Influence of discretization error on the HALQCD baryon forces

Takashi Inoue @Nihon Univ. for HALQCD Collaboration

EFB25, Jul 30, 2023, Mainz

Plan

- Introduction
- HALQCD method for multi-hadron systems in LQCD
- Mainz group paper = Motivation of this study
- Purpose: study "a" influence of HALQCD BB int.
- Current status
- Gauge conf. generation at same M_{π} with 3 different " a "
- Study flavor singlet BB interaction and H-dibaryon.
- Summary and outlook

Multi-hadron in LQCD

- Direct : extract eigen-energy from a temporal correlator
- Lüscher's finite volume method for a phase-shift
- Infinite volume extrapolation for a bound state
- HAL : extract a "potential" $V(r)+\ldots$ of interaction

$$
V(\vec{r})=\frac{1}{2 \mu} \frac{\nabla^{2} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}-\frac{\frac{\partial}{\partial t} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}-2 M_{B}
$$

$\psi(\vec{r}, t): \begin{aligned} & \text { 4-point function } \\ & \text { contains NBS w.f. }\end{aligned}$

- and solve the Schrodinger eq.
- Advantages
- No need to separate E eigenstate. Just need to measure
- Then, potential can be extracted.
- Demand a minimal lattice volume. No need to extrapolate to $V=\infty$.
- Can output many observables.

Multi-hadron in LQCD

- Direct : extract eigen-energy from a temporal correlator
- Lüscher's finite volume method for a phase-shift
- Infinite volume extrapolation for a bound state
- HAL : extract a "potential" $V(r)+\ldots$ of interaction

$$
V(\vec{r})=\frac{1}{2 \mu} \frac{\nabla^{2} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}-\frac{\frac{\partial}{\partial t} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}-2 M_{B} \quad \psi(\vec{r}, t): \begin{gathered}
\text { 4-point function } \\
\text { contains NBS w.f. }
\end{gathered}
$$

- and solve the Schrodinger eq.
- Advantages
- No need to separate E eigenstate. Just need to measure $\psi(\vec{r}, t)$
- Then, potential can be extracted.
- Demand a minimal lattice volume. No need to extrapolate to $V=\infty$.
- Can output more observables.

Most demonstrating case

- Left: Measured 4 pt of the flavor singlet $B B^{1} \mathrm{~S}_{0}$ channel
- The peaking value at short distance is a bound state contribution
- The constant value at large distance is a scattering state contr.
- Difficult (impossible) to suppress the scattering contribution
- Right: Extracted potential of the channel
- independent of the sink-time t after t _Hadron

H-dibaryon

T. I. etal [HALQCD collaboration] Phys. Rev. Lett. 106162002 (2011)
Nucl. Phys. A881, 28 (2012)

- Left: Flavor singlet BB potential at five quark mass
- Right: the ground state from the potential
- which is $20-50[\mathrm{MeV}]$ below the threshold
- A stable(bound) H-dibaryon exists in these SU(3)F sym. world!

Mainz group paper 2021

J. R. Green, A. D. Hanlon, P. M. Junnarkar and H. Wittig,

Phys. Rev. Lett. 127, 242003 (2021)

- Flavor singlet $B B^{1}{ }^{1}$ o sector in LQCD numerical calculation
- At a flavor $\operatorname{SU}(3)$ limit with $M \pi=M \kappa \simeq 420[\mathrm{MeV}]$,
- Lüschers' finite volume method w/ energy levels extracted with a variational method
- Lattice w/ six $a=0.10-0.05$ [fm] , $L=3.1-2.1$ [fm]
- They clame strong " a " dependence of observables.

At the continum limit $B_{H}=4.56 \pm 1.13 \pm 0.63[\mathrm{MeV}]$

Purpose

- We were surprised by the Mainz group result.
- We study influence of " a " on HALQCD BB interactions by performing comptation on finer lattice than before but with large box enough to accommodate $B B$.
- Use Fugaku supercomputer at R-CCS

Plan

- Introduction
- HALQCD method for multi-hadron systems in LQCD
- Mainz group paper = Motivation of this study
- Purpose: study " a " influence of HALQCD BB int.
- Current status
- Gauge conf. generation at same M_{π} with 3 different " a "
- Study flavor singlet BB interaction and H-dibaryon.
- Summary and outlook

Gauge conf. generation

- Actions

- renormalization-group improved gauge action

 - non-perturbatively $\mathrm{O}(\mathrm{a})$ improved clover quark action- from www.jldg.org/ildg-data/CPPACS+JLQCDconfig.html
- $\beta=1.83$, Kuds=0.13760, Csw=1.761 ($a=0.1209(16) \mathrm{fm}$)
- $\beta=1.90$, Kuds=0.13640, Csw=1.715 ($a=0.0982(19) \mathrm{fm}$) 1.9%
- $\beta=2.05$, Kuds=0.13540, Csw=1.628 ($a=0.0685(26) \mathrm{fm}){ }^{3.8 \%}$

K-input

- Lattice
- $\beta=1.83$: $32^{3} \times 32$ Lattice, $4 \times 4 \times 4 \times 1 \mathrm{MPI}$
same as 10 years ago
$-\beta=1.90: 48^{3} \times 48$ Lattice, $8 \times 6 \times 4 \times 1 \mathrm{MPI}$
- $\beta=2.05$: $64^{3} \times 64$ Lattice, $8 \times 8 \times 8 \times 1 \mathrm{MPI}$
- Bigger than their lattice chosen so that $L \simeq 4$ [fm]
- Quark mass
- Tune parameter κ so that three $М \pi$ agree.

$M_{\text {eff }}$ with systematic error of a

Flavor singlet $B B$ potential

Flavor singlet $B B$ potential

- Statistic error only.
- In ∇^{2} part, change is limited at very short distance. It is reasonable as " a " infulence.
- Important difference comes form the time derivative part.

H-dibaryon

- Binding energy of H -dibaryon from the potential
- $a=0.1209(16): B_{\mathrm{H}}=40.354 \pm 4.045 \pm 2.236 \pm 0.579[\mathrm{MeV}]$
- $a=0.0982(19): B_{\mathrm{H}}=22.893 \pm 3.632 \pm 1.537 \pm 0.805[\mathrm{MeV}]$
- $a=0.0685(26): B_{\mathrm{H}}=14.350 \pm 1.676 \pm 1.445 \pm 1.351[\mathrm{MeV}]$
statistic systematic systematic time slice lattice unit a

H-dibaryon

- Binding energy of H -dibaryon from the potential
- $a=0.1209(16): B_{\mathrm{H}}=40.354 \pm 4.045 \pm 2.236 \pm 0.579[\mathrm{MeV}]$
- $a=0.0982(19): B_{\mathrm{H}}=22.893 \pm 3.632 \pm 1.537 \pm 0.805[\mathrm{MeV}]$
- $a=0.0685(26): B_{\mathrm{H}}=14.350 \pm 1.676 \pm 1.445 \pm 1.351[\mathrm{MeV}]$ $\begin{array}{lll}\text { statistic } & \text { systematic } & \text { systematic } \\ & \text { time slice } & \text { lattice unit } a\end{array}$ time slice lattice unit a

- Bн become smaller as "a" decrease...
- The trend is consistent with the Mainz result.
- The cause is not understood well at this moment.
- Probably, the action we use is not enough for the present purpose.

Summary and outlook

- Background, motivation and pupose
- Motivation: Mainz group paper
- Purpose: Study " a " influence of HALQCD BB int.
- Current status
- Generate gauge conf. at the same $M \pi$ with 3 different " a ".
- Measure $B B 4$ pt functions and extract $B B$ interaction potentials.
- Through $V^{1}(r)$, it seems that B_{H} decrease as " a " decrease.
- This trend agrees with the Mainz paper result.
- (may suggest an alert common to LQCD studies on multi-hadron)
- Need to study more.
- Is this real ot not? How about in other sectors? $8 \times 8=27+8 s+1$
-What is the cause? Any prescriptions? $+10 *+10+8 a$
- Same quark mass point? We'll tune Kuds again respecting $M \pi / M \rho$.
- We need more accuate " a ". We may determine it by ourselves.
- We may need to develop better action.

Thank you for your attention

Multi-hadron in LQCD

- Direct : utilize eigen-energy from a temporal correlator
- Lüscher's finite volume method for a phase-shift
- Infinite volume extrapolation for a bound state
- HAL : utilize a potential $V(r)+\ldots$ of interaction

$$
V(\vec{r})=\frac{1}{2 \mu} \frac{\nabla^{2} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}-\frac{\frac{\partial}{\partial t} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}-2 M_{B} \quad \begin{array}{r}
\psi(\vec{r}, t): \text { 4-point function } \\
\text { contains NBS w.f. }
\end{array}
$$

- Advantages
- No need to separate E eigenstate. Just need to measure $\psi(\vec{r}, t)$
- Then, potential can be extracted.
- Demand a minimal lattice volume. No need to extrapolate to $V=\infty$.
- Can output many observables.

Multi-hadron in LQCD

- Direct : utilize eigen-energy from a temporal correlator
- Lüscher's finite volume method for a phase-shift
- Infinite volume extrapolation for a bound state
- HAL : utilize a potential $V(r)+\ldots$ of interaction

$$
V(\vec{r})=\frac{1}{2 \mu} \frac{\nabla^{2} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}-\frac{\frac{\partial}{\partial t} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}-2 M_{B} \quad \begin{array}{r}
\psi(\vec{r}, t): \text { 4-point function } \\
\text { contains NBS w.f. }
\end{array}
$$

- Advantages
- No need to separate E eigenstate. Just need to measure $\psi(\vec{r}, t)$
-Then, potential can be extracted.
- Demand a minimal lattice volume. No need to extrapolate to $V=\infty$.
- Can output many observables.

Multi-hadron in LQCD

- Direct : utilize eigen-energy from a temporal correlator
- Lüscher's finite volume method for a phase-shift
- Infinite volume extrapolation for a bound state
- HAL : utilize a potential $V(r)+\ldots$ of interaction

$$
V(\vec{r})=\frac{1}{2 \mu} \frac{\nabla^{2} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}-\frac{\frac{\partial}{\partial t} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}-2 M_{B}
$$

$\psi(\vec{r}, t)$: 4-point function contains NBS w.f.

- Advantages
- No need to separate E eigenstate. Just need to measure $\psi(\vec{r}, t)$
- Then, potential can be extracted.
- Demand a minimal lattice volume. No need to extrapolate to $V=\infty$.
- Can output many observables.

Tuning the paramete Kuds

- Target is the most coarse one $\beta=1.83$, Kuds=0.13760, Csw=1.761

pion	$10-14$	$839.337 \pm 0.476 \pm 11.108$		
rho	$10-14$	$1192.055 \pm 1.089 \pm 15.776$	\quad	
:---:	$M_{\pi} / M_{\rho}=0.704109 \pm 0.000390$			

- Interpolate/Extrapolate $1 / K u d s$ V.s. $M_{\mathrm{pi}}{ }^{2}$

HMC parameters

 for providing and teaching the DDHMC code.- Leapfrog algorithm, dt = 1.0
- NF2 HBHB: $\rho_{1}=0.997, \rho_{2}=0.995$ (Hasenbush, 2 stage)
- NF1 Rational Approximation: [8.5×10-6, 5.0], order 20
- 4 MD depths:
- To handle wide range of strengh of forces.
- Gauge = $1^{\text {st }}, ~ U V(u d)=2^{\text {nd }}$,
- PSF(s), IR(ud), TrLog(ud), and TrLog(s) = $3^{\text {rd }}$
- HB2 and HB1 $=4^{\text {th }}$
- Division of $d t$
- 20224 for $\beta=1.83$
- 25224 for $\beta=1.90$
- 30224 for $\beta=2.05$
- Tuned so that HMC Metropolis acceptance become 70-80 \%.

Hadron mass

- $\beta=1.83$, Kuds=0.13760
systematic from a

pion	$10-14$	$839.337 \pm 0.476 \pm 11.108$
rho	$10-14$	$1192.055 \pm 1.089 \pm 15.776$
proton	$11-14$	$1754.503 \pm 1.752 \pm 23.219$
delta	$11-14$	$1960.525 \pm 3.087 \pm 25.946$

$M_{\pi} / M_{\rho}=0.704109 \pm 0.000390$
$M_{\pi} / M_{\mathrm{N}}=0.478390 \pm 0.000395$

- $\beta=1.90$, Kuds=0.1364707

pion	$17-22$	$839.878 \pm 0.303 \pm 16.250$
rho	$17-22$	$1184.289 \pm 1.753 \pm 22.914$
proton	$18-22$	$1744.635 \pm 4.529 \pm 33.756$
delta	$18-22$	$1955.090 \pm 12.795 \pm 37.828$

- $\beta=2.05$, Kuds=0.1352142

pion	$21-30$	$840.083 \pm 0.911 \pm 31.886$
rho	$21-30$	$1168.348 \pm 2.187 \pm 44.346$
proton	$23-30$	$1715.704 \pm 4.120 \pm 65.122$
delta	$23-30$	$1918.915 \pm 9.335 \pm 72.835$

$M_{\pi} / M_{\rho}=0.709183 \pm 0.000869$
$M_{\pi} / M_{\mathrm{N}}=0.481406 \pm 0.001137$
$\mathrm{M} \rho, \mathrm{M} N$, and $\mathrm{M} \Delta$ agree to $\beta=1.83$ with the large systematic error
$M_{\pi} / M_{\rho}=0.719035 \pm 0.000702$
$M_{\pi} / M_{\mathrm{N}}=0.489643 \pm 0.000857$

Flavor-Singlet BB potential

- Statistic error only.
- $V^{1}(r)$ become singular as "a" decrease i.e.
- deeper at the origing
- and narrower.

Potential comparison by parts

- Statistic error only.
- In ∇^{2} part, change is limited at very short distance. It is reasonable as " a " infulence.
- Important difference comes form the time derivative part.

Wave functions

- Left: Resulting H-dibaryon w.f. from the potential $V^{1}(r)$.
- We see that the w.f. spreads as "a" decrease.
- Right: Measured 4-point fouction in flavor singlet $B B$.
- (Is the above feature seen in the original LQCD data too?)
- (If so, the failure in the analysis is not the couse. But, it is not clear...)

