# Influence of discretization error on the HALQCD baryon forces

#### Takashi Inoue @Nihon Univ. for HALQCD Collaboration



EFB25, Jul 30, 2023, Mainz

## Plan

#### • Introduction

- HALQCD method for multi-hadron systems in LQCD
- Mainz group paper = Motivation of this study
- Purpose: study "*a*" influence of HALQCD *BB* int.
- Current status
  - Gauge conf. generation at same  $M_{\pi}$  with 3 different "a"
  - Study flavor singlet *BB* interaction and H-dibaryon.
- Summary and outlook

N. Ishii etal. Phys. Rev. Lett . 99 022001 (2007) Phys. Lett. B 712 437 (2012)

- Direct : extract eigen-energy from a temporal correlator
  - Lüscher's finite volume method for a phase-shift
  - Infinite volume extrapolation for a bound state
- HAL : extract a "potential" V(r) + ... of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B$$

 $\psi(\vec{r},t)$ : 4-point function contains NBS w.f.

- and solve the Schrodinger eq.
- Advantages
  - No need to separate *E* eigenstate. Just need to measure
  - Then, potential can be extracted.
  - Demand a minimal lattice volume. No need to extrapolate to  $V=\infty$ .
  - Can output many observables.

N. Ishii etal. Phys. Rev. Lett . 99 022001 (2007) Phys. Lett. B 712 437 (2012)

- Direct : extract eigen-energy from a temporal correlator
  - Lüscher's finite volume method for a phase-shift
  - Infinite volume extrapolation for a bound state
- HAL : extract a "potential"  $V(r) + \dots$  of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B \qquad \psi(\vec{r},t): \text{4-point function} \text{ contains NBS w.f.}$$

- and solve the Schrodinger eq.
- Advantages
  - No need to separate *E* eigenstate. Just need to measure  $\psi(\vec{r}, t)$
  - Then, potential can be extracted.
  - Demand a minimal lattice volume. No need to extrapolate to  $V=\infty$ .
  - Can output more observables.



#### Most demonstrating case



- Left: Measured 4pt of the flavor singlet BB <sup>1</sup>S<sub>0</sub> channel
  - The peaking value at short distance is a bound state contribution
  - The constant value at large distance is a scattering state contr.
  - Difficult (impossible) to suppress the scattering contribution
- Right: Extracted potential of the channel
  - independent of the sink-time t after t\_Hadron

# H-dibaryon

T. I. etal [HALQCD collaboration] Phys. Rev. Lett. 106 162002 (2011) Nucl. Phys. A881, 28 (2012)



- Left: Flavor singlet BB potential at five quark mass
- Right: the ground state from the potential
  - which is 20 50 [MeV] below the threshold
  - A stable(bound) H-dibaryon exists in these SU(3)F sym. world!

## Mainz group paper 2021



J. R. Green, A. D. Hanlon, P. M. Junnarkar and H. Wittig, Phys. Rev. Lett. 127, 242003 (2021)

- Flavor singlet BB <sup>1</sup>S<sub>0</sub> sector in LQCD numerical calculation
- At a flavor SU(3) limit with  $M\pi = M\kappa \simeq 420$  [MeV],
- Lüschers' finite volume method w/ energy levels extracted with a variational method
- Lattice w/ six a = 0.10 0.05 [fm], L = 3.1 2.1 [fm]
- They clame strong "*a*" dependence of observables. At the continum limit  $B_{\mu} = 4.56 \pm 1.13 \pm 0.63$  [MeV]

#### Purpose

- We were surprised by the Mainz group result.
- We study influence of "*a*" on HALQCD *BB* interactions by performing comptation on finer lattice than before but with large box enough to accommodate *BB*.
- Use Fugaku supercomputer at R-CCS



## Plan

#### Introduction

- HALQCD method for multi-hadron systems in LQCD
- Mainz group paper = Motivation of this study
- Purpose: study "*a*" influence of HALQCD *BB* int.
- Current status
  - Gauge conf. generation at same  $M_{\pi}$  with 3 different "a"
  - Study flavor singlet *BB* interaction and H-dibaryon.
- Summary and outlook

## Gauge conf. generation

- Actions
   renormalization-group improved gauge action
   non-perturbatively O(a) improved clover quark action
  - from www.jldg.org/ildg-data/CPPACS+JLQCDconfig.html
  - $-\beta$ =1.83, Kuds=0.13760, Csw=1.761 (a=0.1209(16) fm) 1.3%
  - $-\beta$ =1.90, Kuds=0.13640, Csw=1.715 (a=0.0982(19) fm) <sup>1.9%</sup>
  - β=2.05, Kuds=0.13540, Csw=1.628 (a=0.0685(26) fm) <sup>3.8%</sup> K-input

New

- Lattice
  - $\beta$ =1.83 : 32<sup>3</sup>×32 Lattice, 4×4×4×1 MPI  $\leftarrow$  same as 10 years ago
  - $\beta$ =1.90 : 48<sup>3</sup>×48 Lattice, 8×6×4×1 MPI
  - $\beta$ =2.05 : 64<sup>3</sup>×64 Lattice, 8×8×8×1 MPI
  - Bigger than their lattice chosen so that  $L \simeq 4$  [fm]
- Quark mass
  - Tune parameter  $\kappa$  so that three  $M\pi$  agree.

#### *M*<sub>eff</sub> with systematic error of *a*



#### Flavor singlet BB potential



#### Flavor singlet BB potential



- Statistic error only.
- In ∇<sup>2</sup> part, change is limited at very short distance. It is reasonable as "a" infulence.
- Important difference comes form the time derivative part.



# H-dibaryon

- Binding energy of H-dibaryon from the potential
  - a = 0.1209(16) :  $B_{\rm H} = \frac{40.354}{40.354} \pm 4.045 \pm 2.236 \pm 0.579$  [MeV]
  - a = 0.0982(19) :  $B_{\rm H} = \frac{22.893}{\pm 3.632 \pm 1.537 \pm 0.805}$  [MeV]
  - a = 0.0685(26):  $B_{\rm H} = \frac{14.350}{\pm 1.676 \pm 1.445 \pm 1.351}$  [MeV]

statistic systematic systematic time slice lattice unit *a* 

# H-dibaryon

- Binding energy of H-dibaryon from the potential
  - a = 0.1209(16):  $B_{\rm H} = \frac{40.354}{40.354} \pm 4.045 \pm 2.236 \pm 0.579$  [MeV]
  - $a = 0.0982(19) : B_{\rm H} = \frac{22.893}{\pm 3.632 \pm 1.537 \pm 0.805}$  [MeV]
  - a = 0.0685(26):  $B_{\rm H} = \frac{14.350}{\pm 1.676} \pm 1.445 \pm 1.351$  [MeV]

statistic



• *B*<sup>H</sup> become smaller as "*a*" decrease...

systematic

time slice

systematic lattice unit *a* 

- The trend is consistent with the Mainz result.
- The cause is not understood well at this moment.
- Probably, the action we use is not enough for the present purpose.

## Summary and outlook

- Background, motivation and pupose
  - Motivation: Mainz group paper
  - Purpose: Study "*a*" influence of HALQCD *BB* int.
- Current status
  - Generate gauge conf. at the same  $M_{\pi}$  with 3 different "*a*".
  - Measure *BB* 4pt functions and extract *BB* interaction potentials.
  - Through  $V^{1}(r)$ , it seems that  $B_{\rm H}$  decrease as "*a*" decrease.
  - This trend agrees with the Mainz paper result.
  - (may suggest an alert common to LQCD studies on multi-hadron)
- Need to study more.
  - Is this real of not? How about in other sectors?  $8 \times 8 = 27 + 8s + 1$

+10\*+10+8a

- What is the cause? Any prescriptions?
- Same quark mass point? We'll tune  $K_{uds}$  again respecting  $M_{\pi}/M_{\rho}$ .
- We need more accuate "a". We may determine it by ourselves.
- We may need to develop better action.

#### Thank you for your attention

N. Ishii etal. Phys. Rev. Lett . 99 022001 (2007) Phys. Lett. B 712 437 (2012)

contains NBS w.f.

- Direct : utilize eigen-energy from a temporal correlator
  - Lüscher's finite volume method for a phase-shift
  - Infinite volume extrapolation for a bound state
- HAL : utilize a potential  $V(r) + \dots$  of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B \qquad \psi(\vec{r},t): \text{4-point function}$$
contains NBS w.f.

- Advantages
  - No need to separate *E* eigenstate. Just need to measure  $\psi(\vec{r}, t)$
  - Then, potential can be extracted.
  - Demand a minimal lattice volume. No need to extrapolate to  $V=\infty$ .
  - Can output many observables.



- Direct : utilize eigen-energy from a temporal correlator
  - Lüscher's finite volume method for a phase-shift
  - Infinite volume extrapolation for a bound state
- HAL : utilize a potential  $V(r) + \dots$  of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B \qquad \psi(\vec{r},t): \text{4-point function} \text{ contains NBS w.f.}$$

- Advantages
  - No need to separate *E* eigenstate. Just need to measure  $\psi(\vec{r},t)$
  - Then, potential can be extracted.
  - Demand a minimal lattice volume. No need to extrapolate to  $V=\infty$ .
  - Can output many observables.



N. Ishii etal. Phys. Rev. Lett . 99 022001 (2007) Phys. Lett. B 712 437 (2012)

- Direct : utilize eigen-energy from a temporal correlator
  - Lüscher's finite volume method for a phase-shift
  - Infinite volume extrapolation for a bound state
- HAL : utilize a potential V(r) + ... of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B \qquad \psi(\vec{r},t): \text{4-point function} \text{ contains NBS w.f.}$$

- Advantages
  - No need to separate *E* eigenstate. Just need to measure  $\psi(\vec{r},t)$
  - Then, potential can be extracted.
  - Demand a minimal lattice volume. No need to extrapolate to  $V=\infty$ .
  - Can output many observables.



#### Tuning the paramete Kuds

• Target is the most coarse one  $\beta$ =1.83, *K*uds=0.13760, *C*sw=1.761

| pion   | 10 - 14 | $839.337 \pm 0.476 \pm 11.108$  |
|--------|---------|---------------------------------|
| rho    | 10 - 14 | $1192.055 \pm 1.089 \pm 15.776$ |
| proton | 11 - 14 | $1754.503 \pm 1.752 \pm 23.219$ |
| delta  | 11 - 14 | $1960.525 \pm 3.087 \pm 25.946$ |

 $M_{\pi}/M_{\rho} = 0.704109 \pm 0.000390$  $M_{\pi}/M_{\rm N} = 0.478390 \pm 0.000395$ 

• Interpolate/Extrapolate 1/Kuds v.s.  $M_{\rm pi^2}$ 





## **HMC** parameters

Thanks to Prof. Ishikawa and Prof. Kanamori for providing and teaching the DDHMC code.

- Leapfrog algorithm, dt = 1.0
- NF2 HBHB: *ρ*<sub>1</sub>=0.997, *ρ*<sub>2</sub>=0.995 (Hasenbush, 2 stage)
- NF1 Rational Approximation:  $[8.5 \times 10^{-6}, 5.0]$ , order 20
- 4 MD depths:
  - To handle wide range of strengh of forces.
  - Gauge =  $1^{st}$ , UV(ud) =  $2^{nd}$ ,
  - PSF(s), IR(ud), TrLog(ud), and TrLog(s) = 3<sup>rd</sup>
  - HB2 and HB1 =  $4^{th}$
- Division of *dt* 
  - 20 2 2 4 for  $\beta$ =1.83
  - 25 2 2 4 for  $\beta$ =1.90
  - 30 2 2 4 for  $\beta$ =2.05
- Tuned so that HMC Metropolis acceptance become 70 80 %.



## Hadron mass

•  $\beta$ =1.83, *K*uds=0.13760

systematic from a

| pion   | 10 - 14 | 839.337 ± 0.476 ± 11.108         |
|--------|---------|----------------------------------|
| rho    | 10 - 14 | $1192.055 \pm 1.089 \pm 15.776$  |
| proton | 11 - 14 | <b>1754.503</b> ± 1.752 ± 23.219 |
| delta  | 11 - 14 | $1960.525 \pm 3.087 \pm 25.946$  |

 $M_{\pi}/M_{\rho} = 0.704109 \pm 0.000390$  $M_{\pi}/M_{\rm N} = 0.478390 \pm 0.000395$ 

•  $\beta$ =1.90, *K*uds=0.1364707

| pion   | 17 - 22 | 839.878 ± 0.303 ± 16.250                 |                             |
|--------|---------|------------------------------------------|-----------------------------|
| rho    | 17 - 22 | $1184.289 \pm 1.753 \pm 22.914$          | $M_{\pi} / M_{\rho} = 0.70$ |
| proton | 18 - 22 | <b>1744.635</b> ± 4.529 ± 33.756         | $M_{\pi}/M_{\rm N} = 0.48$  |
| delta  | 18 - 22 | $1955.090 \ \pm \ 12.795 \ \pm \ 37.828$ |                             |
|        |         |                                          | M Mu and M                  |

•  $\beta$ =2.05, *K*uds=0.1352142

| pion   | 21 - 30 | 840.083 ± 0.911 ± 31.886           |
|--------|---------|------------------------------------|
| rho    | 21 - 30 | $1168.348 ~\pm~ 2.187 \pm~ 44.346$ |
| proton | 23 - 30 | <b>1715.704</b> ± 4.120 ± 65.122   |
| delta  | 23 - 30 | $1918.915 ~\pm~ 9.335 \pm~ 72.835$ |

 $M_{\pi}/M_{\rho} = 0.709183 \pm 0.000869$  $M_{\pi}/M_{N} = 0.481406 \pm 0.001137$ 

M<sub>p</sub>, M<sub>N</sub>, and M<sub> $\Delta$ </sub> agree to  $\beta$ =1.83 with the large systematic error

 $M_{\pi}/M_{\rho} = 0.719035 \pm 0.000702$  $M_{\pi}/M_{N} = 0.489643 \pm 0.000857$ 

#### Flavor-Singlet BB potential



- Statistic error only.
- V<sup>1</sup>(r) become singular as "a" decrease i.e.
  - deeper at the origing
  - and narrower.



#### Potential comparison by parts



- Statistic error only.
- In ∇<sup>2</sup> part, change is limited at very short distance. It is reasonable as "a" infulence.
- Important difference comes form the time derivative part.



## Wave functions



- Left: Resulting H-dibaryon w.f. from the potential  $V^{1}(r)$ .
  - We see that the w.f. spreads as "a" decrease.
- Right: Measured 4-point fouction in flavor singlet *BB*.
  - (Is the above feature seen in the original LQCD data too?)
  - (If so, the failure in the analysis is not the couse. But, it is not clear...)