Many-channel cluster microscopic theory of resonance states and scattering in ⁹Be and ⁹B

Yuliya Lashko, Viktor Zhaba, Viktor Vasilevsky

INFN Sezione di Padova, Italy Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine

We studied the nature of high-energy resonance states in ⁹Be & ⁹B and S-factors of reactions ⁷Li(d, n)αα & ⁷Be(d, p)αα

To find astrophysical S-factors for the reactions ⁷Li+d= α + α +n, ⁷Be+d= α + α +p related to cosmological lithium problem

Resonances in ⁹Be, ⁹B

Where is 2/3 of ⁷Li?

Primordial ⁷Li abundance is 3 times overpredicted compared to the observed value

Sk. M. Ali et al, "Resonance Excitations in ⁷Be(d; p)⁸Be to Address the Cosmological Lithium Problem", Phys. Rev. Lett, Vol. 128, № 25, 252701, 2022

Experimental astrophysical S-factor of reactions $^{7}Be(d, p) ^{8}Be$ and $^{7}Be(d, \alpha) ^{5}Li$ shows a resonant behaviour

N. Rijal et al., "Measurement of d+⁷Be reaction rates for Big-Bang nucleosynthesis", Phys. Rev. Lett., vol. 122, p. 182701, 2019.

Experimental astrophysical S-factor of reactions $^{7}Be(d, p) ^{8}Be$ and $^{7}Be(d, \alpha) ^{5}Li$ shows a resonant behaviour

N. Rijal et al., "Measurement of d+7Be reaction rates for Big-Bang nucleosynthesis", Phys. Rev. Lett., vol. 122, p. 182701, 2019.

Experimental astrophysical S-factor of reactions ⁷Li(d, p)2α

S. Q. Hou, T. Kajino, et al, Astrophys. J., vol. 920, 145, 2021.

Experimental data for energy levels of ⁹Be and ⁹B near ⁷Li+d and ⁷Be+d thresholds

We account for 2 three-cluster configurations of ⁹B nucleus which generate different binary reaction channels

$${}^{9}B = \begin{cases} \alpha + \alpha + p \\ \alpha + {}^{3}He + d \end{cases} \Longrightarrow \begin{cases} {}^{8}Be + p \\ {}^{7}Be + d \\ {}^{6}Li + {}^{3}He \\ {}^{5}Li + {}^{4}He \end{cases}$$
$${}^{8}Be = \alpha + \alpha \\ {}^{7}Be = \alpha + {}^{3}He \\ {}^{6}Li = \alpha + d \\ {}^{6}Li = \alpha + p \end{cases}$$

Description of binary cluster structure of the subsystems

We account for 2 three-cluster configurations of ⁹Be nucleus which generate different binary reaction channels

Description of binary cluster structure of the subsystems

Asymptotically the three-cluster Schrödinger equation can be reduced to a two-body-like multichannel problem

Three-cluster wave function

$$\Psi^{J}\left({}^{9}Be\right) = \widehat{\mathcal{A}}\left[\Phi_{1}(n)\Phi_{2}\left({}^{4}He\right)\Phi_{3}\left({}^{4}He\right)f(\mathbf{x},\mathbf{y})\right]_{J}$$

Antisymmetrization operator

Intrinsic cluster w.f. (fixed)

W.f. of inter-cluster motion (to be found)

Wave function of a two-cluster system

$$\Psi_{^{5}He}^{J} = \widehat{\mathcal{A}} \left\{ \Phi_{2} \left({}^{4}He \right) \left[\Phi_{1} \left(n \right) \right]_{S} \left[g(\mathbf{x}) \right]_{\lambda} \right\}_{J}$$

W.f. of two-cluster subsystem

Two-body-like asymptotic behaviour at x<<y

$$f(x,y) \Rightarrow g(x) \left[\delta_{c,c'} \cdot \psi^{(-)}(py) - S_{c,c'} \cdot \psi^{(+)}(py) \right]$$

Scattering matrix

X

n

Input parameters

Assumption: internal cluster functions are approximated by the simplest translation-invariant shell model functions

NN potential: the Minnesota potential

Free parameters: the oscillator length b=1.285 fm the Majorana parameter u=0.95 parameters b, of Gaussian functions

Our input parameters are fitted to:

give experimental binding energy of ^{6,7}Li and ⁷Be

reproduce the energies of $3/2^{-}$ ground states in ⁹B = 2α +p and ⁹Be= 2α +n

α

minimize the ground state energy of ⁴He

A total of 18 resonance states were detected in each nucleus, majority of which has a negative parity

Spectra of resonance states in ⁹Be and ⁹B obtained within the present model

Two dashed circles mark borders between regions of small, intermediate and large effects of the Coulomb interaction

There is some agreement between our results and the available experimental data

Spectra of ⁹Be and ⁹B identified in different experiments compared with our results

The reaction $d+^7Be=^8Be(0^+) + p$ substantially dominates at the energy $0 \le E \le 1$ MeV

Total astrophysical S factor of 4 reactions initiated by interaction ⁷Be+d

The peak in the S-factor is caused by the wide 1/2⁻ resonance

The total and dominant partial S factors of the reaction ⁷Be+d=⁸Be(0⁺)+p

The reaction $d+^7Li=^8Be(0^+) + n$ substantially dominates at the energy $0 \le E \le 1$ MeV

Total astrophysical S factor of 4 reactions initiated by interaction ⁷Li+d

The peak in the S-factor is caused by the wide 1/2⁻ resonance

The total and dominant partial S factors of the reaction ⁷Li+d=⁸Be(0⁺)+n

Total astrophysical S factor of the reactions generated by ⁷Li+d and ⁷Be+d collisions at the Gamow peak energies E₀

Dominant states via which reactions induced by the ⁷Be+d collisions proceeds at the Gamow peak energy E₀=307 keV

S-factor for ⁷Be+d=⁸Be(2⁺)+p reaction corresponds well to the experimental data at 0.3< E <0.75 MeV and E >1.3 MeV

Experimental data: N. Rijal et al., Phys. Rev. Lett., vol. 122, p. 182701, 2019. ²³

Within our model S-factor for ⁷Be+d=⁸Be(0⁺)+p reaction reproduces fairly well the experimental data below 1 MeV

Experimental data: R. W. Kavanagh, Nucl. Phys. A, vol. 18, pp. 492–501 (1960) ²⁴

In summary, wide 1/2⁻ resonance states generate a large peak in S-factors of ⁷Li(d, n)αα & ⁷Be(d, p) αα reactions

No narrow resonance state near d+⁷Be or d+⁷Li threshold is found