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Demonstrating the usage of RG in PT

The main idea of using the RG to our advantage in PT can be
shown in a demonstrating example as follows:

Let a physical quantity be given by exact expression

f (x) =
x

1 − ℏx
,

where x is a parameter and ℏ controls the quantum corrections.

Suppose for whatever reason we calculate this quantity in PT
order-by-order using a power series expansion.

If |x | < 1 we can expand f (x) in Taylor series around x = 0 and
approximate the exact function by the sum of first N terms

f (x) ≈ SN = x + ℏx2 + ℏ2x3 + · · ·+ ℏN−1xN .



For |x | > 1 our expansion leads to a divergent series. In this case
we can try an alternative way by rewriting f (x) identically and
expanding in a different way:

f (x) =
x

1 − ℏx
≡ x

1 − ℏµx − ℏx(1 − µ)

=
1

1 − µ

xµ
1 − ℏxµ

=
xµ

1 − µ

(
1 + ℏxµ + ℏ2x2

µ + · · ·
)
,

where xµ = x(1 − µ)/(1 − ℏµx).

The exact expression of f (x) is µ-independent, however the sum of
any finite number of terms depends on µ.

While formally this dependence is of higher order ∼ ℏN+1 for the
sum of the first N terms, the convergence of the series crucially
depends on the choice of µ.

For example, for x = 2 this series converges only if µ > 3/4, the
convergence being best close to µ = 1.



RG and LS equation
Consider an integral equation:

T (p′,p) = V (p′,p) +
∫ ∞

0
dkV (p′, k)G(k)T (k ,p) . (1)

Realization of RG a la Wilson: Modify the equation and the potential
without changing T (p′,p):

T (p′,p) = Ṽ (p′,p,Λ) +
∫ ∞

0
dk Ṽ (p′, k ,Λ)G(k)f (Λ, k)T (k ,p) . (2)

The solutions of the original and modified equations are identical for
any choice of Λ provided that Ṽ (p′,p,Λ) satisfies RG equation.

In PT the sum of any finite number of terms depends on Λ.

One chooses such values of the scale parameter which lead to
optimal convergence of perturbative series.

If perturbative expressions were (approximately) RG invariant, then
the RG in this context would be useless.



Chiral EFT for P-wave halo states and RG
C.A. Bertulani, H.-W. Hammer, U. Van Kolck, Nucl.Phys. A712, 37-58
(2002) .

Consider two non-relativistic particles with range of interaction
R ∼ 1/Mhi.

ERE for the orbital angular momentum l :

T (k) ∝ 1
k cot δ − ik

≃ k2l(
−1/a + 1/2 r k2 + v2k4 + . . .

)
− ik2l+1 ,

where a, r and vi are the scattering length, effective range and the
shape parameters.

If k2l+1 cot δ does not have poles for small k , the coefficients in the
ERE starting from r are expected to be natural
r ∼ M2l−1

hi , v2 ∼ M2l−3
hi , ... etc.,

while the scattering length a can take any value.

We consider the EFT for P-waves for momenta k ∼ Mlo ≪ Mhi.



We are interested in fine-tuned systems, for which the scattering
amplitude has poles located within the validity range of the EFT.

Assume that the first two terms in the ERE are fine tuned as

1/a ∼ M3
lo , r ∼ Mlo , vn ∼ M3−2n

hi . (3)

In low-energy EFT with contact interactions only the two
lowest-order contact interactions in the effective potential

V = C2 p′p + C4 p′p
(

p′2 + p2
)
+ . . . , (4)

need to be iterated in the LS equation to all orders.
p ≡ |p⃗ | and p′ ≡ |p⃗ ′| refer to the initial and final momenta of the
particles in the center-of-mass system,



We solve

T (p′,p) = V (p′,p) + m
∫ Λ

0

l2dl
2π2

V (p, l) T (l ,p′)

k2 − l2 + i ϵ
, (5)

and obtain for the on-shell amplitude T (k) ≡ T (k , k):

k2

T (k)
= −I(k) k2 − I3 +

(C4I5 − 1) 2

C4
(
k2 (2 − C4I5) + C4I7

)
+ C2

. (6)

where the integrals In and I(k) are defined via

In = −m
∫ Λ

0

l2dl
2π2 ln−3, n = 1,3,5, . . . ,

I(k) =

∫ Λ

0

l2dl
2π2

m
k2 − l2 + iϵ

. (7)

Renormalization and RG can be implemented a la Gell-Mann and
Low or a la Wilson.



Subtractive renormalization

We renormalize the amplitude by applying BPHZ procedure, i.e.
subtracting all UV divergences prior to taking the limit Λ → ∞.

Specifically, we first separate out power-like UV divergences in the
appearing integrals in the most general way via

In = −m
∫ µn

0

l2dl
2π2 ln−3 − m

∫ Λ

µn

l2dl
2π2 ln−3 ≡ IR

n (µn) + ∆n(µn) ,

with n = 1,3,5, . . . ,
I(k) ≡ IR(k , µ1)−∆1(µ1) ,

where µn denote the corresponding subtraction scales.

We renormalize the amplitude by replacing the integrals In and I(k)
with IR

n (µn) and IR(k , µ1) and the bare couplings C2 and C4 by the
corresponding µn-dependent renormalized couplings CR

2 and CR
4 .



Since the renormalized amplitude depends only on UV-convergent
integrals, we can now safely take the limit Λ → ∞.

Fixing the renormalized LECs by the requirement to reproduce a
and r leads to our final result:

k3 cot δ = −1
a
+

1
2

rk2 − 3k4

2π
(4µ1 + πr) 2

6πa−1 − 4µ3
3 + 3k2(4µ1 + πr)

.

The renormalized scattering amplitude depends on µ1 and µ3.

The choice of µi plays a key role in setting up a self-consistent
power counting.



For the resonant P -wave scattering the choice of renormalization
conditions is rather delicate due to the strong fine tuning.

Indeed, one must choose µ3 ∼ Mhi since setting µ3 ∼ Mlo would
lead to poles in the effective range function located at k ∼ Mlo,
thereby resulting in enhanced values of the coefficients in the ERE.

Consequently, no KSW-like scheme is possible for resonant P-wave
systems under consideration.

A self-consistent Weinberg-like scheme with manifest power
counting for renormalized loop diagrams and all LECs scaling
according to NDA emerges if we set µ5 ∼ µ7 ∼ µ9 ∼ . . . ∼ Mlo.
The scale µ1 can be chosen either as µ1 ∼ Mhi or µ1 ∼ Mlo.



Wilsonian RG with two cutoffs

Using the approach of
E. Epelbaum, J. Gegelia and U. G. Meißner, Commun. Theor. Phys. 69,
no.3, 303 (2018)
we rewrite the potential as

V = (C2 + 2C4k2)pp′ + C4pp′(p2 − k2 + p′2 − k2) ,

and introduce two cutoffs via

V = (C2 + 2C4k2)pp′θ(Λ1 − p)θ(Λ1 − p′)

+ C4pp′θ(Λ1 − p)θ(Λ1 − p′)

×
[
(p2 − k2)θ(Λ2 − p) + (p′2 − k2)θ(Λ2 − p′)

]
,

where it is implied that Λ1 ≥ Λ2.



This potential can be represented in a separable form:

V =
(

p′θ(Λ1 − p′), p′(p′2 − k2)θ(Λ2 − p′)
)

×
(

C2 + 2C4k2, C4
C4, 0

)(
pθ(Λ1 − p)

p(p2 − k2)θ(Λ2 − p)

)
,

and therefore the corresponding LS equation for the scattering
amplitude can be straightforwardly solved analytically.



Matching the solution to the ERE we fix the LECs C2 und C4:

C2 =
1

350mπ2(3π − 2aΛ3
1)

{
75C2

4m2πΛ7
2 + a

[
4200π4

+840C4mπ2Λ5
2 + 2C2

4m2Λ7
2(21Λ3

2 − 25Λ3
1)
]
,

C4 =
10

√
5π2(3π − 2aΛ3

1)
2

mΛ5
2

√
(3π − 2aΛ3

1)
2 α(Λ1,Λ2)

− 10π2

mΛ5
2

}
.

The LECs C2 and C4 must be real, therefore the argument of the
square root has to be non-negative.

This leads to the condition

α(Λ1,Λ2) ≡ 45π2 + 4a2Λ1(5Λ5
1 − 9Λ5

2)− 3aπ(20Λ3
1 + 3arΛ5

2) ≥ 0 .



For two independent cutoffs Λ1 and Λ2, the condition that α(Λ1,Λ2)
has to be non-negative can be satisfied for any values of a and r .

To check the convergence of the ERE we subtract − 1
a + 1

2 r k2 from
the calculated expression of k cot δ and obtain the remainder:

SRest =
k3

2π

(
− 3ak(πr + 4Λ1)

2

3π(2 + ak2r)− 4aΛ1(Λ
2
1 − 3k2)

− 2 ln
Λ1 − k
Λ1 + k

)
.

The second term in the bracket has a convergent expansion in k2 for
Λ1 ≫ k and the expansion of the first term converges if

−1 <
3 (π r + 4Λ1)

6π/a − 4Λ3
1

k2 < 1 .

By taking sufficiently large Λ1 this condition can always be fulfilled.
For considered system this amounts to taking Λ1 ∼ Mhi or larger.

By taking Λ1 ∼ Mhi and Λ2 ∼ Mlo, we find that C2 ∼ 1/(mM3
hi) and

C4 ∼ 1/(mM5
hi), i.e. both are of natural size.



For Λ1 = Λ2 = Λ we have

α(Λ,Λ) = 45π2 − 16a2Λ6 − 9πa2rΛ5 − 60πaΛ3 ,

which turns negative for sufficiently large Λ values and, therefore,
the LECs C2 and C4 become complex.

For our system the cutoff Λ cannot be taken larger than ∼ Mlo.
This observation is in line with the causality bound
r ≤ −2/R (1 +O(R3/a)) obtained in

H. W. Hammer and D. Lee, Annals Phys. 325, 2212-2233 (2010).

if the range of the interaction R is identified with 1/Λ.

Renormalization versus "peratization":
E. Epelbaum and J. Gegelia, “Regularization, renormalization and
’peratization’ in effective field theory for two nucleons,” Eur. Phys. J. A 41,
341-354 (2009)



Summary

▶ The presence of shallow P-wave states demands resummation
of two contact interactions C2p′p and C4p′p(p′2 + p2) in halo
EFTs.

▶ Expressing the bare LECs C2(Λ) and C4(Λ) in terms of a and r ,
we found no real LECs if Λ ∼ Mhi or larger.

▶ We have renormalized the amplitude using BPHZ scheme.
The residual dependence of the amplitude on renormalization
scales µi appears beyond the actual order of the calculation.

▶ Wilsonian approach with multiple cutoffs leads to the results
equivalent to the ones of the subtractive renormalization.


