A nonsymmetrized hyperspherical harmonics approach for few-nucleon bound and scattering states

Jérémy Dohet-Eraly

Physique Nucléaire et Physique Quantique, Université libre de Bruxelles (ULB)

25th European Conference on Few-body problems in Physics,
Mainz, Germany, July 31st, 2023.

Introduction

Motivation

The $a b$ initio study of few-nucleon bound states and reactions is essential for

- assessing the validity of the inter-nucleon interactions currently on the market ;
- predicting reaction rates at energies of astrophysical interest.

Purpose

Developing a few-body approach based on nonsymmetrized hyperspherical harmonics for few-nucleon systems

Possible applications in nuclear physics

- $\alpha+\mathrm{N}$ elastic scattering
- $d+t \rightarrow \alpha+n+(\gamma)$ transfer reaction ("fusion")
- $\alpha+d \rightarrow{ }^{6} \mathrm{Li}+\gamma$ radiative capture
- study of the halo nucleus ${ }^{6} \mathrm{He}$

Introduction

Motivation

The $a b$ initio study of few-nucleon bound states and reactions is essential for

- assessing the validity of the inter-nucleon interactions currently on the market ;
- predicting reaction rates at energies of astrophysical interest.

Purpose

Developing a few-body approach based on nonsymmetrized hyperspherical harmonics for few-nucleon systems

Present applications (in this talk)

- Study of 3-, 4-, (5-), 6-nucleon bound systems using central potentials
- Study of $d+n$ elastic scattering using a central potential

$A b$ initio approach for an A-nucleon systems

Properties

- Degrees of freedom=nucleon
- Input=nucleon-nucleon (NN) interaction (+NNN interaction)
- Main task=solving accurately the Schrödinger equation

$$
H \Psi(1, \ldots, A)=\left(\sum_{i} \frac{p_{i}^{2}}{2 m}+\sum_{i<j} v_{i j}+\sum_{i<j<k} v_{i j k}\right) \Psi(1, \ldots, A)=E \Psi(1, \ldots, A)
$$

with bound-state or continuum-state asymptotic behaviour.

Bound-state study

Rayleigh-Ritz variational method

- Expansion of the wave function into some orthonormal square-integrable basis $\left\{\phi_{i}\right\}_{i=1, \ldots, n}$

$$
\psi=\sum_{i=1}^{n} c_{i} \phi_{i}
$$

- Schrödinger equation \rightarrow eigenvalue problem

$$
\sum_{i=1}^{n}\left\langle\phi_{j}\right| H\left|\phi_{i}\right\rangle c_{i}=E c_{i} \quad(j=1, \ldots, n)
$$

Here, the basis functions are hyperspherical harmonics times Lagrange-Laguerre hyperradial functions.

Hyperspherical coordinates (HH) for a 4-nucleon system

Jacobi coordinates

$$
\left\{\begin{array}{l}
x_{1}=\sqrt{\frac{3}{2}}\left(r_{4}-\frac{r_{1}+r_{2}+r_{3}}{3}\right) \\
x_{2}=\sqrt{\frac{4}{3}}\left(r_{3}-\frac{r_{1}+r_{2}}{2}\right) \\
x_{3}=r_{2}-r_{1}
\end{array}\right.
$$

Hyperspherical coordinates (ρ, Ω_{N})

Hyperradius

$$
\rho^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\frac{1}{2} \sum_{j>i=1}^{4}\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)^{2}
$$

Hyperangles $\Omega=\left(\hat{\mathbf{x}}_{1}, \hat{\mathbf{x}}_{2}, \hat{\mathbf{x}}_{3}, \phi_{2}, \phi_{3}\right)$

$$
\cos \phi_{2}=\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, \cos \phi_{3}=\frac{x_{2}}{\rho}
$$

Hyperspherical harmonics $(\mathrm{HH})=$ Generalization of $Y_{l m}$

Kinetic energy

$$
T=-\frac{\hbar^{2}}{m}\left(\Delta_{x_{1}}+\Delta_{x_{2}}+\Delta_{x_{3}}\right)=-\frac{\hbar^{2}}{m}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{3 N-1}{\rho} \frac{\partial}{\partial \rho}+\frac{\Lambda^{2}(\Omega)}{\rho^{2}}\right)
$$

$\mathrm{HH}=$ Eigenvectors of grand angular operator Λ^{2}

$$
\Lambda_{N}^{2}\left(\Omega_{N}\right) \mathscr{Y}_{[K]}(\Omega)=-K(K+7) \mathscr{Y}_{[K]}(\Omega),
$$

Hyperspherical harmonics $(\mathrm{HH})=$ Generalization of $Y_{l m}$

Kinetic energy

$$
T=-\frac{\hbar^{2}}{m}\left(\Delta_{x_{1}}+\Delta_{x_{2}}+\Delta_{x_{3}}\right)=-\frac{\hbar^{2}}{m}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{3 N-1}{\rho} \frac{\partial}{\partial \rho}+\frac{\Lambda^{2}(\Omega)}{\rho^{2}}\right)
$$

$\mathrm{HH}=$ Eigenvectors of grand angular operator Λ^{2}

$$
\Lambda_{N}^{2}\left(\Omega_{N}\right) \mathscr{Y}_{[K]}(\Omega)=-K(K+7) \mathscr{Y}_{[K]}(\Omega),
$$

HH=functions of coupled spherical harmonics and Jacobi polynomials

$$
\begin{aligned}
& \mathscr{Y}_{l_{1} l_{3} /_{3} L_{2} n_{2} n_{3}}^{K L}(\Omega)=\left[\left[Y_{l_{1}}\left(\hat{x}_{1}\right) \otimes Y_{l_{2}}\left(\hat{x}_{2}\right)\right]_{L_{2}} \otimes Y_{l_{3}}\left(\hat{x}_{3}\right)\right]_{L M} \\
& \quad \times \prod_{j=2}^{3} \mathscr{N}_{n_{j}}^{\alpha_{j}^{r} \alpha_{j}^{\prime}}\left(\cos \phi_{j}\right)^{K_{j}^{\prime}}\left(\sin \phi_{j}\right)^{K_{j}^{r}} P_{n_{j}}^{\alpha_{j}^{r}, \alpha_{j}^{\prime}}\left(\cos 2 \phi_{j}\right)
\end{aligned}
$$

where $K=\sum_{i}\left(2 n_{i}+l_{i}\right)$.

Hyperspherical harmonics for 4-nucleon systems

Spin function

$$
\left.\chi_{S_{2} S_{3} S M_{S}}=\left[\left[\chi_{s}(1) \otimes \chi_{s}(2)\right]_{S_{\mathbf{2}}} \otimes \chi_{s}(3)\right]_{S_{\mathbf{3}}} \otimes \chi_{s}(4)\right]_{S M_{S}}
$$

Isospin function

$$
\left.\zeta_{T_{\mathbf{2}} T_{\mathbf{3}} T M_{T}}=\left[\left[\zeta_{t}(1) \otimes \zeta_{t}(2)\right]_{T_{\mathbf{2}}} \otimes \zeta_{t}(3)\right]_{T_{\mathbf{3}}} \otimes \zeta_{t}(4)\right]_{T M_{T}}
$$

Hyperspherical harmonics with spin and isospin functions

$$
\mathbb{Y}_{[K L S T]}^{K L S J M ; T M_{T}}:=\mathbb{Y}_{1 / 2 / 2 / 3}^{K L L_{2} n_{2} n_{3} S_{2} S_{3} T_{2} T_{3}}=\left[\mathscr{Y}_{1 / 2 / 3}^{K L} L_{2} n_{2} n_{3} \otimes \chi S_{2} S_{3} S\right] J M \zeta_{T_{2} T_{3} T M_{T}}
$$

Basis function

$$
\mathbb{Y}_{[K L S T]}^{K L S J M ; T M_{T}} \frac{f(\rho)}{\rho^{4}}
$$

Hyperradial functions

Lagrange basis

- The hyperradial functions are expanded as sums of N_{ρ} Lagrange functions

$$
f_{j}(\rho) \propto \frac{L_{N_{\rho}}^{(7)}(\rho / h)}{\rho-h \rho_{j}} \rho^{4} \mathrm{e}^{-\rho / 2 h}
$$

where $L_{N_{\rho}}^{(7)}\left(\rho_{j}\right)=0$.

- Reproduces the origin behavior of the wave function
- Asymptotic exponential decrease
- With the Gauss-Laguerre quadrature:

$$
\begin{aligned}
\left\langle f_{j} \mid f_{i}\right\rangle_{\rho} & \approx \delta_{i j} \\
\left\langle f_{j}\right| V\left(\rho \cos \phi_{N}\right)\left|f_{i}\right\rangle_{\rho} & \approx V\left(\rho_{i} \cos \phi_{N}\right) \delta_{i j}
\end{aligned}
$$

References

- D. Baye and P.-H. Heenen, J. Phys. A 19 (1986) 2041
- D. Baye, Phys. Rep. 565 (2015) 1

Pauli principle

Key facts

- The wavefunction is antisymmetric with respect to nucleon exchanges.
- The HH basis functions are (in general) not antisymmetric but...
- ... any permuted HH can be written as a linear combination of HH with same K, L, S, J, M, T, and M_{T} :

$$
P \mathbb{Y}^{K L S J M ; T M_{T}}{ }_{[K L S T]}=\sum_{\left[K^{\prime} L^{\prime} S^{\prime} T^{\prime}\right]} a_{[K L S T],\left[K^{\prime} L^{\prime} S^{\prime} T^{\prime}\right]}^{K L S T} \mathbb{Y}^{K L S J M ; T M_{T}}[K L S T] .
$$

Pauli principle

Key facts

- The wavefunction is antisymmetric with respect to nucleon exchanges.
- The HH basis functions are (in general) not antisymmetric but...
- ... any permuted HH can be written as a linear combination of HH with same K, L, S, J, M, T, and M_{T} :

$$
P \mathbb{Y}^{K L S J M ; T M_{T}}{ }_{[K L S T]}=\sum_{\left[K^{\prime} L^{\prime} S^{\prime} T^{\prime}\right]} a_{[K L S T],\left[K^{\prime} L^{\prime} S^{\prime} T^{\prime}\right]}^{K L S T} \mathbb{Y}^{K L S J M ; T M_{T}}{ }_{[K L S T]} .
$$

First strategy

1) Building antisymmetric HH basis functions as linear combinations of the original ones:

$$
\mathscr{A} \mathbb{Y}_{[K L S T]}^{K L S J M ; T M_{T}} \frac{1}{A!} \sum_{p}(-1)^{p} P \mathbb{Y}_{[K L S T]}^{K L S J M ; T M_{T}}
$$

2) Removing linearly dependent antisymmetric HH basis functions.
[JDE and M. Viviani, Computer Physics Communications 253 (2020) 107183]
[L. E. Marcucci, JDE, L. Girlanda, A. Gnech, A. Kievsky, and M. Viviani, Frontiers in Physics 8 (2020) 69.]

Pauli principle

Key facts

- The wavefunction is antisymmetric with respect to nucleon exchanges.
- The HH basis functions are (in general) not antisymmetric but...
- ... any permuted HH can be written as a linear combination of HH with same K, L, S, J, M, T, and M_{T} :

$$
P \mathbb{Y}^{K L S J M ; T M_{T}}{ }_{[K L S T]}=\sum_{\left[K^{\prime} L^{\prime} S^{\prime} T^{\prime}\right]} a_{[K L S T],\left[K^{\prime} L^{\prime} S^{\prime} T^{\prime}\right]}^{K L S T} \mathbb{Y}^{K L S J M ; T M_{T}}[K L S T] .
$$

Second strategy

1) Solving the few-nuleon Schrödinger equation using a non-symmetrized HH basis.
2) Selecting the antisymmetric eigenstates among the solutions.
[M. Gattobigio, A. Kievsky, M. Viviani, and P. Barletta, Physical Review A 79 (2009) 032513.]
[M. Gattobigio, A. Kievsky, and M. Viviani, Physical Review C 83 (2011) 024001.]
[S. Deflorian, N. Barnea, W. Leidemann, and G. Orlandini, Few-Body Systems 54 (2013) 1879.]

Pauli principle

Key facts

- The wavefunction is antisymmetric with respect to nucleon exchanges.
- The HH basis functions are (in general) not antisymmetric but...
- ... any permuted HH can be written as a linear combination of HH with same K, L, S, J, M, T, and M_{T} :

$$
P \mathbb{Y}^{K L S J M ; T M_{T}}{ }_{[K L S T]}=\sum_{\left[K^{\prime} L^{\prime} S^{\prime} T^{\prime}\right]} a_{[K L S T],\left[K^{\prime} L^{\prime} S^{\prime} T^{\prime}\right]}^{K L S T} \mathbb{Y}^{K L S J M ; T M_{T}}[K L S T] .
$$

Present strategy

Searching the eigenvalues and eigenstates of $\mathscr{A} \mathrm{H} \mathscr{A}$ using a non-symmetrized HH basis.

Searching the eigenvalues and eigenstates of $\mathscr{A} \mathrm{H} \mathscr{A}$

Key points

- Search of the eigenvalues and eigenstates by using an iterative approach (Lanczos algorithm, for instance) \Rightarrow requires to be able only to compute the effect of $\mathscr{A} H \mathscr{A}$ on a linear combination of HH basis functions.
- The operator $\mathscr{A} \mathrm{H} \mathscr{A}$ can be written as

$$
\begin{aligned}
\mathscr{A} H \mathscr{A} & =\mathscr{A}\left(T+\sum_{i<j} v_{i j}+\sum_{i<j<k} v_{i j k}\right) \mathscr{A} \\
& =\mathscr{A}\left(T+\frac{A(A-1)}{2} v_{12}+\frac{A(A-1)(A-2)}{6} v_{123}\right) \mathscr{A} .
\end{aligned}
$$

- In the HH basis,
- the matrix of T is block diagonal ;
- the matrix of v_{12} is sparse (since \boldsymbol{r}_{12} depends only on \boldsymbol{x}_{N});
- the matrix of \boldsymbol{v}_{123} is sparse (since $\boldsymbol{r}_{12}, \boldsymbol{r}_{13}$, and \boldsymbol{r}_{23} depend only on \boldsymbol{x}_{N-1} and x_{N}).

Computing the effect of \mathscr{A}

- 2-body systems

$$
\mathscr{A}_{2}=\frac{1}{2}\left(1-P_{12}\right)
$$

Computing the effect of \mathscr{A}

- 2-body systems

$$
\mathscr{A}_{2}=\frac{1}{2}\left(1-P_{12}\right)
$$

- 3-body systems

$$
\begin{aligned}
\mathscr{A}_{3} & =\frac{1}{3}\left(1-P_{13}-P_{23}\right) \mathscr{A}_{2} \\
& =\mathscr{A}_{2} \frac{1}{3}\left(1-P_{13}-P_{23}\right) \mathscr{A}_{2} \\
& =\mathscr{A}_{2} \frac{1}{3}\left(1-2 P_{23}\right) \mathscr{A}_{2}
\end{aligned}
$$

Computing the effect of \mathscr{A}

- 2-body systems

$$
\mathscr{A}_{2}=\frac{1}{2}\left(1-P_{12}\right)
$$

- 3-body systems

$$
\begin{aligned}
\mathscr{A}_{3} & =\frac{1}{3}\left(1-P_{13}-P_{23}\right) \mathscr{A}_{2} \\
& =\mathscr{A}_{2} \frac{1}{3}\left(1-P_{13}-P_{23}\right) \mathscr{A}_{2} \\
& =\mathscr{A}_{2} \frac{1}{3}\left(1-2 P_{23}\right) \mathscr{A}_{2}
\end{aligned}
$$

- 4-body systems

$$
\begin{aligned}
\mathscr{A}_{4} & =\frac{1}{4}\left(1-P_{14}-P_{24}-P_{34}\right) \mathscr{A}_{3} \\
& =\mathscr{A}_{3} \frac{1}{4}\left(1-P_{14}-P_{24}-P_{34}\right) \mathscr{A}_{3} \\
& =\mathscr{A}_{3} \frac{1}{4}\left(1-3 P_{34}\right) \mathscr{A}_{3}
\end{aligned}
$$

Computing the effect of \mathscr{A}

A-body antisymmetrizer

$$
\mathscr{A}_{A}=\mathscr{A}_{A-1} \frac{1}{A}\left[1-(A-1) P_{A-1} A\right] \mathscr{A}_{A-1}
$$

\Rightarrow The antisymmetrization requires $2^{A-1}-1$ transpositions (=permutation of type $P_{j j+1}$).

Transpositions

- Effect of P_{12} is trivial :

$$
P_{12} \mathbb{Y}_{[K L S T]}^{K L S J M ; T M_{T}}=(-1)^{I_{N}+S_{\mathbf{2}}+T_{\mathbf{2}}} \mathbb{Y}_{[K L S T]}^{K L S J M ; T M_{T}}
$$

- The matrix of $P_{j j+1}$ is a sparse matrix (since it involves only 2 Jacobi coordinates) obtained from Raynal-Revai and Wigner coefficients.

Computing the effect of

A-body antisymmetrizer

$$
\mathscr{A}_{A}=\mathscr{A}_{A-1} \frac{1}{A}\left[1-(A-1) P_{A-1} A\right] \mathscr{A}_{A-1}
$$

\Rightarrow The antisymmetrization requires $2^{A-1}-1$ transpositions (=permutation of type $P_{j j+1}$).

Transpositions

- Effect of P_{12} is trivial :

$$
P_{12} \mathbb{Y}_{[K L S T]}^{K L S J M ; T M_{T}}=(-1)^{I_{N}+S_{\mathbf{2}}+T_{\mathbf{2}}} \mathbb{Y}_{[K L S T]}^{K L S J M ; T M_{T}}
$$

- The matrix of $P_{j j+1}$ is a sparse matrix (since it involves only 2 Jacobi coordinates) obtained from Raynal-Revai and Wigner coefficients.

Conclusion

Applying $\mathscr{A} H \mathscr{A}$ to a linear combination of HH reduces to the multiplication of a vector by several sparse matrices.

Applications

NN interactions

- Volkov potential : central, spin-isospin independent
[A. B. Volkov, Nuclear Physics 74 (1965) 33]
- Minnesota potential+Coulomb potential : central, spin-isospin dependent [D. .R. Thompson, M. LeMere, and Y. C. Tang, Nuclear Physics A 286 (1977) 53]

Nuclei

- ${ }^{3} \mathrm{H},{ }^{3} \mathrm{He}$
- ${ }^{3} \mathrm{H},{ }^{4} \mathrm{He}$
- ${ }^{5} \mathrm{He}$ (with Volkov)
- ${ }^{6} \mathrm{Li}$

Test cases: ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$

$K_{\max }$	Volkov $\left({ }^{3} \mathrm{H} /{ }^{3} \mathrm{He}\right)$	Minnesota $\left({ }^{3} \mathrm{H}\right)$	Minnesota $\left({ }^{3} \mathrm{He}\right)$
0	-7.7075	-6.031	-5.290
10	-8.4157	-8.321	-7.642
20	-8.4623	-8.381	-7.705
30	-8.4647	-8.385	-7.710
40	-8.4649	-8.386	-7.710

Table 1 - Ground-state energy of ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ with the Volkov and Minnesota potentials in function of $K_{\max }$. Quantum numbers $(L, S) J^{\pi} ; T=(0,1 / 2) 1 / 2^{+} ; 1 / 2$.

- Results in agreement with literature.

$K_{\max }$	Volkov	Minnesota
0	-28.580	-25.609
10	-30.278	-29.787
20	-30.416	-29.943
30	-30.418	-29.947

Table 2 - Ground-state energy of ${ }^{4} \mathrm{He}$ with the Volkov and Minnesota potentials in function of $K_{\text {max }}$. Quantum numbers $(L, S) J^{\pi} ; T=(0,0) 0^{+} ; 0$.

- Results in agreement with literature.

$K_{\max }$	Volkov
1	-39.635
3	-40.001
5	-41.022
7	-41.785
9	-42.384
11	-42.682
13	-42.868
15	-42.952
17	-42.996
19	-43.017

Table 3 - Unphysical ground-state energy of ${ }^{5} \mathrm{He}$ with the Volkov potential in function of $K_{\text {max }}$. Quantum numbers $(L, S) J^{\pi} ; T=(1,1 / 2) 1 / 2^{-} ; 1 / 2$.

- Results in agreement with literature.

$K_{\max }$	Volkov	Minnesota
2	61.142	-20.537
4	62.015	-26.128
6	63.377	-29.508
8	64.437	-31.288
10	65.354	-32.314
12	65.886	-33.020
14	66.201	-33.528

Table 4 - Ground-state energy of ${ }^{6} \mathrm{Li}$ with the Volkov and Minnesota potentials in function of $K_{\text {max }}$. Quantum numbers $(L, S) J^{\pi} ; T=(0,1) 1^{+} ; 0$.

- Results in agreement with literature.

Bound state vs scattering state

Rayleigh-Ritz varional method

$$
\Psi=\sum_{i j} c_{i j} \mathbb{Y}_{i} \frac{f_{j}(\rho)}{\rho^{(3 A-4) / 2}}
$$

Schrödinger eq. \rightarrow eigenvalue problem

$$
\begin{aligned}
&><\quad \psi= \sum_{i j} c_{i j} \mathbb{Y}_{i} \frac{f_{j}(\rho)}{\rho^{(3 A-4) / 2}}+\psi_{F}+K \psi_{G} \\
&><\quad \text { Schrödinger eq. } \rightarrow \text { linear systems }
\end{aligned}
$$

Bound state vs scattering state

Rayleigh-Ritz varional method
Kohn variational method

$$
\Psi=\sum_{i j} c_{i j} \mathbb{Y}_{i} \frac{f_{j}(\rho)}{\rho^{(3 A-4) / 2}}
$$

$$
><\quad \Psi=\sum_{i j} c_{i j} \mathbb{Y}_{i} \frac{f_{j}(\rho)}{\rho^{(3 A-4) / 2}}+\psi_{F}+K \psi_{G}
$$

Schrödinger eq. \rightarrow eigenvalue problem

Schrödinger eq. \rightarrow linear systems

Extra need

- Computing the matrix elements

$$
\left\langle\mathbb{Y}_{i} \frac{f_{j}(\rho)}{\rho^{(3 A-4) / 2}}\right| H-E\left|\psi_{F, G}\right\rangle \text { and }\left\langle\psi_{F, G}\right| H-E\left|\psi_{F, G}\right\rangle
$$

- Can be obtained approximately by projecting over the HH basis.

dn scattering

- Minnesota potential is used.

Conclusion

Summary

- A new implementation of the hyperspherical harmonic method for few-nucleon bound and scattering states has been presented.

Key features

- No need to build an antisymmetric hyperspherical harmonic basis but only antisymmetric eigenstates are found.
- The Hamiltonian and the antisymmetrization matrices are written as products of sparse matrices.

Conclusion

Summary

- A new implementation of the hyperspherical harmonic method for few-nucleon bound and scattering states has been presented.

Key features

- No need to build an antisymmetric hyperspherical harmonic basis but only antisymmetric eigenstates are found.
- The Hamiltonian and the antisymmetrization matrices are written as products of sparse matrices.

Results

- Groundstate energies for 3-, 4-, 5-, and 6-nucleon systems using central potentials (Volkov and Minnesota).
- the $d+n S$-wave phaseshifts using the Minnesota potential (as a proof of principle).

Conclusion

Summary

- A new implementation of the hyperspherical harmonic method for few-nucleon bound and scattering states has been presented.

Key features

- No need to build an antisymmetric hyperspherical harmonic basis but only antisymmetric eigenstates are found.
- The Hamiltonian and the antisymmetrization matrices are written as products of sparse matrices.

Results

- Groundstate energies for 3-, 4-, 5-, and 6-nucleon systems using central potentials (Volkov and Minnesota).
- the $d+n S$-wave phaseshifts using the Minnesota potential (as a proof of principle).

Next steps

- Make the code faster (with more suitable numerical algorithms and parallelization)
- adapting the code for realistic potentials

