Study of Three-Nucleon Dynamics in the dp breakup collisions using the WASA detector at COSY-Jülich

Barbara Kłos for Wasa-at-Cosy Collaboration Institute of Physics, University of Silesia

Motivation for studies of $d+p \rightarrow p+p+n$

- Theoretical calculations in relativistic approach with three nucleon force (3NF) included are available
- Investigations at relatively high energies are important to confirm theoretical predictions for relativistic effects and to unambiguously fix a relevance of the 3NF.
- Cross sections for the deuteron breakup in d+p system at medium and higher energy region are expected to be very sensitive to relativistic and three nucleon force effects.

Relativistic Effects in the Cross Section

first calculations available for N+d breakup @ 200 MeV
R. Skibiński, Eur. Phys. J. A 30, 369, (2006)

Breakup Reaction Kinematics $d+p \longrightarrow p+p+n$

- Three nucleons in the final state - 9 variables
- Energy-momentum conservation - 4 equations
\rightarrow Five independent kinematical variables
\checkmark Complete (exclusive) exp. - measured ≥ 5
\checkmark Inclusive exp. - measured ≤ 4 parameters $\quad \Theta_{1}=15^{\circ}, \varphi_{12}=90^{\circ}$
${ }^{1} \mathrm{H}(\mathrm{d}, \mathrm{pp}) \mathrm{n}$ measured: directions and energies of two protons, i.e. $\theta_{1}, \varphi_{1}, \mathrm{E}_{1}$ $\theta_{2}, \varphi_{2}, \mathrm{E}_{2}$

Experiment WASA 214

p(d,pp)n measurement @ WASA detector WASA (Wide Angular Shower Apparatus) at COSY, FZ-Jülich (Germany)

Experimental conditions:

* unpolarized deuterons
* energies of $340,380,400 \mathrm{MeV}$ in supercycle mode, 300 MeV separetely
* pellet H_{2} target
* determination of energies and emission angles of both protons
* simultaneous measurement of the d-p elastic scattering channel
- absolute cross section normalization
- geometry checks

Experimental setup

Pellet target system: protons, deuterons

Pellet diameter: $25-35 \mu \mathrm{~m}$
Rate in beam: $5-6 \mathrm{kHz}$
Effective target density: $10^{15} \mathrm{~cm}^{-2}$
Beam diameter:2-4 mm

Central Detector

Angular acceptance $20^{\circ}-169^{\circ}$
Neutral and charged particles
Energies y up to 800 MeV
Energy resolution: ~8\%
Momenta of electrons $20-600 \mathrm{MeV} / \mathrm{c}$
Energy resolution: ~2\%
Momenta of protons $200-800 \mathrm{MeV} / \mathrm{c}$
Energy resolution: ~6\%

Schematic view of the detection system

Forward Detector

Angular acceptance $3^{\circ}-18^{\circ}$
Angle resolution 0.2°
Maximum kinetic energy: protons
(300MeV), deuterons(400MeV)
Energy resolution:3-8\%
Particle identification $\Delta \mathrm{E}-\mathrm{E}$

Data Analysis

Event Selection and Particle Identification in the Forward Detector

Example of the $\Delta E-E$ identification spectrum in the Forward Detector.

- condition: track finished in the FRH3 layer (no signal in the FRH4 layer);
- punch-through corresponds to particles stopped in the additional material layer between FRH3 and FRH4; energy has to be corrected.

Data Analysis (340 MeV)

Missing mass

$$
\begin{array}{r}
M M=\sqrt{\left(E_{i n}-E_{p 1}-E_{p 2}\right)^{2}-\left(P_{i n}-P_{p 1}-P_{p 2}\right)^{2}} \\
c=1
\end{array}
$$

Breakup Reaction Kinematics

$\mathrm{d}+\mathrm{p} \rightarrow \mathrm{p}+\mathrm{p}+\mathrm{n}$

Data Analysis (340 MeV) Selection of events and background subtraction

The $\mathrm{E}_{2}-\mathrm{E}_{1}$ coincidence spectrum of the two protons registred in one chosen kinematical configuration.
The solid line shows a three-body kinematical curve, calculated for the central values of the experimental angular ranges.

Barbara Kłos for Wasa-at-Cosy Collaboration, University of Silesia

An example of S distribution of the rate of breakup events obtained for the chosen

Transformation of E_{2} vs E_{1} spectrum to S (arclength) vs D (distance from kinematics)
 kinematical configuration

Data Analysis (340 MeV)

Selection of deuterons registered in FD; Luminosity

Luminosity

$$
L=\frac{N_{e l}\left(\theta_{d}\right)}{\sigma_{L A B}^{e l}\left(\theta_{d}\right) \Delta \Omega_{d} \epsilon^{e l}\left(\theta_{d}\right)}
$$

$N_{e l}$ - number of elast. scatt. deuterons $\sigma_{L A B}^{e l}\left(\theta_{d}\right)$ - elast. scatt. cross section
$\Delta \Omega_{d}=2 \pi \Delta \theta_{d} \sin \theta_{d,}$ - solid angle
$\epsilon^{e l}\left(\theta_{d}\right)$ - efficiency of deuteron detection ($\sim 80 \%$)

Sources of systematic uncertainty:

- spread of data used for normalization
- contribution of proton background

Data Analysis (340 MeV)

Luminosity, reference cross section $\sigma_{L A B}^{e l}\left(\theta_{d}\right)$ for elastic scattering

1. exp. data (K. Ermisch et al., Phys. Rev. C 68, 051001(R) (2003).), irregularities
2. comparison of experimental data with theoretical calculation (data sets between 108 and 200 MeV): scatter and deficiency of calculations at the cross section minimum

Dependence of cross section on beam energy at each polar angle (out of minimum) was studied

Experimental and theoretical energy dependence of the elastic scattering cross section a given $\Theta_{C M}^{p}$ angle in the CM system in a function of incident beam energy. The solid and dashed lines present functions fitted to points obtained from theoretical calculations and the data, respectively. Triangle and squares were determined from pd elastic scattering experiments.
the cross section $\sigma_{L A B}^{e l}\left(\theta_{d}\right)$

1. Calculations
2. Measurement at 170 MeV
3. Polynomial fit to other data sets

Data Analysis (340 MeV)

Efficiency of the detection system for proton-proton coincidences obtained for each kinematical configuration $\left(\theta_{1}, \theta_{2}, \varphi_{12}\right)$ using MC simulation.

Barbara Kłos for Wasa-at-Cosy Collaboration,
University of Silesia

Data Analysis (340 MeV)

Differential cross sections (189 configurations $\equiv 5600$ data points) θ_{1} and θ_{2} in the range $\left(5^{\circ}, 15^{\circ}\right)$ with the step 2° i $\varphi_{12}\left(20^{\circ}, 180^{\circ}\right)$ with the step 20°

$$
\frac{d^{5} \sigma\left(S, \Omega_{1}, \Omega_{2}\right)}{d \Omega_{1} d \Omega_{2} d S}=\frac{N_{b r}\left(S, \Omega_{1}, \Omega_{2}\right)}{L \Delta \Omega_{1} \Delta \Omega_{2} \Delta S \epsilon^{b r}\left(S, \Omega_{1}, \Omega_{2}\right)}
$$

$N_{b r}$ number of breakup coincidences registred at the angles Ω_{1}, Ω_{2} and projected onto a $\Delta \mathrm{S}$-wide arclength bin,
$\Delta \Omega_{\mathrm{i}}$ solid angle,
L luminosity,
$\varepsilon^{\mathrm{br}}$ efficiencies determined for each angular configuration.

Barbara Kłos for Wasa-at-Cosy Collaboration,
University of Silesia

Differential cross section

- data set for one combination of proton polar angles; large Coulomb effects observed

Barbara Kłos for Wasa-at-Cosy Collaboration,
University of Silesia
χ^{2} Analysis (340 MeV)

$$
\chi^{2}=\frac{1}{n_{\text {d.o.f. }}} \sum \frac{\left(\sigma_{\text {theo }}(\xi)-\sigma_{\text {exp }}(\xi)\right)^{2}}{\left(\Delta \sigma_{\text {stat }}(\xi)+\Delta \sigma_{s y s}(\xi)\right)^{2}}
$$

Coulomb Effects are important
χ^{2} Analysis $(340 \mathrm{MeV})$

$$
\zeta=\left(\theta_{1}, \theta_{2}, \varphi_{12}, S\right)
$$

$\Delta \sigma_{\text {stat }}, \Delta \sigma_{s y s}$

$$
\begin{aligned}
& \sigma_{\exp }, \sigma_{\text {theo }} \\
& n_{d . o . f}
\end{aligned}
$$

set of kinematic variables statistical and systematical uncertainties cross section data and various calculations number of data points

Predicted relativistic effects reduce cross section values in this region.

Barbara Kłos for Wasa-at-Cosy Collaboration, University of Silesia

Differential cross section (340 MeV) Specific examples

Data Analysis (38o MeV)

Luminosity

Barbara Kłos for Wasa-at-Cosy Collaboration, University of Silesia

Sources of systematic uncertainty:

- range of data integration

Source of normalization
__ experiment

- CDB+TM99
- CDB $+\Delta+\mathrm{C}$
$-\quad 2.640 \times 10^{7} \mathrm{mb}^{-1}$
- $\quad 2.836 \times 10^{7} \mathrm{mb}^{-1}$
- $\quad 3.081 \times 10^{7} \mathrm{mb}^{-1}$
- (experimental points) K. Ermisch et al., Phys. Rev. C 68, 051001(R) (2003).

Differential cross sections at 380 MeV

In all the 189 studied configurations, data points are systematically above all the theories. Most likely, we are observing a normalization problem.
This problem is investigated in two ways:

- luminosity is obtained on the basis of elastic scattering cross section calculated in the $C D B+\Delta+C$ approach;
- common correction factor is introduced to provide the best agreement of the data with the $C D B+\Delta+C$ calculations for the breakup reaction.

Chi-squared analysis (380 MeV)
the same scale

The χ^{2} results obtained for all angular configuration separately in a logarathmic scale for theoretical model CDB $+\Delta+C$ (Deltuva).

luminosity is obtained on the basis of elastic scattering cross section

1. experiment (Ermisch)
2. calculated in the CDB $+\Delta+C$ approach

3 The best global x^{2} obtained for a factor of 0.66
Barbara Kłos for Wasa-at-Cosy Collaboration,
University of Silesia

Specific examples (comparison between energies)

$\Theta_{1}=5^{\circ}, \theta_{2}=5^{\circ}, \varphi_{12}=60^{\circ} \begin{aligned} & \text { Experimental data } \\ & \text { for } 380 \mathrm{MeV}\end{aligned}$

- normalized to theory
- corrected by 0.66

$\Theta_{1}=5^{\circ}, \theta_{2}=9^{\circ}, \varphi_{12}=120^{\circ}$

$$
\Theta_{1}=15^{\circ}, \theta_{2}=15^{\circ}, \varphi_{12}=100^{\circ}
$$

$$
\Theta_{1}=15^{\circ}, \theta_{2}=15^{\circ}, \varphi_{12}=180^{\circ}
$$

Barbara Kłos for Wasa-at-Cosy Collaboration, University of Silesia

Results (340 and 380 MeV, Forward Detector)

- Coulomb force plays an important role (the lowest effect is observed at $\varphi_{12}=100^{\circ}$),
- the 3NF effects are predicted to be small at forward angles,
- at certain configurations, in particular $\theta_{1}=5^{\circ}, \theta_{2}=5^{\circ}, \varphi_{12}=60^{\circ}$, an interplay of 3 NF effects, Coulomb force and relativistic effects can be observed (at 340 MeV),
- at $\theta \geq 13^{\circ}$ and/or $\varphi_{12} \geq 140^{\circ}$ all the calculations systematically underestimate the experimental data. The discrepancy is even increased by relativistic calculations. Is it due to missing large 3NF contribution?

Study of Three-Nucleon Dynamics in the dp breakup collisions using the WASA detector at COSY-Jülich

University of Silesia, Katowice, Poland

Jagiellonian University, Kraków, Poland

University of Warsaw , Warszawa, Poland

Institute of Nuclear Physics PAN, Kraków, Poland

JJÜLICH Forschungszentrum Juelich, Germany
WASA@COSY Collaboration

Data Analysis (380MeV)

Selection of events and background subtraction

Missing mass

Data Analysis (38o MeV)

Efficiency of the detection system for proton-proton coincidences obtained for each kinematical configuration $\left(\theta_{1}, \theta_{2}, \varphi_{12}\right)$ using MC

General information of d-p experiment @Wasa

deuteron beam energy	$300,340,380,400 \mathrm{MeV}$
reaction channels	$\mathrm{dp} \rightarrow \mathrm{dp}$ $\mathrm{dp} \rightarrow \mathrm{ppn}$
$\mathrm{dp} \rightarrow{ }^{3} \mathrm{He}+\mathrm{y}$	
$\mathrm{dp} \rightarrow \mathrm{dp} \mathrm{Y}$	

Elastic scattering data for cross sections normalization

elastic $\mathrm{p}+\mathrm{d}$:
@198 MeV (Adelberger)
stat.err.~3\%
@170, @190 MeV
(Ermish, Mardanpour)
stat.err. ~3\%
syst.err.~7\%

K. Ermish, Phys. Rev. C 68, 051001, (2003)
R.E. Adelberger, Phys. Rev. D 5, 2139 (1972)
H. Mardanpour, Ph.D. Thesis, 2008

Cross section data \& calculations for elastic scattering at the energies near 340 MeV (170MeV/nucleon)

Experimental differential cross section of the reaction ${ }^{2} \mathrm{H}(\mathrm{p}, \mathrm{dp})$ in the center of mass (CM) system in angular range of FD, at the incident-beam energies: 108, 120, 150, 170, 190 MeV [Erm03], 155 MeV [Kur64] and 200 MeV [Ade72, Roh98] Tje lines show the result of the theoretical calculations with th CD Bonn potential and the TM99 3NF

Angular distribution of the elastic scattering cross section in the CM system. Red dots represent the measured crosssection values for elastic scattering at $170 \mathrm{MeV}([\operatorname{Erm} 03])$. The solid lines show the results of the theoretical calculations with the CDBonn potential and the TM99 3NF as well as coupled-channel calculation with CD Bonn $+\Delta$ and Coulomb force included ($\mathrm{CDB}+\Delta+\mathrm{C}$).

Determination of luminosity

Experimental and theoretical energy dependence of the elastic scattering cross section a given $\Theta_{C M}^{p}$ angle in the CM system in a function of incident beam energy . The solid and dashed lines present functions fitted to points obtained from theoretical calculations and the data, respectively. Triangle and squares were determined from pd elastic scattering experiments,

Selection of elastic scattering events

Contribution of proton background

Energy spectra of elastically scattered deuterons registred for the chosen angles. The experimental data are compared to MC simulation. The green represents protons „leeking through" the deuterons cuts in the MC simulation of the dp breakup reaction. The lines are arbitrary normalized

Elastic scattering data for cross sections normalization

120
elastic $\mathrm{p}+\mathrm{d}$:
@198 MeV (Adelberger) stat.err.~3\%
@170, @190 MeV
(Ermish, Mardanpour)
stat.err. ~3\%
syst.err.~ 7\%

Experimental and theoretical energy dependence of the elastic scattering cross section a given $\Theta_{C M}^{p}$ angle in the CM system in a function of incident beam energy . The solid and dashed lines present functions fitted to points obtained from theoretical calculations and the data, respectively. Triangle and squares were determined from pd elastic scattering experiments,
K. Ermish, Phys. Rev. C 68, 051001, (2003)
R.E. Adelberger, Phys. Rev. D 5, 2139 (1972)
H. Mardanpour, Ph.D. Thesis, 2008

W. Parol et al., Phys. Rev C 102 , 054002 (2020)

80 MeV /nucleon

B.Kłos WASA@COSY, Phys. Rev C 101, 044001
(2020)
$170 \mathrm{MeV} /$ nucleon
H. Witata et al.: $2 \mathrm{~N}, 2 \mathrm{~N}+\mathrm{TM} 99$, CDBrel
A. Deltuva et al.: $\mathrm{CBD}+\Delta+\mathrm{C}, \mathrm{CBD}+\Delta+\mathrm{C}, \mathrm{AV} 18, \mathrm{AV} 18+\mathrm{UIX}, \mathrm{AV} 18+\mathrm{C}, \mathrm{AV} 18+\mathrm{UIX}+\mathrm{C}$

