Meson exchange currents in the clothed-particle representation.

Y. Kostylenko ${ }^{1}$ A. Shebeko ${ }^{1}$
${ }^{1}$ Institute for Theoretical Physics, NSC "Kharkov Institute of Physics and Technology"
EFB25, Mainz, July - August, 2023

Contents

1 Recollections
2 Underlying formalism
3 Electron-Deuteron Scattering Amplitude
4 Deuteron eigenvalue problem in motion
5 Current density operator in the CPR

- Mesonic currents
- Seagull currents

6 Summary
7 References

Recollections

We are going on applications of a field theoretical approach based upon method of unitary clothing transformations (UCTs):
\{GreSch58\} Greenberg O., Schweber S.: Nuovo Cim. 8 (1958) 378; doi: 10.1007/BF02828746
\{SheShi00\} Shebeko A., Shirokov M.: Prog. Part. Nucl. Phys. 44 (2000) 75;
doi: 10.1016/S0146-6410(00)00060-0
\{DuShe10\} Dubovyk I., Shebeko O.: Few Body Syst. 48 (2010) 109;
arXiv:1012.5406 [nucl-th]
\{SheFro12\} Shebeko A., Frolov P.: Few Body Syst. 52 (2012) 125;
arXiv:1107.5877 [hep-th]
\{She13\} Shebeko A.: Few Body Syst. 54 (2013) 2271;
doi: 10.1007/s00601-012-0482-3
with its description of electromagnetic (e.m.) properties of deuteron. See our contribution to APFB20 (2021), Kanazawa
\{KosShe21\} Kostylenko, Y., Shebeko, A.: Few-Body Syst. 62 (2021) 41;
doi: 10.1007/s00601-021-01620-5

Underlying formalism

Method in question is aimed at expressing total Hamiltonian $H(\alpha)$ for interacting fields through so-called clothed-particle creation (annihilation) operators α_{c}, e.g., $a_{c}^{\dagger}\left(a_{c}\right), b_{c}^{\dagger}\left(b_{c}\right)$ and $d_{c}^{\dagger}\left(d_{c}\right)$ via UCTs $W\left(\alpha_{c}\right)=W(\alpha)=\exp R, R=-R^{\dagger}$ in similarity transformation

$$
\alpha=W\left(\alpha_{c}\right) \alpha_{c} W^{\dagger}\left(\alpha_{c}\right)
$$

that connects a primary set α in bare-particle representation (BPR) with new operators in clothed particle representation (CPR).
A key point of clothing procedure is to remove so-called bad terms from Hamiltonian

$$
H \equiv H(\alpha)=H_{F}(\alpha)+H_{I}(\alpha)=W\left(\alpha_{c}\right) H\left(\alpha_{c}\right) W^{\dagger}\left(\alpha_{c}\right) \equiv K\left(\alpha_{c}\right),
$$

By definition, such terms prevent physical vacuum $|\Omega\rangle$ (H lowest energy eigenstate) and one-clothed-particle states $|n\rangle_{c}=a_{c}^{\dagger}(n)|\Omega\rangle$ to be H eigenvectors for all quantum numbers n included. Bad terms occur every time when any normally ordered product

$$
a^{\dagger}\left(1^{\prime}\right) a^{\dagger}\left(2^{\prime}\right) \ldots a^{\dagger}\left(n_{C}^{\prime}\right) a\left(n_{A}\right) \ldots a(2) a(1)
$$

of class [C.A] embodies, at least, one substructure $\in[k .0](k=1,2 \ldots)$ or/and [k.1] ($k=2,3, \ldots$). In this context all primary Yukawa-type (trilinear) couplings should be eliminated.

It results in form

$$
H(\alpha)=W H\left(\alpha_{c}\right) W^{\dagger}=K\left(\alpha_{c}\right)=K_{F}\left(\alpha_{c}\right)+K_{I}\left(\alpha_{c}\right),
$$

where free part $K_{F}\left(\alpha_{c}\right)=H_{F}\left(\alpha_{c}\right)$ while operator $K_{I}\left(\alpha_{c}\right)$ contains interactions between clothed particles. By construction, latter has property

$$
K_{l}\left(\alpha_{c}\right)|\Omega\rangle=0 .
$$

Together with Hamiltonian Poincaré group generators: total linear momenta \vec{P}, total angular momenta \vec{M} and Lorentz boosts \vec{N} meet commutation relations of Poincaré algebra. Within instant form of relativistic dynamics used here generators \vec{P}, \vec{M} do not contain interactions, whereas boosts have structure

$$
\vec{N}(\alpha)=W \vec{N}\left(\alpha_{c}\right) W^{\dagger}=\vec{B}\left(\alpha_{c}\right)=\vec{B}_{F}\left(\alpha_{c}\right)+\vec{B}_{I}\left(\alpha_{c}\right) .
$$

See derivation of boost operators in CPR \{SheFro12\}.
Along with requirement to remove bad terms clothing transformations in Dirac (D) picture should meet

$$
\lim _{t \rightarrow \pm \infty} W_{D}(t)=1
$$

that leads to equivalence between S-matrix in BPR and CPR, which is provided by isomorphism between $\{\alpha\}$ and $\left\{\alpha_{c}\right\}$ algebras and gives a constructive way for calculating S-matrix elements in CPR and BPR \{She13\}.

Electron-Deuteron Scattering Amplitude: Gauge Invariance and Gauge Indepedence

Let us remind that in one-photon-exchange approximation (OPEA) elastic e-d scattering amplitude is proportional to contraction

$$
T\left(e d \rightarrow e^{\prime} d^{\prime}\right)=\varepsilon_{\mu}\left(e, e^{\prime}\right)\left\langle\vec{q} M^{\prime}\right| J^{\mu}(0)|\overrightarrow{0} M\rangle
$$

with polarization vector of virtual photon $\varepsilon_{\mu}\left(e, e^{\prime}\right)=\bar{u}_{e^{\prime}}\left(k^{\prime}\right) \gamma_{\mu} u_{e}(k)$, and deuteron projection of total angular momentum on quantization axis M.

Current density operator $J^{\mu}(x)=\exp (i P x) J^{\mu}(0) \exp (-i P x)$ taken at the space-time point $x=(t, \vec{x})=0$ has the property to be 4 -vector

$$
U(\Lambda) J^{\mu}(0) U^{\dagger}(\Lambda)=J^{\nu}(0) \Lambda_{\nu}{ }^{\mu}, \quad \forall \Lambda \in \text { full Lorenz group. }
$$

In particular, for moving system with momentum \vec{q}

$$
U(\Lambda=L(q))=\exp (i \vec{\beta} \vec{B}), \quad \vec{\beta}=\beta \frac{\vec{q}}{|\vec{q}|}, \quad \tan (\beta)=\frac{|\vec{q}|}{m_{d}}
$$

Of course, current density operator should satisfy continuity equation (CE)

$$
\partial_{\mu} J^{\mu}(x)=0 \quad \text { or } \quad\left[P_{\mu}, J^{\mu}(0)\right]=0
$$

this requirement of gauge invariance principle in the first order in charge e (cf. our lecture for Erice school (1999)).
Along with it, we emphasize its consequence

$$
\begin{equation*}
\left(P_{f}-P_{i}\right)_{\mu}\langle f| J^{\mu}(0)|i\rangle=0 \tag{*}
\end{equation*}
$$

that is valid for current density operator being sandwiched between the exact $P=$ (H, \vec{P}) eigenvectors. Following \{Kaz82\} we distinguish gauge invariance and gauge independence (GI) conditions. Latter is presented by Eq. (*).
In this context, we calculate amplitude of interest using an original way of ensuring GI \{LevShe93\}.

$$
\begin{aligned}
& T\left(e d \rightarrow e^{\prime} d^{\prime}\right)=\varepsilon_{\mu}\left(e, e^{\prime}\right) J_{M^{\prime} M}^{\mu}(\vec{q})-\vec{\varepsilon}\left(e, e^{\prime}\right) \vec{J}_{M^{\prime} M}^{G}(\vec{q}) \\
J_{M^{\prime} M}^{\mu}(\vec{q})= & \left\langle\vec{q} M^{\prime}\right| J^{\mu}(0)|\overrightarrow{0} M\rangle, \\
\vec{J}_{M^{\prime} M}^{G}(\vec{q})= & \int_{0}^{1} \frac{d \lambda}{\lambda} \nabla_{\vec{q}}\left\{\left[\sqrt{\lambda^{2} \vec{q}^{2}+m_{d}^{2}}-m_{d}\right] \rho_{M^{\prime} M}(\lambda \vec{q})-\lambda \vec{q} \vec{J}_{M^{\prime} M}(\lambda \vec{q})\right\} .
\end{aligned}
$$

(cf., \{FriFal86\})

Property of current density to be 4-vector and Gl leads to relations:

$$
\begin{aligned}
& G_{M}\left(Q^{2}\right)=\sqrt{2}(\eta(\eta+1))^{-\frac{1}{2}}\left(\vec{J}_{10}(\vec{q})+\vec{J}_{10}^{G}(\vec{q})\right)_{x} \\
& G_{C}\left(Q^{2}\right)=\frac{1}{3}(\eta+1)^{-1} \sum_{M=0, \pm 1} \rho_{M M}(\vec{q}) \\
& G_{Q}\left(Q^{2}\right)=\frac{1}{2}(\eta(\eta+1))^{-1}\left(\rho_{00}(\vec{q})-\rho_{11}(\vec{q})\right)
\end{aligned}
$$

where charge monopole $\left(G_{C}\right)$, magnetic dipole $\left(G_{M}\right)$ and electric quadrupole (G_{Q}) form factors (FFs) of deuteron are determined in lab. system with Z-axis directed along momentum transfer \vec{q} (cf. \{GarOrd02\}). Argument of FFs $Q^{2} \equiv-\omega^{2}+\vec{q}^{2}$, where ω is energy transfer so $\eta=\frac{Q^{2}}{4 m_{d}^{2}}>0$. In our case

$$
\omega=\sqrt{\vec{q}^{2}+m_{d}^{2}}-m_{d} \text { and } Q^{2}=2 m_{d}^{2}\left(\sqrt{1+\frac{\vec{q}^{2}}{m_{d}^{2}}}-1\right) .
$$

Charge e_{d} of deuteron and its dipole magnetic μ_{d} and electric quadrupole Q_{d} moments are given by normalization conditions

$$
e_{d}=e G_{C}(0), \quad \mu_{d}=G_{M}(0) \frac{e}{2 m_{d}}, \quad Q_{d}=G_{Q}(0) \frac{e}{m_{d}^{2}}
$$

Deuteron eigenvalue problem in motion
Eigenvalue problem for deuteron in rest frame

$$
\left[K_{N}+K_{N N}\right]|\overrightarrow{0} M\rangle=m_{d}|\overrightarrow{0} M\rangle
$$

has been considered in \{She13\}. The deuteron state has been built in subspace $\mathcal{H}_{2 \mathrm{~N}}$ spanned onto two-nucleon basis $b_{c}^{\dagger} b_{c}^{\dagger}|\Omega\rangle$ with $K_{N N} \sim b_{c}^{\dagger} b_{c}^{\dagger} b_{c} b_{c}$ and $K_{N} \sim b_{c}^{\dagger} b_{c}$

$$
|\overrightarrow{0} M\rangle=\sqrt{2} \int \frac{d \vec{p}}{E_{\vec{p}}} \psi_{M}\left(p \mu_{1} \mu_{2}\right) b_{c}^{\dagger}\left(p \mu_{1}\right) b_{c}^{\dagger}\left(p \mu_{2}\right)|\Omega\rangle .
$$

The deuteron state in moving frame is given by

$$
|\vec{q} M\rangle=U(L(q))|\overrightarrow{0} M\rangle,
$$

In its turn operator $U(L)=\exp \left(i \vec{\beta}\left(\vec{B}_{F}\left(\alpha_{c}\right)+\vec{B}_{I}\left(\alpha_{c}\right)\right)\right)$ can be presented in form

$$
U(L)=X\left(e^{i \vec{\beta} \vec{B}_{F}} B_{l} e^{-i \vec{\beta} \vec{B}_{F}}\right) e^{i \vec{\beta} \vec{B}_{F}},
$$

where operator X is measure of noncommutativity of operators B_{F}, and B_{I}.
A distinctive feature of CPR is that all generators of Poincaré group simultaneously get one and the same sparse structure.

For this consideration we confine ourselves to approximation $X \approx 1$. Our derivation of such function depending on similarity transformation is underway.

After this, with the help of transformation property

$$
e^{i \vec{\beta} \vec{B}_{F}} b_{c}^{\dagger}(p \mu) e^{-i \vec{\beta} \vec{B}_{F}}=D_{\bar{\mu} \mu}^{[1 / 2]}(W(L, p)) b_{c}^{\dagger}(L p \bar{\mu}),
$$

the matrix elements of interest $J_{M^{\prime} M}^{\mu}(\vec{q})=\left\langle\vec{q} M^{\prime}\right| J^{\mu}(0)|\overrightarrow{0} M\rangle$ are reduced to expectation values over the physical vacuum state $|\Omega\rangle$.

Current density operator in the CPR

In CPR we have expansion in R-commutators \{SheShi00\} of original Nöther current

$$
J(0)=W J_{c}(0) W^{\dagger}=J_{c}(0)+\left[R, J_{c}(0)\right]+\frac{1}{2!}\left[R,\left[R, J_{c}(0)\right]\right]+\cdots,
$$

Here $J_{c}(0)$ is Nöther current in which bare operators $\{\alpha\}$ are replaced by clothed ones $\left\{\alpha_{c}\right\}$. It consists of nucleon and meson currents $J_{c}(0)=J_{N}(0)+J_{M}(0)$. This decomposition involves one-body, two-body and more complicated interaction currents.
Since deuteron states are spanned onto two-clothed-nucleon states $|2 N\rangle$ then only terms of $b^{\dagger} b$ - and $b^{\dagger} b^{\dagger} b b$-type remain

$$
\left\langle 2 N^{\prime}\right| J(0)|2 N\rangle=\left\langle 2 N^{\prime}\right| J_{\text {one-body }}|2 N\rangle+\left\langle 2 N^{\prime}\right| J_{\text {two-body }}|2 N\rangle .
$$

One-body current is defined via usual on-mass-shell expression

$$
J_{\text {one-body }}^{\mu}=\int \frac{d \overrightarrow{p^{\prime}}}{E_{\overrightarrow{p^{\prime}}}} \frac{d \vec{p}}{E_{\vec{p}}} F_{\text {one-body }}^{\mu}\left(p^{\prime} \mu^{\prime}, p \mu\right) b_{c}^{\dagger}\left(p^{\prime} \mu^{\prime}\right) b_{c}(p \mu),
$$

in terms of Dirac and Pauli nucleon FFs
$F_{\text {one-body }}^{\mu}\left(p^{\prime} \mu^{\prime}, p \mu\right)=\operatorname{em} \bar{u}\left(p^{\prime} \mu^{\prime}\right)\left\{F_{1}\left[\left(p^{\prime}-p\right)^{2}\right] \gamma^{\mu}+\frac{i}{2 m} \sigma^{\mu \nu}\left(p^{\prime}-p\right)_{\nu} F_{2}\left[\left(p^{\prime}-p\right)^{2}\right]\right\} u(p \mu)$.
This expression with $p=(m, \overrightarrow{0})$ and $p^{\prime}=(\omega, \vec{q})$ coincides with that used in Relativistic Impulse Approximation (RIA).

Figure 1: Our first approximation \{KosShe21\} (without two-body currents) to the deuteron magnetic form factor $G_{M}\left(Q^{2}\right)$ compared to the experimental data (see \{JLab00\} and refs. therein). We have used the Gari-Krümpelmann nucleon FFs \{GarKru92\} for this calculation.

Of course, RIA results should be corrected including more complex mechanisms of e-d scattering, that can be provided by including two-body or meson exchange currents (MECs)

$$
J_{\text {two-body }}^{\mu}=\int \frac{d \vec{p}_{\prime}^{\prime}}{E_{\overrightarrow{\vec{p}_{1}^{\prime}}}^{\prime}} \frac{d \vec{p}_{2}^{\prime}}{E_{\vec{p}_{2}^{\prime}}^{\prime}} \frac{d \vec{p}_{1}}{E_{\overrightarrow{p_{1}}}} \frac{d \vec{p}_{2}}{E_{\vec{p}_{2}}} F_{M E C}^{\mu}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{1}, p_{2}\right) b_{c}^{\dagger}\left(p_{1}^{\prime}\right) b_{c}^{\dagger}\left(p_{1}^{\prime}\right) b_{c}\left(p_{1}\right) b_{c}\left(p_{2}\right) .
$$

To determine it we have found $b^{\dagger} b^{\dagger} b b$-type terms that stem from commutator $\frac{1}{2!}\left[R,\left[R, J_{c}(0)\right]\right]$. The current density J_{c} composed of the meson J_{M} and nucleon J_{N} currents, so MEC also composed of two parts

$$
F_{M E C}^{\mu}=F_{\text {mesonic }}^{\mu}+F_{\text {seagull }}^{\mu} .
$$

one-body

a

b

Figure 2: Various contributions to the deuteron e.m. current: (a) mesonic current, (b) seagull current.

Mesonic currents

Figure 3: Illustration of the mechanisms that contribute to the mesonic current in the g^{2}-order. Blue dot corresponds to the g_{11}^{M} cutoff.

$$
\begin{aligned}
F_{\text {pionic }}^{\mu}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{1}, p_{2}\right)=i \frac{e g_{\pi}^{2} m^{2}}{2(2 \pi)^{6}} & {\left[\vec{\tau}_{\eta_{1}^{\prime} \eta_{1}} \times \vec{\tau}_{\eta_{2}^{\prime} \eta_{2}}\right]_{z} g_{11}^{\pi}\left(p_{1}^{\prime} p_{1}\right) g_{11}^{\pi}\left(p_{2}^{\prime} p_{2}\right) } \\
& \times \frac{\bar{u}\left(p_{1}^{\prime}\right) \gamma_{5} u\left(p_{1}\right)}{\left(p_{1}^{\prime}-p_{1}\right)^{2}-m_{\pi}^{2}} \frac{\bar{u}\left(p_{2}^{\prime}\right) \gamma_{5} u\left(p_{2}\right)}{\left(p_{2}^{\prime}-p_{2}\right)^{2}-m_{\pi}^{2}}\left(p_{2}^{\prime}-p_{1}^{\prime}+p_{1}-p_{2}\right)^{\mu}
\end{aligned}
$$

Seagull currents

Figure 4: Illustration of the mechanisms that contribute to the seagull current in the g^{2}-order. Blue and orange dots correspond to the g_{11}^{M} and g_{12}^{M} cutoffs respectively.

$$
\begin{aligned}
& F_{\text {seagull }}^{\mu}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{1}, p_{2}\right)=\frac{e g_{\pi}^{2} m^{2}}{2(2 \pi)^{6}} g_{11}^{\pi}\left(p_{2}^{\prime} p_{2}\right) \frac{\bar{u}\left(p_{2}^{\prime}\right) \gamma_{5} u\left(p_{2}\right)}{\left(p_{2}^{\prime}-p_{2}\right)^{2}-m_{\pi}^{2}} \\
& \quad \times\left[\left(\tau_{\eta_{1}^{\prime} \eta_{1}}^{z} \tau_{\eta_{2}^{\prime} \eta_{2}}^{z}+I_{\eta_{1}^{\prime} \eta_{1}} \tau_{\eta_{2}^{\prime} \eta_{2}}^{z}+\tau_{\eta_{1}^{\prime} \eta_{1}}^{+} \tau_{\eta_{2}^{\prime} \eta_{2}}^{-}\right) g_{11}^{\pi}\left(p_{1} s\right) \bar{u}\left(p_{1}^{\prime}\right) \gamma^{\mu} G\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{1}, p_{2}\right) \gamma_{5} u\left(p_{1}\right)\right. \\
& \left.\quad+\left(\tau_{\eta_{1}^{\prime} \eta_{1}}^{z} \tau_{\eta_{2}^{\prime} \eta_{2}}^{z}+I_{\eta_{1}^{\prime} \eta_{1}} \tau_{\eta_{2}^{\prime} \eta_{2}}^{z}+\tau_{\eta_{1}^{\prime} \eta_{1}}^{-} \tau_{\eta_{2}^{\prime} \eta_{2}}^{+}\right) g_{11}^{\pi}\left(p_{1}^{\prime} s^{\prime}\right) \bar{u}\left(p_{1}^{\prime}\right) \gamma_{5} G\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right) \gamma^{\mu} u\left(p_{1}\right)\right]
\end{aligned}
$$

with $s=\left(E_{\vec{s}}, \vec{s}\right), s^{\prime}=\left(E_{\vec{s}^{\prime}}, \vec{s}^{\prime}\right)$ and $\vec{s}=\vec{p}_{1}+\vec{p}_{2}-\vec{p}_{2}^{\prime}, \vec{s}^{\prime}=\vec{p}_{1}^{\prime}+\vec{p}_{2}^{\prime}-\vec{p}_{2}$. We have introduced the function G that can be divided into the Feynman-like part and rest

$$
\begin{aligned}
& G=G_{\text {Feynman-like }}+G_{\text {rest }} \\
& G_{\text {Feynman-like }}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{1}, p_{2}\right)=\frac{1}{\not p_{1}+\not p_{2}-\not p_{2}^{\prime}-m}, \\
& G_{\text {rest }}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{1}, p_{2}\right)=\frac{1}{2 E_{\vec{s}}}\left[\frac{\ngtr+m}{E_{\vec{p}_{2}^{\prime}}-E_{\overrightarrow{p_{1}}}-E_{\overrightarrow{p_{2}}}+E_{\vec{s}}} \frac{1}{\left(p_{1}-s\right)^{2}-m_{\pi}^{2}}\right. \\
& \left.+\frac{\not \phi_{-}-m}{E_{\vec{p}_{2}^{\prime}}-E_{\vec{p}_{1}}-E_{\vec{p}_{2}}-E_{\vec{s}}} \frac{1}{\left(p_{1}+s_{-}\right)^{2}-m_{\pi}^{2}}\right]\left[\left(p_{2}^{\prime}-p_{2}\right)^{2}-m_{\pi}^{2}\right] .
\end{aligned}
$$

Under assumptions mentioned above our calculations are reduced to matrix elements

$$
\begin{gathered}
J_{M^{\prime} M}(\vec{q})=J_{M^{\prime} M}^{[1]}(\vec{q})+J_{M^{\prime} M}^{[2]}(\vec{q}), \\
J_{M^{\prime} M}^{[1]}(\vec{q})=2 \int \frac{d \vec{p}}{E_{\vec{p}}} \psi_{M^{\prime}}^{*}\left(p \bar{\mu}_{1} \bar{\mu}_{2}\right) \psi_{M}\left(L^{-1} p \mu_{1}^{\prime} \mu_{2}\right) D_{\bar{\mu}_{1} \mu_{1}}^{[1 / 2] *}(W(L(q), p)) D_{\bar{\mu}_{2} \mu_{2}}^{[1 / 2] *}\left(W\left(L(q), p_{-}\right)\right) \\
\\
\times F_{\text {one-body }}\left(L p \mu_{1}, L^{-1} p \mu_{1}^{\prime}\right) \\
J_{M^{\prime} M}^{[2]}(\vec{q})=2 \int \frac{d \vec{p}^{\prime} d \vec{p}}{E_{\vec{p}^{\prime}} E_{\vec{p}}} \psi_{M^{\prime}}^{*}\left(p^{\prime} \bar{\mu}_{1} \bar{\mu}_{2}\right) \psi_{M}\left(p \mu_{1} \mu_{2}\right) D_{\bar{\mu}_{1} \mu_{1}^{\prime}}^{[1 / 2] *}\left(W\left(L(q), p^{\prime}\right)\right) D_{\bar{\mu}_{2} \mu_{2}^{\prime}}^{[1 / 2] *}\left(W\left(L(q), p_{-}^{\prime}\right)\right) \\
\\
\times \tau_{\eta_{1}^{\prime} \eta_{2}^{\prime}}^{y} \tau_{\eta_{1} \eta_{2}}^{y} F_{M E C}\left(L p^{\prime} \mu_{1}^{\prime} \eta_{1}^{\prime}, L p_{-}^{\prime} \mu_{2}^{\prime} \eta_{2}^{\prime}, p \mu_{1} \eta_{1}, p_{-} \mu_{2} \eta_{2}\right)
\end{gathered}
$$

Summary

■ For this exposition, we have shown a constructive way of describing the deuteron e.m. properties beyond the contemporary non-relativistic approach.

■ We propose an original way of ensuring Gl relayed upon generalization of Siegert's theorem.
■ UCT method allows us to build a new family of MECs.
■ Our consideration will be corrected taking into account the interaction part of the boost operator.

■ In the course of our current work we are trying to understand to what extent deuteron form factors and structure functions that determine deuteron e.m. properties are sensitive to off-shell effects included in the new family of interactions and currents for the clothed particles.

Thank you very much for your attention!

References

\{GreSch58\} Greenberg O., Schweber S.: Nuovo Cim. 8 (1958) 378; doi: 10.1007/BF02828746
\{SheShi00\} Shebeko A., Shirokov M.: Prog. Part. Nucl. Phys. 44 (2000) 75;
doi: 10.1016/S0146-6410(00)00060-0
\{DuShe10\} Dubovyk I., Shebeko O.: Few Body Syst. 48 (2010) 109; arXiv:1012.5406 [nucl-th]
\{SheFro12\} Shebeko A., Frolov P.: Few Body Syst. 52 (2012) 125; arXiv:1107.5877 [hep-th]
\{She13\} Shebeko A.: Few Body Syst. 54 (2013) 2271; doi: 10.1007/s00601-012-0482-3
\{KosShe21\} Kostylenko, Y., Shebeko, A.: Few-Body Syst. 62 (2021) 41;
doi: 10.1007/s00601-021-01620-5
\{FriFal86\} Friar J., Fallieros S.: Phys. Rev. C 34 (1986) 2029; doi: 10.1103/PhysRevC.34.2029
\{GarOrd02\} Garçon M., Van Orden J.: Adv. Nucl. Phys. 26 (2002); arXiv: nucl-th/0102049v1
\{JLab00\} Abbott D., et al.: Eur. Phys. J. A 7 (2000) 421; doi: 10.1007/PL00013629
\{GarKru92\} Gari M., Krum̈pelmann W.: Phys. Lett. B 274 (1992) 159;
doi: 10.1016/0370-2693(92)90516-7
\{Kaz82\} Kazes E., et al.: Annals of Physics. 142 (1982) 80; doi: 10.1016/0003-4916(82)90229-9 \{LevShe93\} Levchuk L., Shebeko A.: Phys. Atom. Nucl. 56 (1993) 227;

