c\bar{d})_{color \ singlet}$					
• $\nu = \langle (q\bar{q})(q\bar{q}) (1 - P_{13})(1 - P_{24}) (q\bar{q})(q\bar{q}) \rangle = \langle (q\bar{q})(q\bar{q}) (1 + P_{13}P_{24})(1 - P_{24}) (q\bar{q})(q\bar{q}) \rangle$					
$= \langle MM (1 - P_{24}) MM \rangle$					
$= \left\langle \frac{1}{3} A_{24}^{c3} (1 + P_{24}^{f\sigma}) + \frac{2}{3} S_{24}^{c6} (1 - P_{24}^{f\sigma}) \right\rangle \le \frac{4}{3} \text{ for } q_1 \bar{q}_2 \text{ (and } q_3 \bar{q}_3)$	\bar{q}_4) color-sing	let systems			
 isospin 1, J=0: ν =2/3, 4/3 		(A)	(B)		
• isospin 1, J=1: ν =2/3		v repuisive	ν attractive		
• isospin 1, J=2: $\nu = 2/3$		cc, <u>qq</u> :	cc, <u>qq</u> :		
■ isospin 0, J=1: $\nu = 2/3, 4/3 \rightarrow T_{cc}$		color <u>3</u>	$\frac{1}{2} = \frac{1}{2}$		
T _{cc} has two components:		$\nu = \frac{2}{5}$ $\lambda \lambda = -\frac{8}{3}$	$\nu = 4/3$ $\lambda \lambda = 4/3$		
• (A) cc spin-1 $\bar{u}\bar{d}$ spin-0 (good diquark)	сс	spin 1	spin 0		
ν repulsive CMI more attractive	ud	spin 0	spin 1		
 (B) cc spin-0 ūd̄ spin-1 	isospin 0	cmi=-8	cmi=-4/3		
v attractive CMI less attractive	ud	spin 1	spin 0		
	isospin 1	cmi=8/3	cmi=4		

if the flavor of $q_1 \neq q_3$, e.g. $b\bar{u}c\bar{d}$, more $\nu = 4/3$ attractive states

 $T_{cc} I(J^P) = 0(1^+)$

LHCb, Many theoretical references

2 meson system

$(c\bar{u})_{color \ singlet} \ (c\bar{d})_{color \ singlet}$				
• $\nu = \langle (q\bar{q})(q\bar{q}) (1 - P_{13})(1 - P_{24}) (q\bar{q})(q\bar{q}) \rangle = \langle (q\bar{q})(q\bar{q}) (1 + P_{13})(1 - P_{24}) (q\bar{q})(q\bar{q}) \rangle$	$P_{24})(1 - P_{24}) (q\bar{q}) $	$\langle q\bar{q}\rangle$		
$= \langle MM (1 - P_{24}) MM \rangle$				
$= \left\langle \frac{1}{3} A_{24}^{c3} (1 + P_{24}^{f\sigma}) + \frac{2}{3} S_{24}^{c6} (1 - P_{24}^{f\sigma}) \right\rangle \le \frac{4}{3} \text{ for } q_1 \bar{q}_2 \text{ (and } q_3 \bar{q}_4 \text{) color-singlet systems}$				
isospin 1, J=0: ν =2/3, 4/3		(A)	(B)	
• isospin 1, J=1: $\nu = 2/3$		v repuisive	ν attractive	
• isospin 1, J=2: $\nu = 2/3$		cc, <u>qq</u> :	cc, <u>qq</u> :	
■ isospin 0, J=1: ν =2/3, 4/3 \rightarrow T _{cc}		color <u>3</u>	$\frac{1}{2}$	
$T_{cc} has two components:$		$\nu = 2/3$ $\lambda \lambda = -8/3$	$\nu = 4/3$ $\lambda \lambda = 4/3$	
• (A) cc spin-1 $\bar{u}\bar{d}$ spin-0 (good diquark)	сс	spin 1	spin 0	
ν repulsive CMI more attractive	ud	spin 0	spin 1	
 (B) cc spin-0 ūd̄ spin-1 	isospin 0	cmi=-8	.cmi=-4/3	
v attractive CMI less attractive	ud	spin 1	spin 0	
	isospin 1	cmi=8/3	cmi=4	

if the flavor of $q_1 \neq q_3$, e.g. $b\bar{u}c\bar{d}$, more $\nu = 4/3$ attractive states

(c) $q\bar{c}q\bar{c}$ interaction

 $V_{ij}^{q\alpha}(r,r') = (\lambda_i \cdot \lambda_j)(\sigma_i \cdot \sigma_j) \ c_{0s}^{\alpha} \ \langle r_{ij} | 0s \rangle \langle 0s | r_{ij}' \rangle$

Assumptions:

- **potential between two quarks with relative** (0s).
- **proportional to** $\lambda \cdot \lambda \sigma \cdot \sigma$
- c^α_{0ℓ}'s are obtained from each uū, cc̄, uc̄ meson mass diff.
 c^{σσ}_{0s} from η_c, J/ψ, D, D* mass diff.
 c^{σσ}_{0s}(ud) is from ΔN mass diff.

Two free parameters:

- quark mass ratio $m_q/m_{\bar{q}}$.
- scaled size of mesons, $x_0^2 = mb^2 = \omega_0^{-1}$
- $x_0 \sim 0.63 0.76 \text{fm}^{1/2}$ for nucleon charge rms $\sqrt{\langle r^2 \rangle} \sim b = 0.5 - 0.6 \text{fm}$ and the excitation energy $\omega_0 \sim 350 - 500 \text{MeV}$

Dynamical calculation

Potential to give the S-factor effects has a node, so the dynamical calculation is necessary (especially those with the short range attraction).

- $H_h = H_0 + V_K + V_{CS}$ $V_K = (\sqrt{\nu} - 1)(|0s\rangle\langle 1s| + |1s\rangle\langle 0s|) \frac{\sqrt{6}}{2}\hbar\omega \qquad \cdots \text{(a)Pauli (b) Many-body}$ ···(c) CMI $V_{CS} = c_{0s}(\lambda \cdot \lambda)(\sigma \cdot \sigma) |0s\rangle \langle 0s|$
- 3-channel calculation : D^0D^{*+} , D^+D^{*0} , $D^{*+}D^{*0}$ (all S-wave)
- Results
 - no bound state $T_{cc} I(J^P) = O(1^+)$ needs OPEP? ...

OPEP is attractive, but ambiguous results. No bound : S.Ohkoda etal PRD 86, 034019 (2012), and corrected one (in preparation) Bound: Ning Li etal, PRD 88, 114008 (2013)

a bound state for T_{bb} $I(J^P) = O(1^+)$ with a BE of 51-77 MeV($x_0 = 0.6 - 0.7$), with ~0.2 of the B^*B^* component.

As the mass of charm goes to the mass of bottom \cdots

The quark effects are attractive.

Summary and Outlook

- We study the effects of the quark Pauli-blocking effects and the quark many-body effects in the multiquark systems.
- They can be expressed by the non-local potential with 0s-1s mixing. For compact states, the effects are small, but scattering states, the effects can be very large.
- For example, they explain the attraction of H, d*.
- In some of the multiquark systems, like T_{QQ} , there are colorspin-attractive, and S-factor repulsive configuration, and vice versa.
- *T_{QQ}*'s are interesting. By introducing OPEP, and studying the decay or production, we can construct comprehensive picture of the exotic states …