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Introduction

Motivation

The ab initio study of few-nucleon bound states and reactions is essential for

e assessing the validity of the inter-nucleon interactions currently on the market ;

e predicting reaction rates at energies of astrophysical interest.

Purpose

Developing a few-body approach based on nonsymmetrized hyperspherical har-
monics for few-nucleon systems

Possible applications in nuclear physics
e a+N elastic scattering
e d+t— a+ n+ (v) transfer reaction ("fusion")
e o+ d — ®Li+ v radiative capture

o study of the halo nucleus ®He
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e assessing the validity of the inter-nucleon interactions currently on the market ;

e predicting reaction rates at energies of astrophysical interest.

Purpose

Developing a few-body approach based on nonsymmetrized hyperspherical har-
monics for few-nucleon systems

Present applications (in this talk)
e Study of 3-, 4-, (5-), 6-nucleon bound systems using central potentials

e Study of d + n elastic scattering using a central potential



Ab initio approach for an A-nucleon systems

Properties
o Degrees of freedom=nucleon
e Input=nucleon-nucleon (NN) interaction (+NNN interaction)

e Main task=solving accurately the Schrédinger equation

HY(1,...,A) = Z +Zv,,+ SO ovi | V@, .. A) = EV(,.., A)

i<j i<j<k

with bound-state or continuum-state asymptotic behaviour.



Bound-state study

Rayleigh-Ritz variational method

e Expansion of the wave function into some orthonormal square-integrable basis

{bi}i=1,....n
V= z CiPi
i=1

e Schrédinger equation — eigenvalue problem

n

> ($j|HIi)ei = Eci (G=1,...,n)

=il

Here, the basis functions are hyperspherical harmonics times Lagrange-Laguerre
hyperradial functions.



Hyperspherical coordinates (HH) for a 4-nucleon system

Jacobi coordinates
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Hyperspherical harmonics (HH)=Generalization of Y,

Kinetic energy
h? R [ 0? 3IN—-1 0  A(Q
T=-—(xq+8x+8x)=— ( 2 3. ( ))
m Op p  Op p

m
HH=Eigenvectors of grand angular operator \?

A5 ()% (Q) = —K (K + 7)) (),
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Kinetic energy
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m
HH=Eigenvectors of grand angular operator \?

A5 ()% (Q) = —K (K + 7)) (),

HH=functions of coupled spherical harmonics and Jacobi polynomials

Yl () = [V (%) @ Vi, (R2)]1, @ Vi (%3)lim

“hl2lz3Lanzn3

3 rol / ral
X H (/V,,j.xj “(cos qu)Kf (sin qu)Kfr P,(,j/ " (cos 2¢;)
=2

where K =3%",(2n; + ;).



Hyperspherical harmonics for 4-nucleon systems

Spin function

XS2535Ms = [[XS(]') ® X5(2)]52 & X5(3)]53 ® X5(4)]5M5

Isospin function
Crarsmr = [[6:(1) ® Ce(2)] 2 ® Ge(3)] 13 © Ce(H)]Tmy

Hyperspherical harmonics with spin and isospin functions

KLSIM; TM7 .« KLSIM; TMy _ il
Y[KLST] = Y hhi3lanyn3S3S3TaTs — [@/1/2/3L2n2n3 ® Xs,835]um (T T3 TMy

Basis function

KLSIM; T f(p)
[KLST] ez



Hyperradial functions

Lagrange basis
e The hyperradial functions are expanded as sums of NV, Lagrange functions

4e—p/2h

L) (o/h)
(o) o« 2,

Pj
7
where Lgvp)(pj) =0.
e Reproduces the origin behavior of the wave function
e Asymptotic exponential decrease

e With the Gauss-Laguerre quadrature :

(filfidp =~ &
(fiIV(p cos on)lfi) V(pi cos pp)dj

Q

References
e D. Baye and P.-H. Heenen, J. Phys. A 19 (1986) 2041
e D. Baye, Phys. Rep. 565 (2015) 1



Pauli principle

Key facts
e The wavefunction is antisymmetric with respect to nucleon exchanges.
e The HH basis functions are (in general) not antisymmetric but...
e ... any permuted HH can be written as a linear combination of HH with same K,
L,S, J, M, T, and My :
Py KLSIM; TM;

_ KLSJT KLSIM; TM
[KLST] — Z A[KLST],[KL' S T']Y " [kLsT)-
[K/ L/S/ T/]
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Key facts
e The wavefunction is antisymmetric with respect to nucleon exchanges.
e The HH basis functions are (in general) not antisymmetric but...

e ... any permuted HH can be written as a linear combination of HH with same K,
L, S, J, M, T,and My :

KLSIM; TM _ KLSJT KLSIM;TM
PY T [kLsT) = Z AkreT) ks T Y " [KLST]-
[K/ L/S/ TI]

First strategy

1) Building antisymmetric HH basis functions as linear combinations of the original
ones :

KLSIM; TM7 1 KLSJM; TM
'Q{Y[KLST] TE 2 :(_1)pPY[KL5T] T
P

2) Removing linearly dependent antisymmetric HH basis functions.

[JDE and M. Viviani, Computer Physics Communications 253 (2020) 107183]
[L. E. Marcucci, JDE, L. Girlanda, A. Gnech, A. Kievsky, and M. Viviani, Frontiers in Physics 8
(2020) 69.]
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Key facts
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Second strategy
1) Solving the few-nuleon Schrédinger equation using a non-symmetrized HH basis.
2) Selecting the antisymmetric eigenstates among the solutions.

[M. Gattobigio, A. Kievsky, M. Viviani, and P. Barletta, Physical Review A 79 (2009) 032513.]
[M. Gattobigio, A. Kievsky, and M. Viviani, Physical Review C 83 (2011) 024001.]
[S. Deflorian, N. Barnea, W. Leidemann, and G. Orlandini, Few-Body Systems 54 (2013) 1879.]



Pauli principle

Key facts
e The wavefunction is antisymmetric with respect to nucleon exchanges.
e The HH basis functions are (in general) not antisymmetric but...

e ... any permuted HH can be written as a linear combination of HH with same K,
L,S, J, M, T, and My :

KLSIM; TM _ KLSJT KLSIM; TM
PY "kLsT] = Z A[KLST],[KL' S T']Y " [kLsT)-
[K/ L/Sl T/]

Present strategy

Searching the eigenvalues and eigenstates of ./ H.</ using a non-symmetrized HH
basis.



Searching the eigenvalues and eigenstates of &/ H.o/

Key points

Search of the eigenvalues and eigenstates by using an iterative approach (Lanczos
algorithm, for instance) = requires to be able only to compute the effect of /' H.«7/
on a linear combination of HH basis functions.

The operator &/ He/ can be written as

dHA = ([ T+> v+ > v | &

i<j i<j<k

AA -1 A(A—1)(A—2
(2 ) s+ AL 6)( )

= <T+ V123) .
In the HH basis,
— the matrix of T is block diagonal;
— the matrix of vz is sparse (since ri» depends only on xp);
— the matrix of vi23 is sparse (since ri2, ri3, and r23 depend only on xy_7 and
X ).



Computing the effect of &

e 2-body systems
1
ol = 5(1 — P12)

10



Computing the effect of &

e 2-body systems
1
ol = 5(1 — P12)

e 3-body systems

3

1
5(1 — P13 — P23) s

1
yfzg(l — P13 — P23) o

1
ot 5(1 = 2P23).£7/2

10



Computing the effect of &

e 2-body systems
1
ol = 5(1 — P12)

e 3-body systems
1
:Q{3 = 5(1 — P13 - P23)=Q{2
1
= yfzg(l — P13 — Pa3) a2
1
= 9{25(1 — 2P23).§772
e 4-body systems
1
1(1 — P14 — P24 — P34) o3
1
= 3/31(1 — P14 — Pag — P3g)a3

1
= &:731(1 = 3P34),Vf3

10



Computing the effect of &

A-body antisymmetrizer
1
A = JMA—IZ[I —(A=1)Pa_1al9a1

= The antisymmetrization requires 241

Pjj+1)-

— 1 transpositions (=permutation of type

Transpositions
o Effect of P15 is trivial :

KLSIM;TMT _ InN+S2+ T2 KLSIM; TMT
Ple[KLST] =(-1) Y[KLST]

e The matrix of P; ;1 is a sparse matrix (since it involves only 2 Jacobi coordinates)
obtained from Raynal-Revai and Wigner coefficients.

11



Computing the effect of &

A-body antisymmetrizer
1
A = MAAZ[l —(A=1)Pa_1al9a1

= The antisymmetrization requires 241

Pjj+1).

— 1 transpositions (=permutation of type

Transpositions
o Effect of P15 is trivial :

KLSIM;TMT _ InN+S2+ T2 KLSIM; TMT
Ple[KLST] =(-1) Y[KLST]

e The matrix of P; ;1 is a sparse matrix (since it involves only 2 Jacobi coordinates)
obtained from Raynal-Revai and Wigner coefficients.

Conclusion

Applying </ H</ to a linear combination of HH reduces to the
multiplication of a vector by several sparse matrices.

11



Applications

NN interactions

e Volkov potential : central, spin-isospin independent
[A. B. Volkov, Nuclear Physics 74 (1965) 33]

e Minnesota potential+Coulomb potential : central, spin-isospin dependent
[D. .R. Thompson, M. LeMere, and Y. C. Tang, Nuclear Physics A 286 (1977) 53]

Nuclei
e 3H, 3He
e 3H, “He
e 5He (with Volkov)

e OLj

12



Test cases : 3H and 3He

Kmax  Volkov (3H/3He)  Minnesota (3H)  Minnesota (3He)

0 -7.7075 -6.031 -5.290
10 -8.4157 -8.321 -7.642
20 -8.4623 -8.381 -7.705
30 -8.4647 -8.385 -7.710
40 -8.4649 -8.386 -7.710

Table 1 — Ground-state energy of 3H and *He with the Volkov and Minnesota potentials in
function of Kmax. Quantum numbers (L, S)J™; T = (0,1/2)1/2;1/2.

e Results in agreement with literature.

13



Kmax Volkov  Minnesota

0 -28.580 -25.609
10 -30.278 -29.787
20 -30.416 -29.943
30 -30.418 -29.947

Table 2 — Ground-state energy of “He with the Volkov and Minnesota potentials in function of
Kmax- Quantum numbers (L, S)J™; T = (0,0)0"; 0.

e Results in agreement with literature.

14



(s Volkov

1 -39.635
3 -40.001
5 -41.022
7 -41.785
9 -42.384
11 -42.682
13 -42.868
15 -42.952
17 -42.996
19 -43.017

Table 3 — Unphysical ground-state energy of *He with the Volkov potential in function of
Kmax. Quantum numbers (L, S)J™; T = (1,1/2)1/27;1/2.

e Results in agreement with literature.

15



Kmax Volkov  Minnesota

2 61.142 -20.537
4 62.015 -26.128
6 63.377 -29.508
8  64.437 -31.288
10 65.354 -32.314
12 65.886 -33.020
14 66.201 -33.528

Table 4 — Ground-state energy of ®Li with the Volkov and Minnesota potentials in function of
Kmax- Quantum numbers (L, S)J™; T = (0,1)17;0.

e Results in agreement with literature.

16



Bound state vs scattering state

Rayleigh-Ritz varional method >< Kohn variational method

filp
v=Yat 3“ s W= ZCU,(BA(A +gr + Kibe

Schrodmger eq.— eigenvalue problem >< Schrédinger eq.— linear systems

17



Bound state vs scattering state

Rayleigh-Ritz varional method >< Kohn variational method

V= ZCU 3A 4 >< U= ZCU A (3:('04 + Y + K

Schrodmger eq.— eigenvalue problem >< Schrodlnger eq.— linear systems
Extra need

e Co pUt g the atrix elements
<h ( ) ‘H Elw/: > and <’ler ‘H E|’¢JF >
f D(3A 4)/2 G G G

e Can be obtained approximately by projecting over the HH basis.

17



dn scattering

S wave

-0.6

Erel (MeV)

e Minnesota potential is used.

18



Conclusion

Summary
e A new implementation of the hyperspherical harmonic method for few-nucleon
bound and scattering states has been presented.

Key features
e No need to build an antisymmetric hyperspherical harmonic basis but only anti-
symmetric eigenstates are found.
e The Hamiltonian and the antisymmetrization matrices are written as products of
sparse matrices.

19
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Conclusion

Summary

e A new implementation of the hyperspherical harmonic method for few-nucleon
bound and scattering states has been presented.

Key features

e No need to build an antisymmetric hyperspherical harmonic basis but only anti-
symmetric eigenstates are found.

e The Hamiltonian and the antisymmetrization matrices are written as products of
sparse matrices.

Results

e Groundstate energies for 3-, 4-, 5-, and 6-nucleon systems using central potentials
(Volkov and Minnesota).

e the d+n S-wave phaseshifts using the Minnesota potential (as a proof of principle).

Next steps
e Make the code faster (with more suitable numerical algorithms and parallelization)

e adapting the code for realistic potentials
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