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Introduction

Motivation

The ab initio study of few-nucleon bound states and reactions is essential for

• assessing the validity of the inter-nucleon interactions currently on the market ;

• predicting reaction rates at energies of astrophysical interest.

Purpose

Developing a few-body approach based on nonsymmetrized hyperspherical har-

monics for few-nucleon systems

Possible applications in nuclear physics

• α+N elastic scattering

• d + t → α+ n + (γ) transfer reaction ("fusion")

• α+ d → 6Li+ γ radiative capture

• study of the halo nucleus 6He
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Introduction

Motivation

The ab initio study of few-nucleon bound states and reactions is essential for

• assessing the validity of the inter-nucleon interactions currently on the market ;

• predicting reaction rates at energies of astrophysical interest.

Purpose

Developing a few-body approach based on nonsymmetrized hyperspherical har-

monics for few-nucleon systems

Present applications (in this talk)

• Study of 3-, 4-, (5-), 6-nucleon bound systems using central potentials

• Study of d + n elastic scattering using a central potential
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Ab initio approach for an A-nucleon systems

Properties

• Degrees of freedom=nucleon

• Input=nucleon-nucleon (NN) interaction (+NNN interaction)

• Main task=solving accurately the Schrödinger equation

HΨ(1, . . . ,A) =

∑
i

p2i
2m

+
∑
i<j

vij +
∑

i<j<k

vijk

Ψ(1, . . . ,A) = EΨ(1, . . . ,A)

with bound-state or continuum-state asymptotic behaviour.

2



Bound-state study

Rayleigh-Ritz variational method

• Expansion of the wave function into some orthonormal square-integrable basis

{ϕi}i=1,...,n

Ψ =
n∑

i=1

ciϕi

• Schrödinger equation → eigenvalue problem

n∑
i=1

⟨ϕj |H|ϕi ⟩ci = Eci (j = 1, . . . , n)

Here, the basis functions are hyperspherical harmonics times Lagrange-Laguerre

hyperradial functions.
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Hyperspherical coordinates (HH) for a 4-nucleon system

Jacobi coordinates

x1 =

√
3

2

(
r4 −

r1 + r2 + r3

3

)
x2 =

√
4

3

(
r3 −

r1 + r2

2

)
x3 = r2 − r1

���
����*

?

-

x3

x2

x1t1

t2

t3
t4

Hyperspherical coordinates (ρ,ΩN)

Hyperradius

ρ2 = x21 + x22 + x23 =
1

2

4∑
j>i=1

(ri − rj )
2

Hyperangles Ω = (x̂1, x̂2, x̂3, ϕ2, ϕ3)

cosϕ2 =
x1√

x2
1
+ x2

2

, cosϕ3 =
x2

ρ
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Hyperspherical harmonics (HH)=Generalization of Ylm

Kinetic energy

T = −
ℏ2

m
(∆x1

+∆x2
+∆x3

) = −
ℏ2

m

(
∂2

∂ρ2
+

3N − 1

ρ

∂

∂ρ
+

Λ2(Ω)

ρ2

)

HH=Eigenvectors of grand angular operator Λ2

Λ2N(ΩN)Y[K ](Ω) = −K(K + 7)Y[K ](Ω),

HH=functions of coupled spherical harmonics and Jacobi polynomials

Y KLM
l1 l2 l3L2n2n3

(Ω) = [[Yl1 (x̂1)⊗ Yl2 (x̂2)]L2 ⊗ Yl3 (x̂3)]LM

×
3∏

j=2

N
αr
j α

l
j

nj (cosϕj )
K l
j (sinϕj )

K r
j P

αr
j ,α

l
j

nj (cos 2ϕj )

where K =
∑

i (2ni + li ).
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Hyperspherical harmonics for 4-nucleon systems

Spin function

χS2S3SMS
= [[χs(1)⊗ χs(2)]S2 ⊗ χs(3)]S3 ⊗ χs(4)]SMS

Isospin function

ζT2T3TMT
= [[ζt(1)⊗ ζt(2)]T2 ⊗ ζt(3)]T3 ⊗ ζt(4)]TMT

Hyperspherical harmonics with spin and isospin functions

YKLSJM;TMT
[KLST ]

:= YKLSJM;TMT
l1 l2 l3L2n2n3S2S3T2T3

= [Y KL
l1 l2 l3L2n2n3

⊗ χS2S3S ]JM ζT2T3TMT

Basis function

YKLSJM;TMT
[KLST ]

f (ρ)

ρ4
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Hyperradial functions

Lagrange basis

• The hyperradial functions are expanded as sums of Nρ Lagrange functions

fj (ρ) ∝
L
(7)
Nρ

(ρ/h)

ρ− hρj
ρ4e−ρ/2h

where L
(7)
Nρ

(ρj ) = 0.

• Reproduces the origin behavior of the wave function

• Asymptotic exponential decrease

• With the Gauss-Laguerre quadrature :

⟨fj |fi ⟩ρ ≈ δij

⟨fj |V (ρ cosϕN)|fi ⟩ρ ≈ V (ρi cosϕN)δij

References

• D. Baye and P.-H. Heenen, J. Phys. A 19 (1986) 2041

• D. Baye, Phys. Rep. 565 (2015) 1
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Pauli principle

Key facts

• The wavefunction is antisymmetric with respect to nucleon exchanges.

• The HH basis functions are (in general) not antisymmetric but...

• ... any permuted HH can be written as a linear combination of HH with same K ,

L, S, J, M, T , and MT :

PYKLSJM;TMT
[KLST ] =

∑
[K ′L′S′T ′]

aKLSJT[KLST ],[K ′L′S′T ′]Y
KLSJM;TMT

[KLST ].
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Pauli principle

Key facts

• The wavefunction is antisymmetric with respect to nucleon exchanges.

• The HH basis functions are (in general) not antisymmetric but...

• ... any permuted HH can be written as a linear combination of HH with same K ,

L, S, J, M, T , and MT :

PYKLSJM;TMT
[KLST ] =

∑
[K ′L′S′T ′]

aKLSJT[KLST ],[K ′L′S′T ′]Y
KLSJM;TMT

[KLST ].

First strategy

1) Building antisymmetric HH basis functions as linear combinations of the original

ones :

A YKLSJM;TMT
[KLST ]

1

A!

∑
p

(−1)pPYKLSJM;TMT
[KLST ]

.

2) Removing linearly dependent antisymmetric HH basis functions.

[JDE and M. Viviani, Computer Physics Communications 253 (2020) 107183]

[L. E. Marcucci, JDE, L. Girlanda, A. Gnech, A. Kievsky, and M. Viviani, Frontiers in Physics 8

(2020) 69.]
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Pauli principle

Key facts

• The wavefunction is antisymmetric with respect to nucleon exchanges.

• The HH basis functions are (in general) not antisymmetric but...

• ... any permuted HH can be written as a linear combination of HH with same K ,

L, S, J, M, T , and MT :

PYKLSJM;TMT
[KLST ] =

∑
[K ′L′S′T ′]

aKLSJT[KLST ],[K ′L′S′T ′]Y
KLSJM;TMT

[KLST ].

Second strategy

1) Solving the few-nuleon Schrödinger equation using a non-symmetrized HH basis.

2) Selecting the antisymmetric eigenstates among the solutions.

[M. Gattobigio, A. Kievsky, M. Viviani, and P. Barletta, Physical Review A 79 (2009) 032513.]

[M. Gattobigio, A. Kievsky, and M. Viviani, Physical Review C 83 (2011) 024001.]

[S. De�orian, N. Barnea, W. Leidemann, and G. Orlandini, Few-Body Systems 54 (2013) 1879.]
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Pauli principle

Key facts

• The wavefunction is antisymmetric with respect to nucleon exchanges.

• The HH basis functions are (in general) not antisymmetric but...

• ... any permuted HH can be written as a linear combination of HH with same K ,

L, S, J, M, T , and MT :

PYKLSJM;TMT
[KLST ] =

∑
[K ′L′S′T ′]

aKLSJT[KLST ],[K ′L′S′T ′]Y
KLSJM;TMT

[KLST ].

Present strategy

Searching the eigenvalues and eigenstates of A HA using a non-symmetrized HH

basis.
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Searching the eigenvalues and eigenstates of A HA

Key points

• Search of the eigenvalues and eigenstates by using an iterative approach (Lanczos

algorithm, for instance) ⇒ requires to be able only to compute the e�ect of A HA

on a linear combination of HH basis functions.

• The operator A HA can be written as

A HA = A

T +
∑
i<j

vij +
∑

i<j<k

vijk

A

= A

(
T +

A(A− 1)

2
v12 +

A(A− 1)(A− 2)

6
v123

)
A .

• In the HH basis,

− the matrix of T is block diagonal ;

− the matrix of v12 is sparse (since r12 depends only on xN) ;

− the matrix of v123 is sparse (since r12, r13, and r23 depend only on xN−1 and

xN).
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Computing the e�ect of A

• 2-body systems

A2 =
1

2
(1− P12)

• 3-body systems

A3 =
1

3
(1− P13 − P23)A2

= A2

1

3
(1− P13 − P23)A2

= A2

1

3
(1− 2P23)A2

• 4-body systems

A4 =
1

4
(1− P14 − P24 − P34)A3

= A3

1

4
(1− P14 − P24 − P34)A3

= A3

1

4
(1− 3P34)A3
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Computing the e�ect of A

A-body antisymmetrizer

AA = AA−1

1

A
[1− (A− 1)PA−1 A]AA−1

⇒ The antisymmetrization requires 2A−1 − 1 transpositions (=permutation of type

Pj j+1).

Transpositions

• E�ect of P12 is trivial :

P12YKLSJM;TMT
[KLST ]

= (−1)lN+S2+T2YKLSJM;TMT
[KLST ]

• The matrix of Pj j+1 is a sparse matrix (since it involves only 2 Jacobi coordinates)

obtained from Raynal-Revai and Wigner coe�cients.
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Computing the e�ect of A

A-body antisymmetrizer

AA = AA−1

1

A
[1− (A− 1)PA−1 A]AA−1

⇒ The antisymmetrization requires 2A−1 − 1 transpositions (=permutation of type

Pj j+1).

Transpositions

• E�ect of P12 is trivial :

P12YKLSJM;TMT
[KLST ]

= (−1)lN+S2+T2YKLSJM;TMT
[KLST ]

• The matrix of Pj j+1 is a sparse matrix (since it involves only 2 Jacobi coordinates)

obtained from Raynal-Revai and Wigner coe�cients.

Conclusion

Applying A HA to a linear combination of HH reduces to the

multiplication of a vector by several sparse matrices.
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Applications

NN interactions

• Volkov potential : central, spin-isospin independent

[A. B. Volkov, Nuclear Physics 74 (1965) 33]

• Minnesota potential+Coulomb potential : central, spin-isospin dependent

[D. .R. Thompson, M. LeMere, and Y. C. Tang, Nuclear Physics A 286 (1977) 53]

Nuclei

• 3H, 3He

• 3H, 4He

• 5He (with Volkov)

• 6Li
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Test cases : 3H and 3He

Kmax Volkov (3H/3He) Minnesota (3H) Minnesota (3He)

0 -7.7075 -6.031 -5.290

10 -8.4157 -8.321 -7.642

20 -8.4623 -8.381 -7.705

30 -8.4647 -8.385 -7.710

40 -8.4649 -8.386 -7.710

Table 1 � Ground-state energy of 3H and 3He with the Volkov and Minnesota potentials in

function of Kmax. Quantum numbers (L, S)Jπ ;T = (0, 1/2)1/2+; 1/2.

• Results in agreement with literature.
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4He

Kmax Volkov Minnesota

0 -28.580 -25.609

10 -30.278 -29.787

20 -30.416 -29.943

30 -30.418 -29.947

Table 2 � Ground-state energy of 4He with the Volkov and Minnesota potentials in function of

Kmax. Quantum numbers (L, S)Jπ ;T = (0, 0)0+; 0.

• Results in agreement with literature.
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5He

Kmax Volkov

1 -39.635

3 -40.001

5 -41.022

7 -41.785

9 -42.384

11 -42.682

13 -42.868

15 -42.952

17 -42.996

19 -43.017

Table 3 � Unphysical ground-state energy of 5He with the Volkov potential in function of

Kmax. Quantum numbers (L, S)Jπ ;T = (1, 1/2)1/2−; 1/2.

• Results in agreement with literature.
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6Li

Kmax Volkov Minnesota

2 61.142 -20.537

4 62.015 -26.128

6 63.377 -29.508

8 64.437 -31.288

10 65.354 -32.314

12 65.886 -33.020

14 66.201 -33.528

Table 4 � Ground-state energy of 6Li with the Volkov and Minnesota potentials in function of

Kmax. Quantum numbers (L, S)Jπ ;T = (0, 1)1+; 0.

• Results in agreement with literature.
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Bound state vs scattering state

Rayleigh-Ritz varional method >< Kohn variational method

Ψ =
∑
ij

cijYi
fj (ρ)

ρ(3A−4)/2
>< Ψ =

∑
ij

cijYi
fj (ρ)

ρ(3A−4)/2
+ ψF + KψG

Schrödinger eq.→ eigenvalue problem >< Schrödinger eq.→ linear systems

Extra need

• Computing the matrix elements

⟨Yi
fj (ρ)

ρ(3A−4)/2
|H − E |ψF ,G ⟩ and ⟨ψF ,G |H − E |ψF ,G ⟩

• Can be obtained approximately by projecting over the HH basis.
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dn scattering
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• Minnesota potential is used.
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Conclusion

Summary

• A new implementation of the hyperspherical harmonic method for few-nucleon

bound and scattering states has been presented.

Key features

• No need to build an antisymmetric hyperspherical harmonic basis but only anti-

symmetric eigenstates are found.

• The Hamiltonian and the antisymmetrization matrices are written as products of

sparse matrices.

Results

• Groundstate energies for 3-, 4-, 5-, and 6-nucleon systems using central potentials

(Volkov and Minnesota).

• the d+n S-wave phaseshifts using the Minnesota potential (as a proof of principle).

Next steps

• Make the code faster (with more suitable numerical algorithms and parallelization)

• adapting the code for realistic potentials
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