
Three-Body $Cs(H_2,\gamma)La$ Nuclear Synthesis in Cuboctahedron CsH_2Pd_{12}

Shinsho Oryu,¹ Takashi Watanabe,¹ and Yasuhisa Hiratsuka¹

¹ Tokyo University of Science, Noda, Chiba 278-8510 Japan

Cs+H+H three-body calculation in cuboctahedron twelve Pd cluster.

$$H = K_{12Pd} + K_{3N} + V_{3N}^{had} + V_t$$

+ $(K_{Zel} + V_{3N}^C + V_{PdN}^C + V_{ZelPd}^M + V_{ZelN}^M + V_{el-el}^M)$
= $K_{12Pd} + K_{3N} + V_{3N}^{had} + V_t + H_{el}^M$

Cs+H+H three-ion Hamiltonian:

$$\begin{split} H &\approx \overline{K_{rel}} + V_{3N}^{had} + V_t + V_{3N}^C + V_{PdN}^C + V_{ZelN}^M \\ &+ (\langle K_{Zel} \rangle + \langle V_{ZelPd}^M \rangle + \langle V_{el-el}^M \rangle), \\ &= \overline{K_{rel}} + V_{3N}^{had} + V_t + V_{3N}^C + V_{PdN}^C + \overline{V}_{ZelN}^M, \\ &(1) \qquad (2) \qquad (3) \qquad (4) \qquad (5) \end{split}$$

Cs+H+H molecular Hamiltonian:

$$H_{el}^{M} = \overline{K_{Zel}} + V_{3N}^{C} + V_{PdN}^{C} + V_{ZelN}^{M} + V_{ZelPd}^{M} + V_{el-el}^{M},$$

$$\overline{S}Z_{Zel-N} \quad \overline{S}_{Zel-Pd} \quad \overline{S}_{el-el}$$

TABLE II: Woods-Saxon potential was adopted A set of parameters: $V_{W0}^{N_iN_j}$ [MeV], $R_{W0}^{N_iN_j}$ [fm], and $a_{W0}^{N_iN_j}$ [fm] are shown. A volume integral: $I(A_1, A_2) \equiv \int d^3 r U_{A_1,A_2}(r)/(A_1 \times A_2) = 4\pi V_0 \int r^2 dr/[1 + \exp\{(r-R)/a\}]/(A_1 \times A_2) \approx (4\pi/3)R^3V_0[1 + (\pi a/R)^2]/(A_1 \times A_2)$ is defined by [MeV·fm³] unit for nuclear mass numbers A_1 and A_2 .

Systems	$V_0 \equiv V_{W0}^{\rm N_i N_j}$	$R \equiv R_{W0}^{\rm N_i N_j}$	$a \equiv a_{W0}^{\mathrm{N_iN_j}}$	Ι
¹³³ Cs- ³ H	-31.92(5)	7.6	0.8	-241.2
$^{3}\mathrm{H}\text{-}^{3}\mathrm{H}$	-41.34(0)	1.7	0.4	-328.9
135 Cs- 2 H	-29.89(0)	7.6	0.8	-225.8
$^{2}\mathrm{H}$ - $^{2}\mathrm{H}$	-69.80(0)	1.7	0.4	-554.7
137 Cs- 1 H	-26.82(8)	7.6	0.8	-202.7

$$V_c^{N_i N_j}(r_{ij}) = \hbar c \alpha \frac{Z_i Z_j}{2R} \left[3 - \left(\frac{r_{ij}}{R_c^{N_i N_j}} \right)^2 \right] \qquad \text{for} \qquad r_{ij} \leq R_c^{N_i N_j}$$

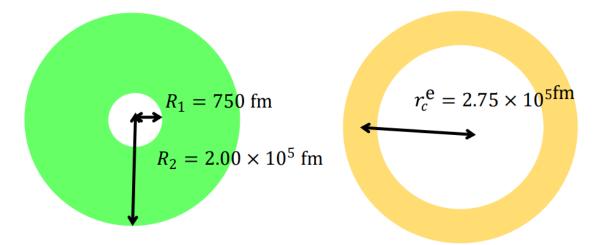
$$= \hbar c \alpha \frac{Z_i Z_j}{r_{ij}} \qquad \qquad \text{for} \qquad R_c^{N_i N_j} < r_{ij}$$

where $\alpha = e^2/\hbar c = 1/137.0388$, $R_c^{\text{CsD}} = 7.6 \text{fm} = R_W^{\text{CsD}}$, and $R_c^{\text{DD}} = 1.7 \text{fm} = R_W^{\text{DD}}$ are taken.

For the N_i potential in the "electronic field", $\overline{V}_{\text{ZelN}}^M$ is defined by two terms,

$$\overline{V}_{\text{ZelN}}^{M}(r_1, r_2, r_3) = \sum_{i=1}^{3} V_c^{Z_{\text{Pd}}N_i}(r_i) + \sum_{i=1}^{3} V_c^{Z_{\text{Cs}}N_i}(r_i),$$

where the first term of the right hand side is the attractive potential between the effective electrons around Pd and ions (i.e., two hydrogens: $H_{(1)}$, $H_{(2)}$ and Cs) which is approximately defined by a Gauss type spherical shell structure,


$$V_c^{Z_{Pd}N_i}(r_i) = Z_i v_c^{e(Pd)} \exp[-a_c^{e(Pd)}(r_i - r_c^{e(Pd)})^2],$$

where the three parameters are fitted to reproduce the ground state energy of CsH₂ E_{gr}^{M} =-5.92eV and the first excited state $E_{1}^{M} = 296.2$ eV. Therefore, the following parameters are selected

$$v_c^{e(Pd)} = -1.204 \times 10^{-3} \text{MeV}, \quad a_c^{e(Pd)} = 2.415 \times 10^{-11} \text{fm}^{-2}, \quad r_c^{e(Pd)} = 8.19 \times 10^4 \text{fm}.$$

The second term is given by,

$$\begin{aligned} V_c^{\mathbf{Z}_{\mathrm{Cs}}\mathrm{N}_i}(\boldsymbol{r}_i) &= \hbar c \alpha (Z_{Cs}+2) Z_i \Big[\frac{(R_1^2/2+R_1^2)}{R_2^3-R_1^3} - \frac{1}{R_2} - \frac{(R_2^2/2+R_1^3/R_2)}{R_2^3-R_1^3} \Big] \\ & \text{for} \quad r_i \leq R_1 \\ &= \hbar c \alpha (Z_{Cs}+2) Z_i \Big[\frac{(r_i^2/2+R_1^3/r_i)}{R_2^3-R_1^3} - \frac{1}{R_2} - \frac{(R_2^2/2+R_1^3/R_2)}{R_2^3-R_1^3} \Big] \\ & \text{for} \quad R_1 \leq r_i \leq R_2 \\ &= -\frac{\hbar c \alpha (Z_{Cs}+2) Z_i}{r_i} \qquad \text{for} \quad R_2 \leq r_i, \\ & R_1 = 750 \text{fm}, \quad R_2 = 2 \times 10^5 \text{fm}. \end{aligned}$$

The uniform electron distribution around Cs is given on the left, while the electron distribution around 12Pd ions is portrayed by the ring of radius R = 2.75Å. Therefore the electron-Pd potential is given by a shallow pan type.

12 x N-Pd Coulomb potentials

$$V_{c}^{\mathrm{Pd_{j}N_{i}}}(r_{i}) = \hbar c \alpha \frac{Z_{i} Z_{j(\mathrm{Pd})}}{2R_{c}^{\mathrm{Pd}}} \left[3 - \left(\frac{r_{ij}}{R_{c}^{\mathrm{Pd}}}\right)^{2} \right]$$

for $r_{ij} \leq R_{c}^{\mathrm{Pd}}$
 $= \hbar c \alpha \frac{Z_{i} Z_{j(\mathrm{Pd})}}{r_{ij}}$ for $R_{c}^{\mathrm{Pd}} < r_{ij}$

with $R_c^{\rm Pd}$ =5.561 fm,

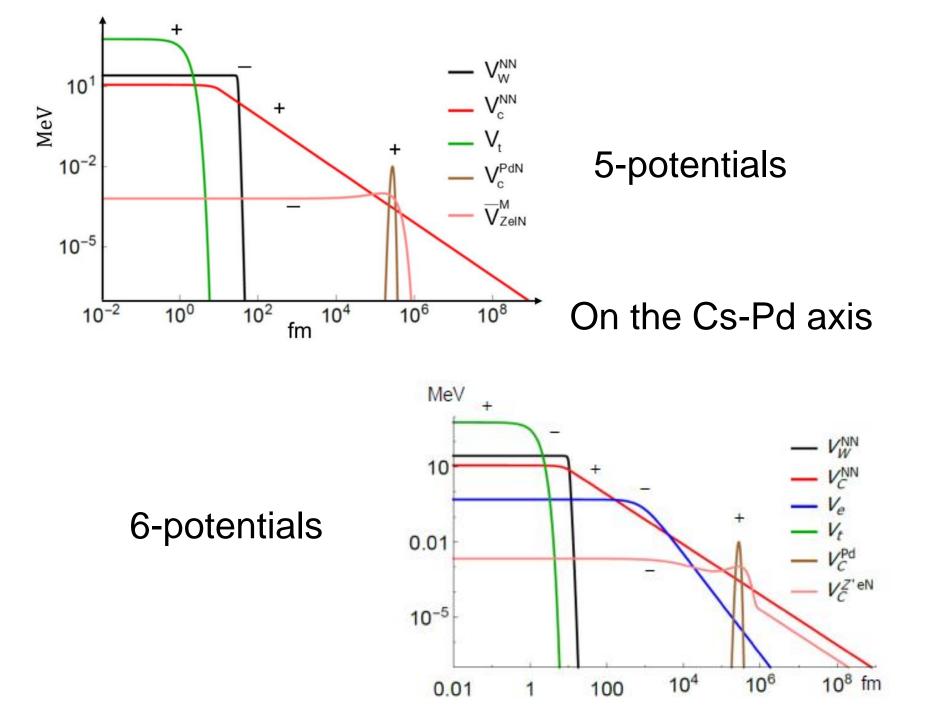
The twelve Pd coordinates r_j for (x_j, y_j, z_j) are given by using $d = (2.75/\sqrt{2})$ Å=1.94454Å.

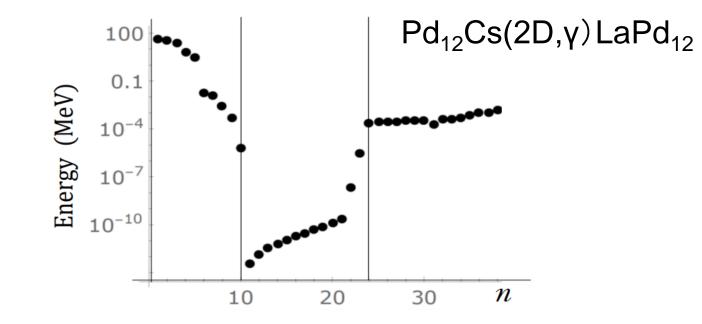
j	1	2	3	4	5	6
(x, y, z)	(0,d,d)	(0, -d, d)	(0,d,-d)	(0,-d,-d)	(d,0,d)	(-d,0,d)
j	7	8	9	10	11	12
(x,y,z)	(d,0,-d)	(-d,0,-d)	(d, d, 0)	(-d,d,0)	(d, -d, 0)	(-d,-d,0)

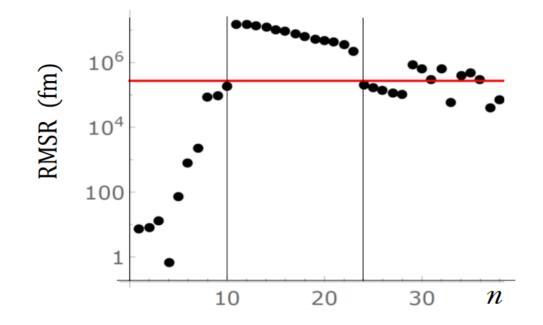
A three-body force (potential) which can reproduce the La ground state energy.

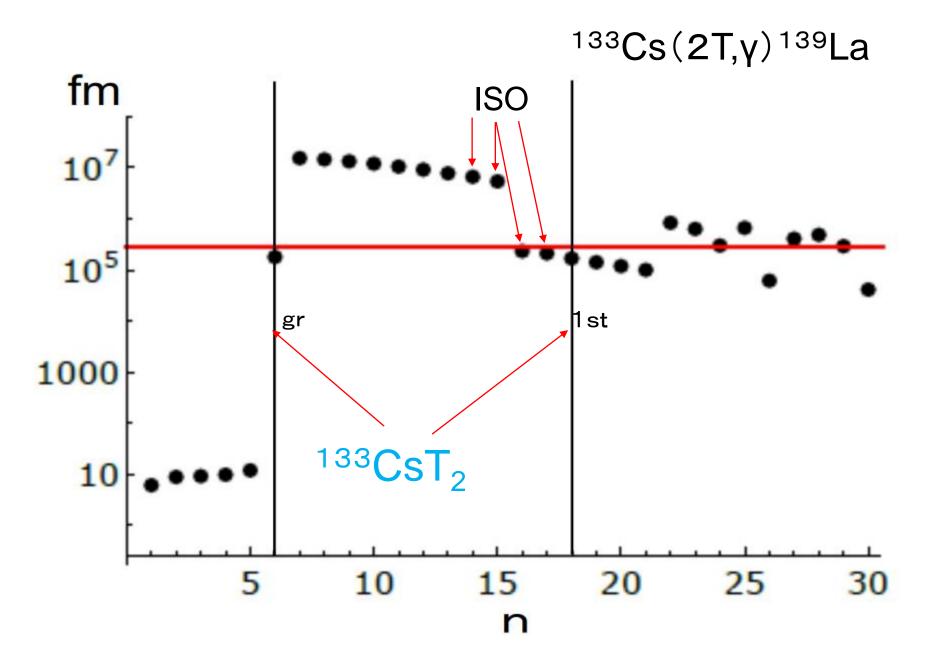
In this paper, we adopt a nuclear three-body potential of the form:

$$V_t(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = V_{t0} \exp\left[-\frac{r_{12}^2 + r_{23}^2 + r_{31}^2}{a_t^2}\right], \quad V_{3BSF}$$


where $V_{t0} = 1720$ MeV and $a_t = 3.0$ fm are used to fit the ground state of La by adding the Coulomb force. We have obtained a very good fit to the experimental ground state energy $E_{gr}^{La} = -25.92$ MeV, the root mean square (rms) radius $R_{rms}^{La} = 6.388$ fm.

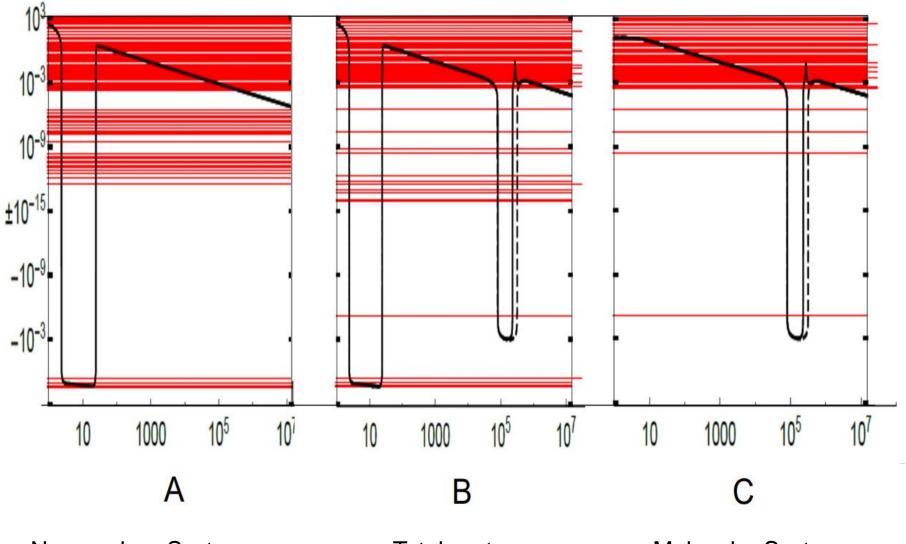

The sixth potential is a three-body long range hadron potential by the GPT theory,


$$V_{3\text{GPT}}(r_1, r_2, r_3) \rightarrow V_{3\text{BLF}}(r_1, r_2, r_3)$$


$$\bigvee_{3\text{BLF}} \approx \frac{Aa_e^2}{\left[r_{12}^2 + r_{23}^2 + r_{31}^2 + a_e^2\right]} + \frac{Ba_e^2}{\left[r_{12}^2 + r_{23}^2 + r_{31}^2 + 10a_e^2\right]}$$

$$A = -0.5 \text{MeV}, B = 0.5 \text{MeV}, a_e = 2000 \text{ fm},$$

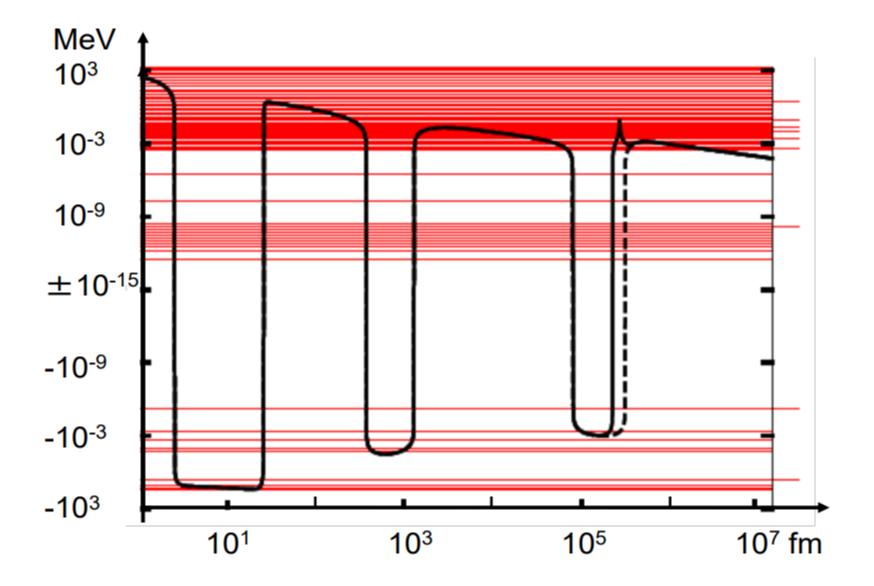
The E2 transition time $\tau_{if} = 1/W_{if}^{E2}$ and the transition probability W_{if}^{E2} are defined by,

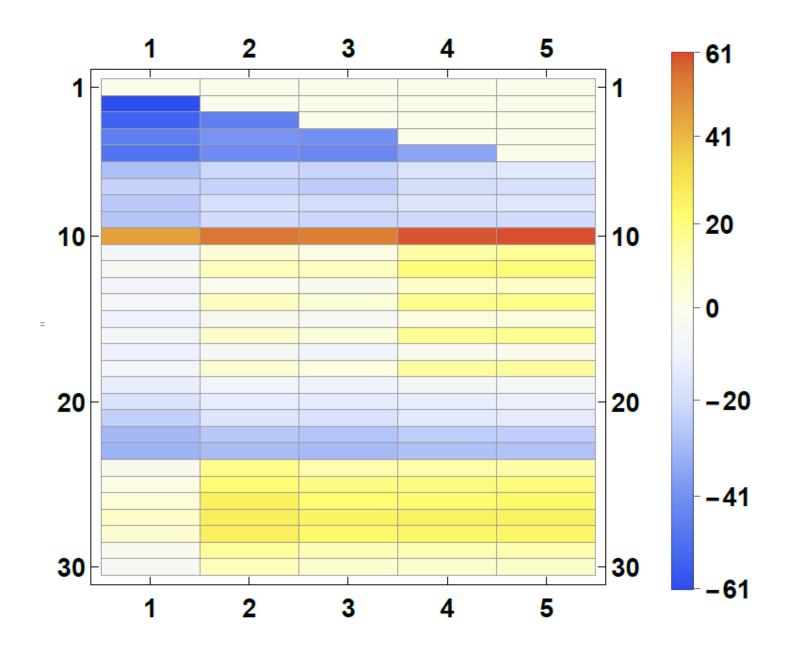

$$W_{if}^{E2} = \frac{4\pi}{75\hbar} \left(\frac{E_i - E_f}{\hbar c}\right)^5 \sum_{\mu} |\langle \psi_f| \sum_{j=1}^3 Z_j er_j^2 Y_{2\mu}(\theta_j \phi_j) |\psi_i \rangle|^2.$$

By using symmetry, we obtain

$$W_{if}^{E2} = \frac{4\pi c}{15} \left(\frac{E_i - E_f}{\hbar c}\right)^5 \alpha \sum_{j=1}^3 \left| \langle \psi_f | \frac{1}{2} (2z_j^2 - x_j^2 - y_j^2) Z_j | \psi_i \rangle \right|^2$$

by using $(2z_j^2 - x_j^2 - y_j^2) \to r_j^2$,


$$W_{if}^{\text{E2}} \to W_{if}^{\text{E2}'} = \frac{4\pi c}{15} \left(\frac{E_i - E_f}{\hbar c}\right)^5 \alpha \sum_{j=1}^3 \left| <\psi_f |\frac{1}{2}r_j^2 Z_j |\psi_i > \right|^2.$$



Nu clear System

Total system

Molecular System

Critical Reaction Value:

 C_{low} (in molecular system) = $t \times \rho \times T$

C_{high} (Thermo-nuclear fusion) = $t \times \rho \times T$

$C_{low}(n)$	duration time $t[sec]$	$ ho ~[{ m cm}^{-3}]$	T [eV]	$t\rho T \ [\text{sec} \cdot \text{eV/cm}^3]$	$t\rho T$ [sec· Pa]	transition time τ [sec]
$C_{low}(23)$	1.0	3.44×10^{22}	3.18	1.09×10^{23}	1.75×10^{10}	7.36×10^{-8}
$C_{low}(22)$	1.0	3.44×10^{22}	2.05×10^{-2}	$7.05 imes 10^{20}$	$1.13 imes 10^8$	1.02×10^{-6}
C_{high}	1.0	3.30×10^{14}	$5.17 imes 10^4$	$1.71 imes 10^{19}$	$2.73 imes 10^7$	
$C_{low}(21)$	1.0	3.44×10^{22}	2.40×10^{-4}	$8.26 imes 10^{18}$	1.32×10^6	4.23×10^{-4}
$C_{low}(20)$	1.0	3.44×10^{22}	1.36×10^{-4}	4.68×10^{18}	$7.50 imes 10^5$	1.92×10^{-2}

- ρ : density
- T : temperature or energy
- *t* : duration time

Summary

- 1) Cs+H+H three-ion calculation in a Cuboctahedron CsH₂Pd₁₂ cluster
- 2) Used potentials: 5 and 6

 Nuclear CsHH, 2Coulomb CsHH,
 Coulomb (Cs,H,H)-12Pd, 4Nuclear three-body short range force CsHH, 5 electrons-(Cs,H, Pd, and electron),

where to freeze electron degree's of freedom fitted to gr. 1^{st} CsH₂ molecular states by the Kohn-Sham equation or the ADF (Amsterdam density functional) package.

- 3) The 6th potential is the hadron three-body long range potential by the general particle transfer (GPT) method.
- 4) Calculation is done from 0.01fm to several ten nm region in one stretch with 100-figures accuracy.

- 5) Obtained 4 ion-oscillation (IOS) states between gr and 1st states.
- 6) IOS states strongly interfere with the three-nuclear resonance states of La* and go down to La ground state.
- 7) In order to compare the thermal nuclear fusion, a critical value C= t x ρ x T was compered between thermo- and ultra-low energy nuclear syntheses (ULNS).
- 8) They are almost the same, because the density of thermonuclear synthesis is 3.30×10^{14} /cm³ While the cuboctahedron is 3.44×10^{22} /cm³, However, the energy is 5.17×10^{4} eV in the former case, but 3.18eV in the latter case. $C_{high}=2.73 \times 10^{7}$ [sec·Pa] vs $C_{low}=1.75 \times 10^{10}$ [sec·Pa].

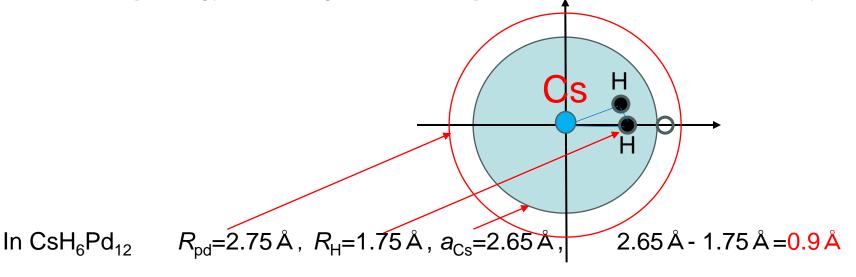
Therefore, ULNS could be easily controlled by saving energy.

Thank you very much for your attention

Molecular Hamiltonian, for 609-electrons could be solved by the Khon-Sham equation or the ADF (Amsterdam density functional) package.

$$H_{el}^{M} = K_{Zel} + V_{3N}^{C} + V_{PdN}^{C} + V_{ZelN}^{M} + V_{ZelPd}^{M} + V_{el-el}^{M},$$

Therefore, the ground state energy of CsH2 in the cluster is calculated by the ADF, as


$$E_{\rm CsH_2} = E_{\rm Pd_{12}CsH_2} - E_{\rm Pd_{12}},\tag{A.3}$$

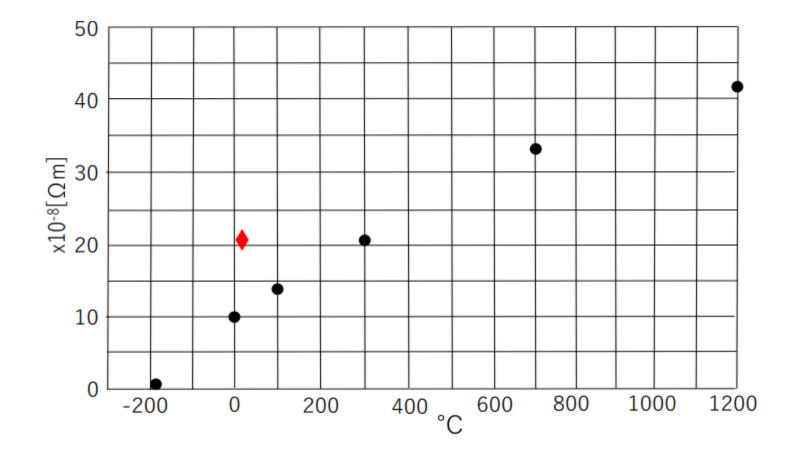
where the value $E_{CsH_2}^{gd} = -5.9155$ eV is obtained, and the first excited state becomes 302 eV above the ground state, while the ground state energy in the free space is -4.4601 eV.

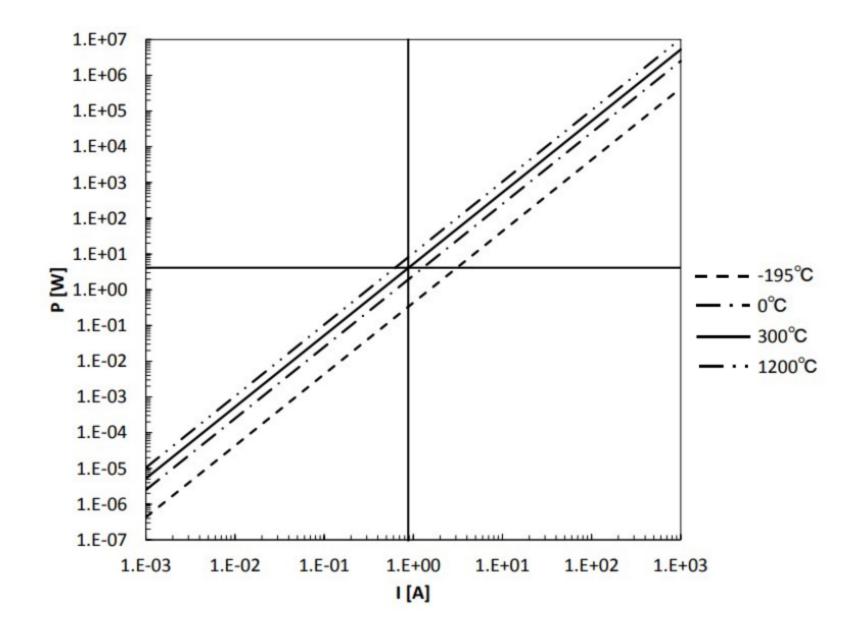
Therefore, in CsH_6Pd_{12}

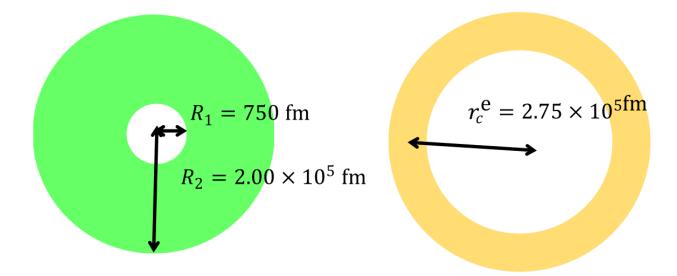
5.9155-4.4601=1.4554eV

deeper binding energy in the cage, which brings H into the Cs atomic radius by

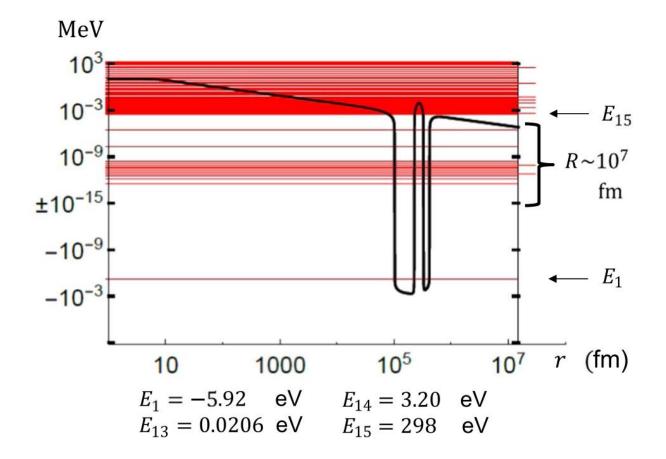
Table 2. Some reaction types and separation energies by the mass relation using
table 1 with [MeV] unit. The separation energies with sign (*) are used in this
paper. CsD_2Pd_{12} case

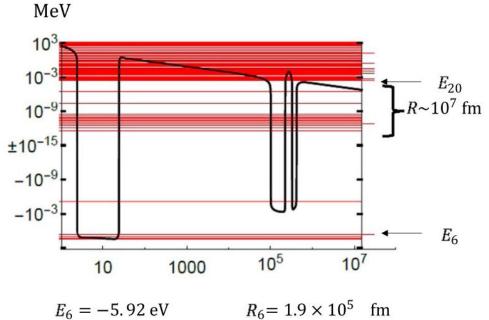

Ions	Separation type	Separation energy	[MeV]
² H	p–n	$m_p + m_n - m_{^2\mathrm{H}}$	2.224(0)
⁴ He	$^{2}\text{H}-^{2}\text{H}$	$2 \times m_{\rm H}^2 - m_{\rm He}^4$	$23.84(7)^{*}$
¹³⁵ Ba	$^{2}\text{H}-^{133}\text{Cs}$	$m_{\rm H}^2 + m_{\rm H}^{133} - m_{\rm H}^{135} - m_{\rm H}^{135}$	12.91(6)
¹³⁷ La	$^{2}\text{H}-^{2}\text{H}-^{133}\text{Cs}$	$2 \times m_{\rm H}^2 + m_{\rm H}^{133}$ Cs - $m_{\rm H}^{137}$ La	25.32(7)
¹³⁷ Ba	$^{2}\text{H-}^{135}\text{Cs}$	$m_{\rm 2H} + m_{\rm 135} - m_{\rm 137} - m_{\rm Ba}$	13.27(6)*
¹³⁹ La	$^{2}\text{H}-^{2}\text{H}-^{135}\text{Cs}$	$2 \times m_{^{2}H} + m_{^{135}Cs} - m_{^{139}La}$	25.92(1)*
¹³⁹ Ba	$^{2}\text{H-}^{137}\text{Cs}$	$m_{\rm H} + m_{\rm 137}_{\rm Cs} - m_{\rm 139}_{\rm Ba}$	11.50(4)
¹⁴¹ La	$^{2}\text{H}-^{2}\text{H}-^{137}\text{Cs}$	$2 \times m_{\rm H}^2 + m_{\rm H}^{137}$ Cs $- m_{\rm H}^{141}$ La	22.66(4)

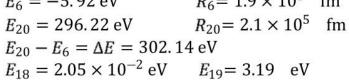

Table 3. Calculated two-body separation energies of ⁴He and ¹³⁷Ba with d-d and Cs-d models are given by using the WS potentials with the above mentioned parameters and the Coulomb potentials, where the ground states are fitted with the experimental separation energies $E_1 = E_1^{exp}$ (see table 2). The ground state energy of ¹³⁹La by Cs-d-d separation model is calculated by above mentioned five potentials and fitted by using the three-body force. E_2 , E_3 , E_4 and E_5 are excited states. It should be reminded that these results are obtained only by the central force of the WS potential.

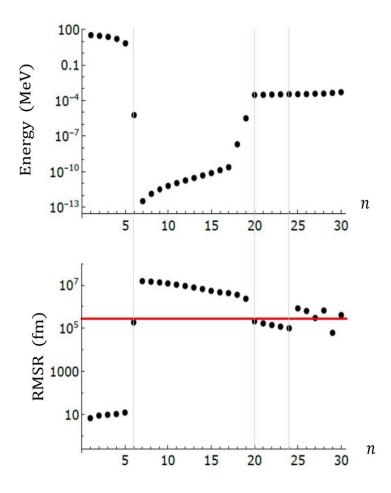

Nucleus	Separation	E_1 [MeV]	E_2 [MeV]	E_3 [MeV]	E_4 [MeV]	E_5 [MeV]
⁴ ₂ He ¹³⁷ ₅₆ Ba ¹³⁹ ₅₇ La	d-d Cs-d Cs-d-d	-23.85 -13.28 -25.92	-9.57 -23.51	-1.98 -19.02	-11.59	-3.92

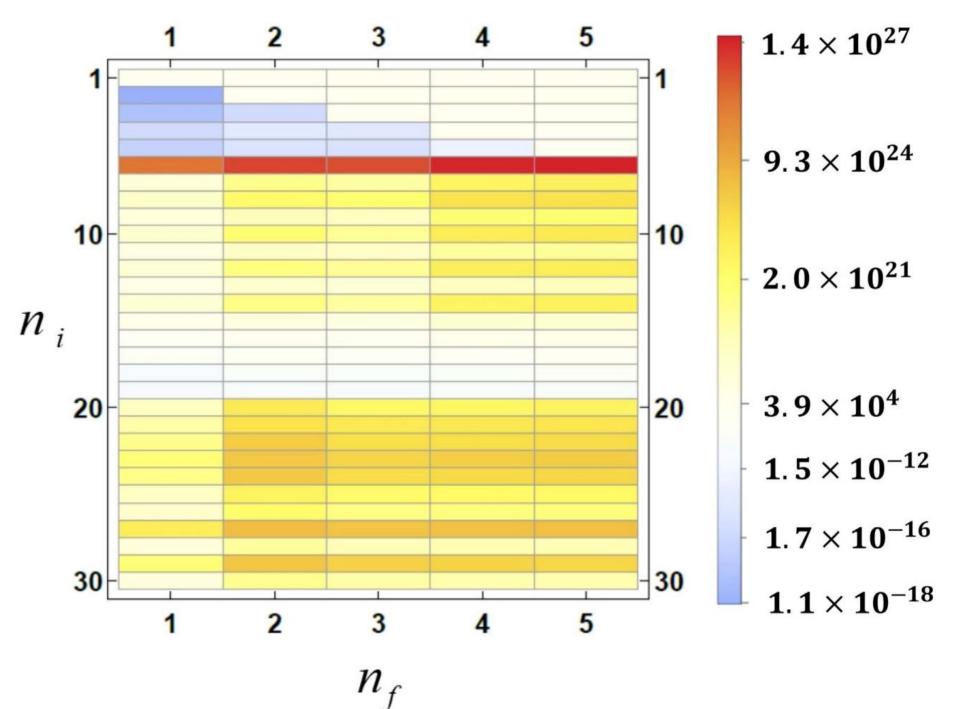
n	1	2	3	4	5	6*	7	8	9
$E_n(\text{MeV})$	-29.12	-26.37	-22.03	-12.10	-4.10	-5.9×10^{-6}	1.0×10^{-15}	5.0×10^{-15}	1.0×10^{-14}
RMS(fm)	6.16	8.92	9.27	9.88	12.03	$1.80{ imes}10^5$	1.5×10^{7}	1.5×10^{7}	1.3×10^{7}
$ au(\mathrm{sec})$		1.4×10^{-18}	1.9×10^{-17}	2.5×10^{-15}	3.9×10^{-16}	$3.7{\times}10^{24}$	7.3×10^4	2.4×10^{5}	$1.8{ imes}10^4$
n	10	11	12	13	14°	15°	16°	17°	18^{**}
$E_n(\text{MeV})$	4.0×10^{-14}	1.0×10^{-13}	7.0×10^{-13}	1.8×10^{-12}	7.0×10^{-11}	2.8×10^{-10}	2.4×10^{-8}	3.1×10^{-6}	2.9×10^{-4}
RMS(fm)	1.2×10^{7}	1.1×10^{7}	9.2×10^{6}	7.8×10^{6}	6.7×10^{6}	5.4×10^{6}	$2.3{ imes}10^5$	2.1×10^{5}	1.7×10^{5}
$\tau(\text{sec})$	1.2×10^{5}	6.9×10^{3}	$9.5{ imes}10^4$	$8.3 imes 10^4$	6.8×10^{-1}	1.5×10^{-2}	3.6×10^{-5}	2.6×10^{-6}	8.1×10^{5}
n	19	20	21	22	23	24	25	26	27
$E_n(\text{MeV})$	3.6×10^{-4}	3.9×10^{-4}	4.0×10^{-4}	4.1×10^{-4}	4.1×10^{-4}	4.2×10^{-4}	4.5×10^{-4}	4.6×10^{-4}	5.3×10^{-4}
RMS(fm)	1.4×10^{5}	1.2×10^{5}	1.0×10^{5}	8.4×10^{5}	6.4×10^{5}	$3.0{ imes}10^5$	$6.7{\times}10^5$	6.2×10^{4}	4.1×10^{5}
$\tau(sec)$	$2.3 imes 10^6$	4.7×10^{6}	7.0×10^{6}	5.5×10^{6}	5.3×10^{5}	$1.7{\times}10^5$	4.1×10^{7}	4.7×10^{4}	$7.5{ imes}10^6$


$ \begin{array}{c cccc} 2 & -26.37 \\ & 8.92 \\ \hline & 1.4 \times 10^{-18} \\ \hline & 11 \\ \hline & 0^{-6} & 3.3 \times 10^{-13} \end{array} $	12	13	$ \begin{array}{r} -4.10 \\ 12.0 \\ 3.9 \times 10^{-16} \\ 14 \\ 6.4 \times 10^{-12} \\ \end{array} $	$ \begin{array}{r} 8.1 \times 10^2 \\ 2.0 \times 10^{-5} \\ 15 \end{array} $	$ \begin{array}{r} 2.1 \times 10^{3} \\ 7.6 \times 10^{-4} \\ 16 \end{array} $	17	9.0×10^4 3.5×10^{-5} 18
$ 1.4 \times 10^{-18} \\ 11 $	$ \begin{array}{c c} 1.9 \times 10^{-17} \\ 12 \end{array} $	2.5×10^{-15} 13	3.9×10^{-16} 14	2.0×10^{-5} 15	7.6×10^{-4} 16	7.1×10^{-5} 17	3.5×10^{-5} 18
11	12	13	14	15	16	17	18
						-	_
0^{-6} 3.3×10 ⁻¹³	1.4×10^{-12}	3.3×10^{-12}	6.4×10^{-12}	1 110-11	1 0 10-11	a a 1 a - 11	11
		0.0 \ 10	0.4×10	1.1×10	$ 1.8 \times 10^{-11} $	$ 3.0 \times 10^{-11} $	4.8×10^{-11}
1.5×10^7	1.5×10^{7}	1.3×10^{7}	1.2×10^{7}	1.1×10^{7}	9.2×10^{6}	7.8×10^{6}	6.7×10^{6}
2^{24} 2.0×10 ³	6.8×10^{3}	4.9×10^2	3.4×10^{3}	1.9×10^{2}	2.7×10^{3}	6.0×10^{1}	$2.3{ imes}10^3$
20°	21°	22°	23°	24^{**}	25	26	27
$^{-11}$ 1.4×10 ⁻¹⁰	2.4×10^{-10}	2.0×10^{-8}	3.2×10^{-6}	3.0×10^{-4}	3.1×10^{-4}	3.2×10^{-4}	3.3×10^{-4}
0^{6} 4.7×10 ⁶	4.3×10^{6}	3.6×10^{5}	2.3×10^{5}	2.1×10^{5}	1.7×10^{5}	1.4×10^{5}	1.2×10^{5}
0^{0} 1.9×10 ⁻²	4.2×10^{-4}	1.0×10^{-6}	7.4×10^{-8}	2.3×10^{4}	6.5×10^4	1.3×10^{5}	$2.0{ imes}10^5$
)	$ \begin{array}{c cccc} & 2.0 \times 10^{3} \\ \hline & 20^{\circ} \\ \hline & 1.4 \times 10^{-10} \\ 0^{6} & 4.7 \times 10^{6} \\ \end{array} $	$\begin{array}{c cccc} 0^{24} & 2.0 \times 10^3 & 6.8 \times 10^3 \\ \hline & 20^\circ & 21^\circ \\ \hline ^{-11} & 1.4 \times 10^{-10} & 2.4 \times 10^{-10} \\ 0^6 & 4.7 \times 10^6 & 4.3 \times 10^6 \end{array}$	$\begin{array}{c ccccc} & 2.0 \times 10^3 & 6.8 \times 10^3 & 4.9 \times 10^2 \\ \hline & 20^\circ & 21^\circ & 22^\circ \\ \hline & ^{-11} & 1.4 \times 10^{-10} & 2.4 \times 10^{-10} & 2.0 \times 10^{-8} \\ 0^6 & 4.7 \times 10^6 & 4.3 \times 10^6 & 3.6 \times 10^5 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$








Figure 6. The uniform electron distribution around Cs is given on the left, while the electron distribution around 12Pd ions is portrayed by the ring of radius R = 2.75 Å. Therefore the electron-Pd potential is given by a shallow pan type.

The second term is given by

$$\begin{aligned}
\mathbf{\widehat{S}}_{\mathsf{Zel-N}} \quad \overline{V_c^{\mathsf{Z}_{Cs}\mathsf{N}_i}(\mathbf{r}_i)} &= \hbar c \alpha Z_{Cs+1} Z_i \Big[\frac{(R_1^2/2 + R_1^2)}{R_2^3 - R_1^3} - \frac{1}{R_2} - \frac{(R_2^2/2 + R_1^3/R_2)}{R_2^3 - R_1^3} \Big] \\
& \text{for } r_i \leq R_1 \quad (22) \\
&= \hbar c \alpha Z_{Cs+1} Z_i \Big[\frac{(r_i^2/2 + R_1^3/r_i)}{R_2^3 - R_1^3} - \frac{1}{R_2} - \frac{(R_2^2/2 + R_1^3/R_2)}{R_2^3 - R_1^3} \Big] \\
& \text{for } R_1 \leq r_i \leq R_2 \quad (23) \\
&= -\frac{\hbar c \alpha Z_{Cs+1} Z_i}{r_i} \quad \text{for } R_2 \leq r_i, \quad (24)
\end{aligned}$$

with $i=D_1$, D_2 , Cs. Z_{Pd} and Z_{Cs+1} are effective charges around Pd- and Cs-ions with a hydrogen, and Z_i is the charge of *i*th-ion, respectively. In order to reproduce the binding energies of CsD₂ $E_{gr}^M = -5.916$ eV and $E_1^M = 296.1$ eV, the following parameters are selected,

 $R_1 = 750$ fm, $R_2 = 2 \times 10^5$ fm.

$$(5)_{\text{Zel-Pd}} \quad V_{\text{el-el}}^M = \sum_{k=1}^Z \sum_{m \neq k} V_c^{e_k - e_m} \qquad (5)_{\text{el-el}} \quad V_{\text{ZelPd}}^M = \sum_{j=1}^{12} V_c^{\text{ZePd}_j}.$$

Therefore, these parameters are fitted with the ground state (-5.916eV) and the first excited state (296.1eV) energies by the ADF calculation.