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Introduction



• Today I am going to talk about discrete scale invariance in N -body problems

of identical particles in one dimension.

• Before doing this, I will first discuss the impact of scale invariance in

quantum many-body problems.
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Discrete scale-invariant S-matrix theory: A toy example

• Consider a 1× 1 S-matrix S(E) ∈ U(1), where E stands for energy.

• The most general scaling law consistent with unitarity |S(E)| = 1 is

S(E) = S(et E) (t : real parameter) (1)

• Depending on the range of t, there exist two types of solutions to eq. (1):

• Case t ∈ R = (−∞,∞): Continuous scale invariance. In this case, there is

only a constant solution:

S(E) = const (2)

Hence, in continuous scale-invariant theory, S-matrix must be trivial.

• Case t ∈ t∗Z = {0,±t∗,±2t∗ · · · }: Discrete scale invariance. In this case,

S-matrix can be nontrivial. In fact, as we will see next, we can prove the

following:

• log-periodicity of S(E)

• emergence of geometric sequence of bound states
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• Log-periodicity of S-matrix. First, observe that the scale transformation for

E is equivalent to the constant shift for logE:

E 7→ ent∗ E ⇔ logE 7→ logE + nt∗ (3)

The general solution to the scaling law S(E) = S(ent∗ E) is therefore

S(E) = f(logE) (4)

where f(x) = f(x+ t∗) is a periodic function with the period t∗. Hence, in

discrete scale-invariant theory, S-matrix must be a periodic function of logE.

• Geometric sequence of bound states. Suppose that S(E) has a simple pole

(bound-state pole) at E = −E∗:

S(E) =
N∗

E + E∗
+O(1) as E → −E∗ (5)

Then, the scaling law implies there exist infinitely many poles of the form:

S(E) = S(ent∗ E) =
N∗ e

−nt∗

E + E∗ e−nt∗
+O(1) (6)

This implies the existence of infinitely many bound states with the binding

energies En = −E∗ e
−nt∗ , which satisfy En+1 = En e−t∗ . Hence, in discrete

scale-invariant theory, bound states must form a geometric sequence.
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• As we have seen, typical predictions of discrete scale-invariant theory are:

• periodic oscillation of S-matrix as a function of logE

• geometric sequence of bound states

• And a typical example realizing these features is the Efimov effect for three

identical bosons with two-body short-range interactions [Efimov ’70], where the

three-body bound-state energies satisfy

En+1 = En e−t∗ , e−t∗ ≈ (22.7)−2 (7)

This result is independent of the details of interactions and hence universal.

• Note, however, that the appearance of the Efimov effect highly depends on

spatial geometry and particle statistics.

• For example, for systems of identical bosons with two-body contact

interactions, it was shown that the Efimov effect appears only if the spatial

dimension d is in the range 2.3 < d < 3.8 [Nielsen-Fedorov-Jensen-Garrido ’01].

• For systems of identical fermions with two-body contact interactions, the

Efimov effect was not realized in lower dimensions.
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• In this work, I revisited N -body problems of identical particles in one

dimension, where interparticle interactions are only two-body contacts.

• First, I classified all possible two-body contact interactions that respect:

• unitarity (probability conservation)

• permutation invariance (indistinguishability of identical particles)

• translation invariance (total momentum conservation)

• scale invariance

[Note: I did not impose the cluster-decomposition property, which was

(implicitly) assumed in the previous works.]

• Then, I showed that, for both bosonic and fermionic systems, continuous

scale invariance can be broken to discrete scale invariance for any N ≥ 3.

• Further, I derived the exact N -body bound-state spectrum as well as the

exact N -body S-matrix elements for any N ≥ 3.

• In the rest of the talk, I will explain these results briefly.

• The key is the boson-fermion duality.
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Boson-fermion duality in one dimension



• In one dimension, any bosonic N -body problem has its fermionic dual.

• Typical examples are the following:

• Lieb-Liniger model (bosonic model) [Lieb-Liniger ’63]

H = − ℏ2

2m

N∑
j=1

∂2

∂x2j
+

ℏ2

m

∑
1≤j<k≤N

δ(xj − xk; gB) (8)

• Cheon-Shigehara model (fermionic model) [Cheon-Shigehara ’98]

H = − ℏ2

2m

N∑
j=1

∂2

∂x2j
+

ℏ2

m

∑
1≤j<k≤N

ε(xj − xk; gF) (9)

Here δ(x; gB) and ε(x; gF) are defined by

δ(x; gB) = gBδ(x) (10a)

ε(x; gF) = lim
a→0

(
1

2gF
− 1

2a

)
(δ(x+ a) + δ(x− a)) (10b)

• When gB = 1/gF, these models become equivalent and satisfy (i) spectral

equivalence, (ii) boson-fermion mapping, and (iii) strong-weak duality.
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• In one dimension, we can classify all possible two-body contact interactions

that respect unitarity, permutation invariance, and translation invariance.

The result is [Ohya ’21]

HB/F = − ℏ2

2m

N∑
j=1

∂2

∂x2j
+ VB/F(x1, · · · , xN ) (11)

where

VB =
ℏ2

m

N−1∑
j=1

∑
σ∈AN

 ∏
k∈{1,··· ,N−1}\{j}

θ(xσ(k) − xσ(k+1))

 δ(xσ(j) − xσ(j+1); gBj)

(12a)

VF =
ℏ2

m

N−1∑
j=1

∑
σ∈AN

 ∏
k∈{1,··· ,N−1}\{j}

θ(xσ(k) − xσ(k+1))

 ε(xσ(j) − xσ(j+1); gFj)

(12b)

Here AN stands for the alternating group of order N !/2.

• When gBj = 1/gFj , these models become dual to each other. Further, if

gB/Fj has a certain coordinate dependence, these models become scale

invariant. In addition, for sufficiently strong attractive interactions,

continuous scale invariance can be broken to discrete scale invariance.
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• In the discrete scale-invariant phase, the N -body Schrödinger equation can

be reduced to the following one-body problem on the half line with the

attractive inverse square potential:(
− d2

dr2
+

−ν2 − 1
4

r2

)
ψ(r) =

2mE

ℏ2
ψ(r) (13)

where E stands for the energy of N -body relative motion, ν > 0 is a constant

determined by coupling strengths, and r is the hyperradius defined by

r =

√
1

N

∑
1≤j<k≤N

(xj − xk)2 (14)

By solving eq. (13), we can obtain the exact solutions of N -body problem.

The results are as follows:

• Exact N-body bound-state spectrum

En = −E∗ exp

(
−2nπ

ν

)
(15)

• Exact N-body S-matrix elements

S(E) =
1

i

sin
(

ν
2
log
(

E
E∗

)
+ iνπ

2

)
sin
(

ν
2
log
(

E
E∗

)
− iνπ

2

) (16)
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Summary and outlook



Summary

• I classified all possible two-body contact interactions that respect:

• unitarity

• permutation invariance

• translation invariance

• scale invariance

• By using those two-body contact interactions, I constructed N -boson and

N -fermion models that exhibit:

• boson-fermion duality

• breakdown of continuous scale invariance to discrete scale invariance

• I derived the exact N -body bound-state spectrum as well as the exact

N -body S-matrix elements in the discrete scale-invariant phase.

Outlook

• Generalization to (non)identical particles with internal degrees of freedom.

• Construction of field-theory description.
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