S matrix of elastic α -¹²C scattering at low energies in cluster EFT

Shung-Ichi Ando Sunmoon University

PRC107, 045808 (2023), arXiv:2208.020404

EFB25@Mintz, Germany, July 31-August 4, 2023

Outline of talk

- Introduction
- Formalism: Overview
 - -- Cluster EFT for radiative α capture on ^{12}C
- Numerical results:
 - -- Elastic α -¹²*C* scattering for / =0,1,2,3,4,5,6

-- ANCs of 0_1^+ , 0_2^+ , 1_1^- , 2_1^+ , 3_1^- states of ${}^{16}O$ for $\alpha - {}^{12}C$ system

• Results and discussion

Introduction

- Radiative alpha capture on carbon-12, ${}^{12}C(\alpha,\gamma){}^{16}O$, is a fundamental reaction in nuclear-astrophysics
- It determines C/O ratio after helium burning in red giant stars
- The core is exploded as supernova explosion type la
- Supernova type Ia is used as a standard candle to measure the size and expansion speed of the universe
- Our universe is expanding and consists of 72% dark energy

Elastic alpha-cabon-12 scattering

- Precise phase shift data for I=0,1,2,3,4,5,6 in 2.6 < E_{α} < 6.62 MeV from University of Notre Dame by Tischhauser et al. (2009)
- Construct S matrices from the amplitudes of subthreshold and resonant states of oxygen-16, which are represented in terms of effective range parameters
- The parameters are fixed by using the binding energies, resonant energies, and widths and fit to the phase shift data
- The fitted parameters are used to extrapolate the reaction rate of ${}^{12}C(\alpha,\gamma){}^{16}O$ to very low energy

Cluster EFT for radiative alpha capture on carbon-12

- -- The relevant degrees of freedom:
 - α and ${}^{12}C$; nonrelativistic point-like scalar fields
- -- The separation scale:

p⁻¹⁵*N* breakup energy; $\Delta E = 5$ MeV, $\Lambda_H = 160$ MeV

-- Momentum expansion at Gamow-peak energy,

 $E_G = 0.3$ MeV; Q = 40 MeV, thus $Q/\Lambda_H = 0.25$

- -- Typical length scale of the reaction; 1/Q = 5 fm
- -- Coulomb interaction; included non-pertabatively
- -- Introducing the composite fields for resonant states Expanding around unitary limit; effective range expansion

Formalism for the elastic scattering

• S matrix $S_l = e^{2i\delta_l}$, $S_l = 1 + 2ip\tilde{A}_l$.

$$\delta_l = \delta_l^{(bs)} + \delta_l^{(rs1)} + \delta_l^{(rs2)} ,$$

$$e^{2i\delta_l^{(ch)}} = 1 + 2ip\tilde{A}_l^{(ch)},$$

$$\tilde{A}_{l} = \tilde{A}_{l}^{(bs)} + e^{2i\delta_{l}^{(bs)}} \tilde{A}_{l}^{(rs1)} + e^{2i(\delta_{l}^{(bs)} + \delta_{l}^{(rs1)})} \tilde{A}_{l}^{(rs2)}.$$

• Amplitudes

• Amplitude for bound states

$$\tilde{A}_l^{(bs)} = \frac{C_\eta^2 W_l(p)}{K_l(p) - 2\kappa H_l(p)},$$

$$C_{\eta}^{2} = \frac{2\pi\eta}{\exp(2\pi\eta) - 1}, \quad W_{l}(p) = \left(\frac{\kappa^{2}}{l^{2}} + p^{2}\right) W_{l-1}(p), \quad W_{0}(p) = 1,$$

$$H_{l}(p) = W_{l}(p)H(\eta), \quad H(\eta) = \psi(i\eta) + \frac{1}{2i\eta} - \log(i\eta),$$

$$K_{l}(p) = -\frac{1}{a_{l}} + \frac{1}{2}r_{l}p^{2} - \frac{1}{4}P_{l}p^{4} + Q_{l}p^{6} - R_{l}p^{8},$$

ANCs, Asymptotic Normalization Coefficients

• Wave function normalization factor

$$\frac{1}{D_l(p)} = \frac{1}{K_l(p) - 2\kappa H_l(p)} = \frac{\mathcal{Z}_l}{E + B_l} + \cdots,$$
$$\sqrt{\mathcal{Z}_l} = \left(2\mu \left|\frac{\partial D_l(p)}{\partial p^2}\right|_{p^2 = -\gamma_l^2}\right)^{-1/2},$$

• ANCs

$$|C_b|_l = \frac{\gamma_l^l}{l!} \Gamma(l+1+\kappa/\gamma_l) \sqrt{2\mu \mathcal{Z}_l}.$$

• Amplitudes for resonant states

$$\tilde{A}_{l}^{(rsN)} = -\frac{1}{p} \frac{\frac{1}{2}\Gamma_{(li)}(E)}{E - E_{R(li)} + R_{(li)}(E) + i\frac{1}{2}\Gamma_{(li)}(E)},$$

$$\Gamma_{(li)}(E) = \Gamma_{R(li)} \frac{pC_{\eta}^{2}W_{l}(p)}{p_{r}C_{\eta_{r}}^{2}W_{l}(p_{r})},$$

$$R_{(li)}(E) = a_{(li)}(E - E_{R(li)})^{2} + b_{(li)}(E - E_{R(li)})^{3},$$

S matrices

$$e^{2i\delta_l} = \frac{K_l(p) - 2\kappa \operatorname{Re}H_l(p) + ipC_{\eta}^2 W_l(p)}{K_l(p) - 2\kappa \operatorname{Re}H_l(p) - ipC_{\eta}^2 W_l(p)} \\ \times \prod_i \frac{E - E_{R(li)} + R_{(li)}(E) - i\frac{1}{2}\Gamma_{(li)}(E)}{E - E_{R(li)} + R_{(li)}(E) + i\frac{1}{2}\Gamma_{(li)}(E)},$$

l	(Bound states)	$2.6 \text{ MeV} \le E_{\alpha} \le 6.62 \text{ MeV},$	$6.62 \text{ MeV} < E_{\alpha}$
0	0_{2}^{+}	0^{+}_{3}	0_{4}^{+}
1	1_{1}^{-}	1^{-}_{2}	1_{3}^{-}
2	2_{1}^{+}	$2^+_2, 2^+_3$	2_{4}^{+}
3	3^{-}_{1}	3^{-}_{2}	3^{-}_{3}
4		$4_1^+, 4_2^+$	4_{3}^{+}
5		—	5_{1}^{-}
6	(bg)		6_{1}^{+}

Numerical results

• Chi-square per # of data

l	0	1	2	3	4	5	6
χ^2/N	0.013	0.089	0.66	0.87	0.47	0.094	0.026

ANCs of b.s. of ¹⁶O for α -¹²C clusters

TABLE IV. Values of ANC, $|C_b|$, for the subthreshold 0^+_2 , 1^-_1 , 2^+_1 , 3^-_1 states of ${}^{16}O$.

$l_{i\mathrm{th}}^{\pi}$	0_{2}^{+}	1_{1}^{-}	2_{1}^{+}	3_1
$ C_b $ (fm ^{-1/2})	370(25)	$1.727(3) \times 10^{14}$	$3.1(6) \times 10^4$	113(8)

ANC (7.12 MeV, 1⁻)

• This work $1.723(3) \times 10^{14} fm^{1/2}$ • The α transfer reaction, ${}^{12}C({}^{6}Li, d){}^{16}O$ $2.08(20) \times 10^{14}$ Brune et al. (1999) $2.08(20) \times 10^{14}$ Belhout et al.(2007) $1.87(54) \times 10^{14}$ Oulebsir et al. (2012) $2.00(35) \times 10^{14}$ Avila et al. (2015) $2.09(14) \times 10^{14}$

Reanalysis: Hebborn et al. arXiv:2307.05636

- Analysis of the α transfer reaction, ${}^{12}C({}^{6}Li, d){}^{16}O$
 - -- Three-body system: $d + \alpha + {}^{12}C$ clusters
 - -- DWBA + ANC_d(1⁺, ${}^{6}Li$) \rightarrow ANC_ $\alpha(J^{\pi}, {}^{16}O)$
 - -- The value of ANC_d(1⁺,⁶Li) is updated and increased: ab initio calculation of $\alpha(d,\gamma)^6Li$, PRL129, 042503 (2022)
 - -- Values of ANCs of the bound states of ¹⁶O are decreased.

Results and discussion

- The simple and transparent expression of the S matrix to describe some sub-threshold and resonant states is discussed.
- The formalism of the S matrix is applied to the study of elastic α -¹²C scattering at low energies. We find that the precise phase shift data are descried very well by using the method.
- I am now working on fitting the S factors of ${}^{12}C(\alpha,\gamma){}^{16}O$.
- It is interesting to apply the present method to the study of other nuclear/hadronic reactions, e.g., ${}^{12}C {}^{12}C$ fusion reaction.

Effective range exp. vs Wood-Saxson pot.

- Appendix in 2208.02404v2
- What to do
 - 1) Fix V_0 from the binding energy of the second 0+ state
 - 2) Calculate the ANC
 - 3) Calculate the phase shift from the WS potential
 - 4) Fit the phase shift by using the ER parameters
 - 5) Calculate the ANC from the fitted ER parameters
 - 6) Compare the ANCs from WS and ER

Wood-Saxon Potential

•
$$V(r) = \frac{V_0}{1 + \exp(\frac{r-R}{a})'}$$
, $R = R_0 A^{1/3} = 2.976$, $R_0 = 1.3$, $a = 0.7$ fm

- $V_0 = 131.1 V$ for 0+ state, B = 1112.5 keV
- $V_0 = 130.8 V$ for 2+ state, B = 244.8 keV
- Wave functions (next two pages): norm. $\int_0^\infty dr u_l(r)^2 = 1$
- ANCs definition

$$u_{0}(r) = |C_{b}|_{0} W_{\frac{\kappa}{\gamma_{0}'^{2}}}(2\gamma_{0}r),$$

$$u_{2}(r) = |C_{b}|_{2} W_{\frac{\kappa}{\gamma_{2}'^{2}}}(2\gamma_{2}r) \text{ at } r > R$$

3) Fit the effective range parameters

- S-wave:
 - 1) Include the 0.20 degrees errors of the phase shifts
 - 2) the shapes of curves are different
 - 3) Use the different maximum energies of the data sets

$E_{\alpha,max}(MeV)$	4.0	4.5	5.0	5.5	WSP
$ C_b _0 \ (fm^{-1/2})$	1.1×10^{3}	2.2×10^{3}	3.7×10^{3}	5.8×10^{3}	2.6×10^{3}
χ^2/N	0.05	0.16	0.43	1.18	

3) Fit the ER parameters (2)

• D-wave

 $|C_b|_2 = 3.4(54.4) \times 10^5 fm^{-1/2}$ (ERP fit) $|C_b|_2 = 1.9 \times 10^5 fm^{-1/2}$ (WSP)

Results and discussion

- About 2 times difference between the ERPF and WSP
- In the ERPF, when ANCs become large, sensitive to the fit; the error bar becomes large.
- The ERPF is not ideal to deduce large ANCs from the phase shift data for s-wave and d-wave.
- It may indicate a size of the model dependence of the ANCs from different methods.

•
$$|=0 \ (0_2^+; \ 0_3^+; \ 0_4^+)$$

 $e^{2i\delta_0} = \frac{K_0(p) - 2\kappa \operatorname{Re}H_0(p) + ipC_\eta^2}{K_0(p) - 2\kappa \operatorname{Re}H_0(p) - ipC_\eta^2}$

$$\times \prod_{i=3}^{4} \frac{E - E_{R(0i)} + R_{(0i)}(E) - i\frac{1}{2}\Gamma_{(0i)}(E)}{E - E_{R(0i)} + R_{(0i)}(E) + i\frac{1}{2}\Gamma_{(0i)}(E)}, \quad (28)$$

with

$$K_{0}(p) = \frac{1}{2}r_{0}(\gamma_{0}^{2} + p^{2}) + \frac{1}{4}P_{0}(\gamma_{0}^{4} - p^{4}) + Q_{0}(\gamma_{0}^{6} + p^{6}) + 2\kappa H_{0}(i\gamma_{0}),$$
(29)

$$\Gamma_{(0i)}(E) = \Gamma_{R(0i)} \frac{p C_{\eta}^2 W_0(p)}{p_r C_{\eta_r}^2 W_0(p_r)},$$
(30)

$$R_{(0i)}(E) = a_{(0i)}(E - E_{R(0i)})^2 + b_{(0i)}(E - E_{R(0i)})^3, \quad i = 3, 4,$$
(31)

l_{i-th}^{π}	p^0 order	p^2	p^4	p^6
02+	a_0 (fm)	r_0 (fm) 0.26847(1)	$P_0 (\text{fm}^3)$ -0.0363(4)	$Q_0 (\text{rm}^5)$ 0.0011(1)
0_{3}^{+}	$E_{R(03)}(MeV)$ 4.8884(1)	$\Gamma_{R(03)}(\text{keV})$ 1.34(3)		
0_{4}^{+}	$E_{R(04)}$ (MeV)	$\Gamma_{R(04)}$ (keV)	$a_{(04)} (\text{MeV}^{-1}) \\ 0.75(1)$	$b_{(04)} (\text{MeV}^{-2}) \\ 0.18(1)$

•
$$|=1 \ (1_1^-; \ 1_2^-; \ 1_3^-)$$

$$e^{2i\delta_1} = \frac{K_1(p) - 2\kappa \operatorname{Re}H_1(p) + ipC_\eta^2 W_1(p)}{K_1(p) - 2\kappa \operatorname{Re}H_1(p) - ipC_\eta^2 W_1(p)} \frac{E - E_{R(13)} + R_{(13)}(E) - i\frac{1}{2}\Gamma_{(13)}(E)}{E - E_{R(13)} + R_{(13)}(E) + i\frac{1}{2}\Gamma_{(13)}(E)},$$

•
$$l=2(2_1^+; 2_2^+, 2_3^+; 2_4^+)$$

 2_{1}^{+}

 2^{+}_{2}

 2_{3}^{+}

 2_{4}^{+}

$$e^{2i\delta_2} = \frac{K_2(p) + 2\kappa \operatorname{Re}H_2(p) + ipC_\eta^2 W_2(p)}{K_2(p) + 2\kappa \operatorname{Re}H_2(p) - ipC_\eta^2 W_2(p)} \times \prod_{i=2}^4 \frac{E - E_{R(2i)} + R_{(2i)}(E) - i\frac{1}{2}\Gamma_{(2i)}(E)}{E - E_{R(2i)} + R_{(2i)}(E) + i\frac{1}{2}\Gamma_{(2i)}(E)},$$

 $P_2 \,({\rm fm}^{-1})$ $a_2 \,({\rm fm}^5)$ $r_2 \,({\rm fm}^{-3})$ Q_2 (fm) 0.149(4) -1.19(5)0.081(16) $E_{R(22)}$ (MeV) $\Gamma_{R(22)}$ (keV) 2.68308(5) 0.75(2) $a_{(23)}$ (MeV⁻¹) $b_{(23)}$ (MeV⁻²) $E_{R(23)}(MeV)$ $\Gamma_{R(23)}(\text{keV})$ 74.61(3) 0.49(9) 4.3545(2) 0.46(12) $\Gamma_{R(24)}$ (keV) $E_{R(24)}$ (MeV)

• $|=3 (3_1^-; 3_2^-; 3_3^-)$

$$e^{2i\delta_3} = \frac{K_3(p) - 2\kappa \operatorname{Re}H_3(p) + ipC_\eta^2 W_3(p)}{K_3(p) - 2\kappa \operatorname{Re}H_3(p) - ipC_\eta^2 W_3(p)} \times \frac{E - E_{R(33)} + R_{(33)}(E) - i\frac{1}{2}\Gamma_{(33)}(E)}{E - E_{R(33)} + R_{(33)}(E) + i\frac{1}{2}\Gamma_{(33)}(E)},$$

$3_1^-, 3_2^-$	$a_3 ({\rm fm}^7)$	$r_3 ({\rm fm}^{-5})$	$P_3 ({\rm fm}^{-3})$	$Q_3 ({\rm fm}^{-1})$	R_3 (fm)
		0.0335(2)	-0.446(9)	0.311(5)	-0.152(3)
3_{3}^{-}	$E_{R(33)}$ (MeV)	$\Gamma_{R(33)}$ (keV)	$a_{(33)} ({\rm MeV}^{-1})$	$b_{(33)} ({\rm MeV}^{-2})$	
-			32(32)	$3.2(32) \times 10^2$	

• |=4 (; 4⁺₁, 4⁺₂; 4⁺₃)

 4_{1}^{+}

 4_{2}^{+}

43+

$$e^{2i\delta_4} = \prod_{i=1}^3 \frac{E - E_{R(4i)} + R_{(4i)}(E) - i\frac{1}{2}\Gamma_{(4i)}(E)}{E - E_{R(4i)} + R_{(4i)}(E) + i\frac{1}{2}\Gamma_{(4i)}(E)},$$

$E_{R(41)}(MeV)$	$\Gamma_{R(41)}(\text{keV})$	$a_{(41)} ({\rm MeV}^{-1})$	$b_{(41)} ({\rm MeV}^{-2})$
3.19606(1)	25.91(1)	0.740(3)	0.304(5)
$E_{R(42)}(\text{MeV})$	$\Gamma_{R(42)}(\text{keV})$		
3.93655(2)	0.425(4)		
$E_{R(43)}$ (MeV)	$\Gamma_{R(43)}$ (keV)	$a_{(43)}$ (MeV ⁻¹)	$b_{(43)} ({\rm MeV^{-2}})$
		0.889(6)	0.216(3)

• $|=5(;;5_1^-)$

$$e^{2i\delta_5} = \frac{E - E_{R(51)} + R_{(51)}(E) - i\frac{1}{2}\Gamma_{(51)}(E)}{E - E_{R(51)} + R_{(51)}(E) + i\frac{1}{2}\Gamma_{(51)}(E)},$$

 $E_{R(51)}$ (MeV)

 $\Gamma_{R(51)}$ (keV)

 $b_{(51)}$ (MeV⁻²) $a_{(51)}$ (MeV⁻¹) 0.572(6)

0.104(2)

 5^{-}_{1}

• L=6((bg); ; 6_1^+)

$$e^{2i\delta_6} = \frac{K_6(p) - 2\kappa \operatorname{Re}H_6(p) + ipC_\eta^2 W_6(p)}{K_6(p) - 2\kappa \operatorname{Re}H_6(p) - ipC_\eta^2 W_6(p)} \\ \times \frac{E - E_{R(61)} + R_{(61)}(E) - i\frac{1}{2}\Gamma_{(61)}(E)}{E - E_{R(61)} + R_{(61)}(E) + i\frac{1}{2}\Gamma_{(61)}(E)},$$

(bg)

 6_{1}^{+}

$$\begin{array}{cccc} r_{6} \,(\mathrm{fm}^{-11}) & P_{6} \,(\mathrm{fm}^{-9}) \\ -0.3(2) & 2(1) \\ E_{R(61)} \,(\mathrm{MeV}) & \Gamma_{R(61)} \,(\mathrm{keV}) & a_{(61)} \,(\mathrm{MeV}^{-1}) \\ & 0.8(1) & 0.18(4) \end{array}$$

Effective Lagrangian

$$\begin{aligned} \mathcal{L} &= \phi_{\alpha}^{\dagger} \left(i D_0 + \frac{\vec{D}^2}{2m_{\alpha}} \right) \phi_{\alpha} + \phi_C^{\dagger} \left(i D_0 + \frac{\vec{D}^2}{2m_C} \right) \phi_C \\ &+ \sum_{l=0}^{6} \sum_{i} \sum_{k=0}^{3} C_{(li)k} d_{(li)}^{\dagger} \left[i D_0 + \frac{\vec{D}^2}{2(m_{\alpha} + m_C)} \right]^k d_{(li)} \\ &- \sum_{l=0}^{6} \sum_{i} y_{(li)} [d_{(nr)}^{\dagger}(\phi_{\alpha} O_{(l)} \phi_C) + (\phi_{\alpha} O_{(l)} \phi_C)^{\dagger} d_{(li)}], \end{aligned}$$

Formalism: overview

• Cluster effective field theory (EFT)

-- Choose a large scale Λ_H to separate relevant degrees of freedom at low energy from irrelevant degrees of freedom at high energy

-- Construct an effective Lagrangian in powers of the number of derivatives

-- Perturbative expansion in powers of Q/Λ_H where Q is a typical momentum scale of a reaction

--- Coefficients of the Lagrangian should be fixed by experimental data