The impact of quark many-body effects on exotic hadrons

Sachiko Takeuchi
(Japan College of Social Work)
Makoto Takizawa
(Showa Pharmaceutical Univ.)
Yasuhiro Yamaguchi
(Nagoya Univ.)
Atsushi Hosaka
(RCNP)

Today's menu

Q: Where and how can we see the quark degrees of freedom in the low-energy region?
A: By looking into the symmetry.

- There are 10 spin- $3 / 2$ baryons but the number of spin-1/2 baryons is 8 .

Some of the two-baryon systems have a large short-range repulsion caused by the Pauli-blocking. (Experiments, Quark models, the Lattice QCD)

Two-hadron systems get a large short-range attraction because hadrons are composed of multiple quarks (many-body effect). also in the exotic hadrons!

Contents

Motivation
(a) Pauli-Blocking effects between quarks, and (b) Quark many-body effects
Rough size of the effects
Hadron potential from the Quark antisymmetrization

- How to derive (a) and (b)

Channel dependence of the effects
Examples
$T_{c c} I\left(J^{P}\right)=0\left(1^{+}\right)$
Dynamic calculation with the color-spin interaction Summary and Outlook

Motivation

The interaction between the hadrons originated from the quark degrees of freedom consists of ...
(a) Pauli-Blocking effects between quarks

- gives strong repulsion to some of the two-baryon channels, e.g., (consistent with the experiments, LQCD).
(b) Quark many body effects
- gives attraction between the hadrons in the scattering states or shallow bound states. (spectroscopic factor, S-factor)
(c) color-spin interaction (color-magnetic interaction)
- The one-gluon exchange or instanton induced interactions that give the hyperfine splittings, say, $\mathrm{N}-\Delta$, or D-D* mass difference.

For compact states, (c) matters. But for scattering or loosely bound states, $(a) \simeq(b)>(c)$ in size in general. To investigate the mechanism to bind two hadrons one has to look also into (a) and (b).

Size of the effects (a)+(b)

- Both of the hadron masses are 1 GeV , all quark masses are equal.

Hadron potential from the Quark antisymmetrization (How to derive (a) and (b))

Suppose quark antisymmetrization occurs only within the $(0 s)^{n}$ states.

- Single hadrons
- $|B\rangle=\mathscr{A}_{q}^{(3)}\left|q^{3}\right\rangle,|M\rangle=|q \bar{q}\rangle$, with $\langle B \mid B\rangle=1, \quad\langle M \mid M\rangle=1$
- Wave function of two hadron states with the number of antiquarks is 0 or 1:
- $\left|\Psi\left(h h^{\prime}\right)\right\rangle \propto \mathscr{A}_{q}^{(n)}\left|h h^{\prime}\right\rangle \propto\left(1-n_{h} n_{h^{\prime}} P_{14}^{e x}|0 s\rangle\langle 0 s|\right)\left|h h^{\prime}\right\rangle$
with n_{h} the number of quarks in hadron h, and $P_{14}^{e x}$ express the one-quark interchange between the two hadrons, and $|0 s\rangle=\left|(0 s)^{n}\right\rangle$.
- Note that $P_{14}^{e x, o r b}$ does not change the orbital $(0 s)^{n}$ configuration,
$P_{14}^{e x}|0 s\rangle\langle 0 s|=|0 s\rangle\langle 0 s| P_{14}^{e x}=P_{14}^{e x, s f c}|0 s\rangle\langle 0 s|$,
so the wave function becomes:

```
    \(\left|\Psi\left(h h^{\prime}\right)\right\rangle \propto\left(\overline{|0 s\rangle\langle 0 s|}+\nu_{h h^{\prime}}^{s f c}|0 s\rangle\langle 0 s|\right)\left|h h^{\prime}\right\rangle\)
with \(\nu_{h h^{\prime}}^{s f c}=\left\langle h h^{\prime} 0 s\right| \mathscr{A}\left|h h^{\prime} 0 s\right\rangle=\left\langle h h^{\prime}\right|\left(1-n_{h} n_{h^{\prime}} P_{14}^{e x, s f c}\right)\left|h h^{\prime}\right\rangle_{s f c}\)
```

Or, operator 1 for the quarks becomes operator N for the hadrons

$$
1=(\overline{|0 s\rangle\langle 0 s|}+|0 s\rangle\langle 0 s|) \quad \rightarrow \quad N=\left(\overline{|0 s\rangle\langle 0 s|}+\nu_{h h^{\prime}}^{s f c}|0 s\rangle\langle 0 s|\right)
$$

Hadron potential from the Quark antisymmetrization (How to derive (a) and (b))

Suppose quark antisymmetrization occurs only within the $(0 s)^{n}$ states.

- Wave function of two hadron states with the number of antiquarks is 0 or 1:
- Kinetic operator for quarks becomes

$$
\begin{array}{|l}
\hline H_{0}=\sum m_{i}+\sum_{i \in h} K_{i}+\sum_{i \in h^{\prime}} K_{i}+K_{h h^{\prime}}, \quad \mathscr{A}_{q} H_{0}=H_{0} \mathscr{A}_{q} \\
\left\langle h h^{\prime} 0 s\right| \mathscr{A} H_{0}=\nu_{h h^{\prime}}^{s c}\left\langle h h^{\prime} 0 s\right| H_{0}, \quad H_{0} \mathscr{A}\left|h h^{\prime} 0 s\right\rangle=\nu_{h h^{\prime}}^{s f c} H_{0}\left|h h^{\prime} 0 s\right\rangle
\end{array}
$$

- So, the kinetic operator for hadrons becomes

$$
H_{0} \rightarrow H_{h 0}=\left(M_{h}+M_{h}^{\prime}\right) N+|0 s\rangle \nu_{h h^{\prime}}^{s c} \frac{3}{4} \hbar \omega\langle 0 s|+\nu_{h h^{\prime}}^{s f} \frac{\sqrt{6}}{4} \hbar \omega(|1 s\rangle\langle 0 s|+|0 s\rangle\langle 1 s|)+\text { rest of } K_{h h^{\prime}}
$$

- We take $\hbar \omega$ not depend on the flavor because 1st excitation energies of hadrons are almost flavor independent.

Positive parity baryon resonances

Hadron potential from the Quark antisymmetrization (How to derive (a) and (b))

Suppose quark antisymmetrization occurs only within the $(0 s)^{n}$ states.

- Sch-eq for the hadron states:
- $\quad\left(H_{0}-E\right)\left|\Psi\left(h h^{\prime}\right)\right\rangle=0 \quad \rightarrow \quad\left(K_{h}-E N\right)\left|h h^{\prime}\right\rangle=0$
$K_{h}=\left(|0 s\rangle \nu_{h h^{\prime}} \frac{3}{4} \hbar \omega\langle 0 s|+\nu_{h h^{\prime}}^{s f c} \frac{\sqrt{6}}{4} \hbar \omega(|1 s\rangle\langle 0 s|+|0 s\rangle\langle 1 s|)\right)+$ rest of H_{0}
- To remove the energy dependent exchange term, we rewrite the eq as $N^{1 / 2}\left(N^{-1 / 2} K_{h} N^{-1 / 2}-E\right) N^{1 / 2}\left|h h^{\prime}\right\rangle=0$
$N^{x}=\overline{|0 s\rangle\langle 0 s|}+\left(\nu_{h h^{\prime}}\right)^{x}{ }^{x}|0 s\rangle\langle 0 s|$, We can consider $\left.\left|h h^{\prime}\right\rangle\right\rangle=N^{1 / 2}\left|h h^{\prime}\right\rangle$ as the hadron wave function in stead of $\left|h h^{\prime}\right\rangle$. Then the Sch-eq becomes

$$
\left.\left(N^{-1 / 2} K_{h} N^{-1 / 2}-E\right)\left|h h^{\prime}\right\rangle\right\rangle=0
$$

> No effects on the compact states

- The matrix element between Os states becomes

$$
\left.\left.\left\langle\left\langle h h^{\prime} 0 s\right| N^{-1 / 2} K_{h} N^{-1 / 2} \mid h h^{\prime} 0 s\right\rangle\right\rangle=\left\langle\left.\left\langle h h^{\prime}\right| \nu^{-1 / 2} \frac{3}{4} \hbar \omega \nu \nu^{-1 / 2} \right\rvert\, h h^{\prime}\right\rangle\right\rangle=\frac{3}{4} \hbar \omega
$$

- Matrix element between Os and 1s states becomes

$$
\begin{aligned}
& \text { Vatrix element between Us and Is states becomes } \\
& \left.\left.\left\langle\left\langle h h^{\prime} 1 s\right| N^{-1 / 2} K_{h} N^{-1 / 2} \mid h h^{\prime} 0 s\right\rangle\right\rangle=\left\langle\left.\left\langle h h^{\prime}\right| 1^{-1 / 2} \frac{\sqrt{6}}{4} \hbar \omega \nu \nu^{-1 / 2} \right\rvert\, h h^{\prime}\right\rangle\right\rangle=\frac{\sqrt{6}}{4} \hbar \omega \nu^{1 / 2}
\end{aligned}
$$

Hadron potential from the Quark antisymmetrization (How to derive (a) and (b))

Suppose quark antisymmetrization occurs only within the $(0 s)^{n}$ states.

- Sch-eq for the hadron states:
- $\quad\left(H_{0}-E\right)\left|\Psi\left(h h^{\prime}\right)\right\rangle=0 \quad \rightarrow \quad\left(K_{h}-E N\right)\left|h h^{\prime}\right\rangle=0$
$K_{h}=\left(|0 s\rangle \nu_{h h^{\prime}}^{s f \frac{3}{4}} \hbar \omega\langle 0 s|+\nu_{h h^{\prime}}^{s f c} \frac{\sqrt{6}}{4} \hbar \omega(|1 s\rangle\langle 0 s|+|0 s\rangle\langle 1 s|)\right)+$ rest of H_{0}
- To remove the energy dependent exchange term, we rewrite the eq as $N^{1 / 2}\left(N^{-1 / 2} K_{h} N^{-1 / 2}-E\right) N^{1 / 2}\left|h h^{\prime}\right\rangle=0$
$N^{x}=\overline{|0 s\rangle\langle 0 s|}+\left(\nu_{h h^{\prime}}\right)^{s f}|0 s\rangle\langle 0 s|$, We can consider $\left.\left|h h^{\prime}\right\rangle\right\rangle=N^{1 / 2}\left|h h^{\prime}\right\rangle$ as the hadron wave function in stead of $\left|h h^{\prime}\right\rangle$. Then the Sch-eq becomes

$$
\left.\left(N^{-1 / 2} K_{h} N^{-1 / 2}-E\right)\left|h h^{\prime}\right\rangle\right\rangle=0
$$

No effects on the compact states

- The matrix element between Os states becomes $\left.\left\langle\left\langle h h^{\prime} 0 s\right| N^{-1 / 2} K_{h} N^{-1 / 2} \mid h h^{\prime} 0 s\right\rangle\right\rangle=\left\langle\left\langle h h^{\prime}\left[L^{-1 / 2} \frac{3}{4} \hbar \omega\left\langle\nu^{-1 / 2} \mid h h^{\prime}\right\rangle\right\rangle=\frac{3}{4} \hbar \omega\right.\right.$
- Matrix element between Os and 1 s states becomes $\left.\left.\left\langle\left\langle h h^{\prime} 1 s\right| N^{-1 / 2} K_{h} N^{-1 / 2} \mid h h^{\prime} O s\right\rangle\right\rangle=\left\langle\left.\left\langle h h^{\prime}\right| 1^{-1 / 2} \frac{\sqrt{6}}{4} \hbar \omega \nu \nu^{-1 / 2} \right\rvert\, h h^{\prime}\right\rangle\right\rangle=\frac{\sqrt{6}}{4} \hbar \omega \nu^{1 / 2}$

Hadron potential from the Quark antisymmetrization (How to derive (a) and (b))

Suppose quark antisymmetrization occurs only within the $(0 s)^{n}$ states.

- Sch-eq for the hadron states:
- $\quad\left(H_{0}-E\right)\left|\Psi\left(h h^{\prime}\right)\right\rangle=0 \quad \rightarrow \quad\left(K_{h}-E N\right)\left|h h^{\prime}\right\rangle=0$
$K_{h}=\left(|0 s\rangle \nu_{h h^{\prime}}^{s f} \frac{3}{4} \hbar \omega\langle 0 s|+\nu_{h h^{\prime}}^{s f 6} \frac{\sqrt{6}}{4} \hbar \omega(|1 s\rangle\langle 0 s|+|0 s\rangle\langle 1 s|)\right)+$ rest of H_{0}
- To remove the energy dependent exchange term, we rewrite the eq $\operatorname{as} N^{1 / 2}\left(N^{-1 / 2} K_{h} N^{-1 / 2}-E\right) N^{1 / 2}\left|h h^{\prime}\right\rangle=0$
$N^{x}=\overline{|0 s\rangle\langle 0 s|}+\left(\nu_{h h^{\prime}}\right)^{s f}|0 s\rangle\langle 0 s|$, We can consider $\left.\left|h h^{\prime}\right\rangle\right\rangle=N^{1 / 2}\left|h h^{\prime}\right\rangle$ as the hadron wave function in stead of $\left|h h^{\prime}\right\rangle$. Then the Sch-eq becomes

$$
\left.\left(N^{-1 / 2} K_{h} N^{-1 / 2}-E\right)\left|h h^{\prime}\right\rangle\right\rangle=0
$$

No effects on the compact states

- The matrix element between Os states becomes $\left.\left\langle\left\langle h h^{\prime} 0 s\right| N^{-1 / 2} K_{h} N^{-1 / 2} \mid h h^{\prime} 0 s\right\rangle\right\rangle=\left\langle\left\langle h h^{\prime} L^{-1 / 2} \frac{3}{4} \hbar \omega\left\langle\nu^{-1 / 2} \mid h h^{\prime}\right\rangle\right\rangle=\frac{3}{4} \hbar \omega\right]$
- Matrix element between Os and 1s states becomes $\left.\left\langle\left\langle h h^{\prime} 1 s\right| N^{-1 / 2} K_{h} N^{-1 / 2} \mid h h^{\prime} 0 s\right\rangle\right\rangle=\left\langle\left\langle\left. h h^{\prime}\left(1^{-1 / 2}\right] \frac{\sqrt{6}}{4} \hbar \omega \sum^{-1 / 2} \right\rvert\, h h^{\prime}\right\rangle\right\rangle=\frac{\sqrt{6}}{4} \hbar \omega \nu^{1 / 2}$

Channel dependence of the effects

Size of the effects can be evaluated by $\left(\nu_{h h^{\prime}}^{s c}-1\right) \quad K_{h}=\sum_{m m}|n s\rangle K_{m m}\langle m s|$

- ($\left.\nu_{h h^{\prime}}^{\text {sf }}-1\right)<0$: (a) Pauli-blocking effect
- Os-1s mixing reduces \rightarrow repulsion
- $\left(\nu_{h h^{\prime}}^{s f c}-1\right)>0$: (b) Quark many body effects

Os-1s mixing enhances \rightarrow attraction

- $\nu_{h h^{\prime}}^{\text {sc }}$ is determined by the color-flavor-spin symmetry
$\nu_{h h^{\prime}}^{s s c}=\left\langle h h^{\prime} 0 s\right| \mathscr{A}\left|h h^{\prime} 0 s\right\rangle=\left\langle h h^{\prime}\right|\left(1-n_{h} n_{h} P_{14}^{e r, s f c}\right)\left|h h^{\prime}\right\rangle_{s f c}$
- Examples:
- Two baryon systems $\left(q^{3}-q^{3}\right) \quad 0 \leq \nu_{h h^{\prime}}^{\text {sc }} \leq 2$

Pentaquarks ($\left.q^{3}-q \bar{q}\right)$
$0 \leq \nu_{h h^{\prime t}} \leq \frac{4}{3}$
Two meson systems $(q \bar{q}-q \bar{q}) \quad 0 \leq L_{\text {ht }}^{\text {fit }} \leq \frac{4}{3}$

- 'taking one hadron out of 2 hadrons' is different from 'taking $q q q$ out of $q q q q(+\bar{q})$ or $q \bar{q}$ out of $q \bar{q} q \bar{q}$.'
color [222]

Examples

spin-flavor [33]

$$
P_{14}=\frac{1}{3}
$$

spin-flavor [51]

Two baryon systems

 attractive.

- $\quad N N(T S)=(10),(01)$
- $\nu=\frac{10}{9}$, small effect.
the color-spin term is repulsive.

- $N \Sigma(T S)=\left(\frac{1}{2}, 0\right)$
$\nu=\frac{1}{9}$, strongly repulsive.
T.Inoue etal, HAL QCD Collab, PRL106(2011)162002
T.Inoue etal, HAL QCD Collaboration, PTP 124(2010)

Potential, summary

Harmonic expansion of the nonrela kinetic term, $\frac{1}{2} k^{2}$:

- The Os state is isolated if $\nu=0$
- The mixing enhances for $\nu>1$
- reduces for $\nu<1$

(A):Tcc, cc spin-1 component
(B):Tcc, cc spin-0 component

$$
K=\left(\begin{array}{cccc}
\frac{3}{2} & \sqrt{\frac{3}{2}} \sqrt{\nu} & 0 & \cdots \\
\sqrt{\frac{3}{2} \sqrt{\nu}} & \frac{7}{2} & \cdots & \\
0 & \cdots & \frac{11}{2} & \cdots
\end{array}\right)
$$

Potential that gives this effect has a node.
In the above K, the effects are written only between 0s-1s, but we performed a full calculation, which is necessary when $\mathrm{mq}=\mathrm{mq}$ bar.

$T_{c c} I\left(J^{P}\right)=0\left(1^{+}\right)$

2 meson system

- $(c \bar{u})_{\text {color singlet }}(c \bar{d})_{\text {color singlet }}$
- $\quad \nu=\langle(q \bar{q})(q \bar{q})|\left(1-P_{13}\right)\left(1-P_{24}\right)|(q \bar{q})(q \bar{q})\rangle=\langle(q \bar{q})(q \bar{q})|\left(1+P_{13} P_{24}\right)\left(1-P_{24}\right)|(q \bar{q})(q \bar{q})\rangle$
$=\langle M M|\left(1-P_{24}\right)|M M\rangle$
$=\left\langle\frac{1}{3} A_{24}^{c 3}\left(1+P_{24}^{f \sigma}\right)+\frac{2}{3} S_{24}^{c 6}\left(1-P_{24}^{f \sigma}\right)\right\rangle \leq \frac{4}{3}$ for $q_{1} \bar{q}_{2}$ (and $q_{3} \bar{q}_{4}$) color-singlet systems
- isospin $1, J=0: \nu=2 / 3,4 / 3$
- isospin 1, $J=1: \nu=2 / 3$
- isospin 1, $J=2: \nu=2 / 3$
- isospin $0, \mathrm{~J}=1: \nu=2 / 3,4 / 3 \rightarrow T_{c c}$
- $T_{c c}$ has two components:
- (A) $c c$ spin- $1 \bar{u} \bar{d}$ spin-0 (good diquark) ν repulsive CMI more attractive
- (B) $c c$ spin-0 $\bar{u} \bar{d}$ spin-1 ν attractive CMI less attractive

ν repulsive ν attractive		
	CC, qq: color 3 $\begin{gathered} \nu=2 / 3 \\ \lambda \lambda=-8 / 3 \end{gathered}$	cc, qq: color 6 $\begin{gathered} \nu=4 / 3 \\ \lambda \lambda=4 / 3 \end{gathered}$
CC	spin 1	spin 0
ud isospin 0	$\left[\begin{array}{c} \text { spin } 0 \\ \mathrm{cmi}=-8 \end{array}\right.$	$\begin{aligned} & \text { spin } 1 \\ & \text { cmi }=-4 / 3 \end{aligned}$
ud isospin 1	$\begin{gathered} \text { spin } 1 \\ \text { cmi=8/3 } \end{gathered}$	spin 0 cmi=4

- if the flavor of $q_{1} \neq q_{3}$, e.g. $b \bar{u} c \bar{d}$, more $\nu=4 / 3$ attractive states

$T_{c c} I\left(J^{P}\right)=0\left(1^{+}\right)$

LHCb,
Many theoretical references

2 meson system

- $(c \bar{u})_{\text {color singlet }}(c \bar{d})_{\text {color singlet }}$
- $\quad \nu=\langle(q \bar{q})(q \bar{q})|\left(1-P_{13}\right)\left(1-P_{24}\right)|(q \bar{q})(q \bar{q})\rangle=\langle(q \bar{q})(q \bar{q})|\left(1+P_{13} P_{24}\right)\left(1-P_{24}\right)|(q \bar{q})(q \bar{q})\rangle$
$=\langle M M|\left(1-P_{24}\right)|M M\rangle$
$=\left\langle\frac{1}{3} A_{24}^{c 3}\left(1+P_{24}^{f \sigma}\right)+\frac{2}{3} S_{24}^{c 6}\left(1-P_{24}^{f \sigma}\right)\right\rangle \leq \frac{4}{3}$ for $q_{1} \bar{q}_{2}$ (and $q_{3} \bar{q}_{4}$) color-singlet systems
- isospin 1, J=0: $\nu=2 / 3,4 / 3$
- isospin 1, $J=1: \nu=2 / 3$
- isospin 1, $J=2: \nu=2 / 3$
- isospin $0, \mathrm{~J}=1: \nu=2 / 3,4 / 3 \rightarrow T_{c c}$
- $T_{c c}$ has two components:
- (A) $c c$ spin- $1 \bar{u} \bar{d}$ spin-0 (good diquark) ν repulsive CMI more attractive
- (B) $c c$ spin-0 $\bar{u} \bar{d}$ spin-1 ν attractive CMI less attractive

	(A) ν repulsive	(B) ν attractive
	cc, qq: color 3 $\begin{gathered} \nu=2 / 3 \\ \lambda \lambda=-8 / 3 \end{gathered}$	cc, qq: color 6 $\begin{gathered} \nu=4 / 3 \\ \lambda \lambda=4 / 3 \end{gathered}$
CC	spin 1	spin 0
$\stackrel{\text { ud }}{\text { isospin } 0}$	$\left[\begin{array}{c} \text { spin } 0 \\ \mathrm{cmi}=-8 \end{array}\right.$	$\begin{aligned} & \text { spin } 1 \\ & \text { cmi }=-4 / 3 \end{aligned}$
ud isospin 1	$\begin{aligned} & \text { spin } 7 \\ & \text { cmi=8/3 } \end{aligned}$	spin 0 $\mathrm{cmi}=4$

- if the flavor of $q_{1} \neq q_{3}$, e.g. $b \bar{u} c \bar{d}$, more $\nu=4 / 3$ attractive states

(c) $q \bar{c} q \bar{c}$ interaction

Assumptions:

$$
V_{i j}^{q \alpha}\left(r, r^{\prime}\right)=\left(\lambda_{i}, \lambda_{j}\right)\left(\sigma_{i}, \sigma_{j}\right) c_{0 s}^{\alpha}\left\langle r_{i j} \mid 0 s\right\rangle\left\langle 0 s \mid r_{i j}^{\prime}\right\rangle
$$

- potential between two quarks with relative ($0 s$).
- proportional to $\lambda \cdot \lambda \sigma \cdot \sigma$
- $c_{0 \ell}^{\alpha}$'s are obtained from each $u \bar{u}, c \bar{c}, u \bar{c}$ meson mass diff. $c_{0 s}^{\sigma \sigma}$ from $\eta_{c}, J / \psi, D, D^{*}$ mass diff. $c_{0 s}^{\sigma \sigma}(u d)$ is from $\Delta \mathrm{N}$ mass diff.

Two free parameters:

- quark mass ratio $m_{q} / m_{\bar{q}}$.
- scaled size of mesons, $x_{0}^{2}=m b^{2}=\omega_{0}^{-1}$
$x_{0} \sim 0.63-0.76 \mathrm{fm}^{1 / 2}$
for nucleon charge rms $\sqrt{\left\langle r^{2}\right\rangle} \sim b=0.5-0.6 \mathrm{fm}$
and the excitation energy $\omega_{0} \sim 350-500 \mathrm{MeV}$

Dynamical calculation

Potential to give the S-factor effects has a node, so the dynamical calculation is necessary (especially those with the short range attraction).

- $H_{h}=H_{0}+V_{K}+V_{C S}$

$$
\begin{array}{ll}
V_{K}=(\sqrt{\nu}-1)(|0 s\rangle\langle 1 s|+|1 s\rangle\langle 0 s|) \frac{\sqrt{6}}{2} \hbar \omega & \cdots \text { (a)Pauli (b) Many-body } \\
V_{C S}=c_{0 s}(\lambda \cdot \lambda)(\sigma \cdot \sigma)|0 s\rangle\langle 0 s| & \cdots \text { (c) CMI }
\end{array}
$$

- 3-channel calculation : $D^{0} D^{*+}, D^{+} D^{* 0}, D^{*+} D^{* 0}$ (all S-wave)
- Results
- no bound state $T_{c c} I\left(J^{P}\right)=0\left(1^{+}\right)$ needs OPEP? ...
- a bound state for $T_{b b} I\left(J^{P}\right)=0\left(1^{+}\right)$with a BE of 51-77 $\mathrm{MeV}\left(x_{0}=0.6-0.7\right)$, with ~ 0.2 of the $B^{*} B^{*}$ component.

charnntonottonn

As the mass of charm goes to the mass of bottom...

The quark effects are attractive.

Summary and Outlook

- We study the effects of the quark Pauli-blocking effects and the quark many-body effects in the multiquark systems.
- They can be expressed by the non-local potential with Os-1s mixing. For compact states, the effects are small, but scattering states, the effects can be very large.
- For example, they explain the attraction of H, d*.
- In some of the multiquark systems, like $T_{Q Q}$, there are color-spin-attractive, and S-factor repulsive configuration, and vice versa.
- $T_{Q Q}$'s are interesting. By introducing OPEP, and studying the decay or production, we can construct comprehensive picture of the exotic states ...

