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(TMDCs) are prime examples.

e Monolayers of TMDCs have recently received (2012 - ) attention: op-
toelectronics, valleytronics, enhanced photoluminescence, and systems
with pronounced many-body effects.

e The low dimensionality (planar) and dielectric screening result in a strong
electrostatic interaction. Stable bound complexes composed by electrons
(e) and holes (h): excitons, trions, bi-excitons.

How to study such complexes?
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Effective-mass approximation (justified by the band structure): electron
and holes are oppositely charged particles with effective masses.

— The quantum mechanical description of complexes is governed by a
Schrodinger equation:

Ao = Ev, [ WPaV <o

Planar motion + pairwise interactions:
(i) z-component of angular momentum is conserved

(i))motion of the center of mass is separated out

dof.=2N-3 N: number of particles
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Construction of locally accurate compact wave functions
describing complexes in the framework of the variational method

Motivated by:

I. Kylénpaa & Komsa (2015) “.. Lack of reasonable Ansatz in the case

of larger complexes (N > 2) hinders the straightforward extension of a
variational consideration.”

No significant advances in this direction so far (2023): Most of functions
favor the simplicity in calculations — reasonable results in energy, but
wrong description of the wave function.
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Variational Method + Orthogonalization Conditions
— Optimal Configuration of Parameters
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Results: Exciton

Variational energies provide 5 — 6 exact decimal digits

Np

|ml

A W N H O

0.179 935400 325905
1.314677 846 047 317
1.830608 339 744 414
2.168 874 146 054 584
2.421 054 965033637

1.039612607 367 968
1.662 901 190 508 306
2.047 765063110404
2.326 094 048 304 208
2.544033274577971

*Established using the non-linearization procedure. A.V. Turbiner, (1984).
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2.421 054 965033637 2.544033274577971

A W N H O

Our trial functions are locally accurate in the whole domain?

— They lead to accurate expectation values, not only energies.

qpexacl’ (P) B wapprox (p)

<1073, € [0, 00
wexact(p) r [ )

*Established using the non-linearization procedure. A.V. Turbiner, (1984).
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N =3: (e, e, h) or (e, h,h)

Effective masses (my, my, m3) and charges (—e, e, e), respectively.
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Uy = n3, Uy = r3, and uz = r»
For trions we may assume: mp = m3
my

my 3
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o ®go: exciton phase with optimal parameters, and

ef“’o,o(a2 1) ~g o (5% u3)

it describes the trion when the repulsive term of the interaction is absent
e The factor
1+~ui In(u)
it describes the repulsion between equally charged carriers.

— Correlated functions

(c6(0) = a + bIn(1+co))
a = 0.094 , b = 0.472 | c = 1.012
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Results: Trions

Binding Energy
Eb = |Etrion - Eexciton'

Simple fit
2
1
Ex(o) = & (0.179935 (o) + ~In(1+ a))
po 2
Material Ey (meV)
po (A) o Present Results  Experiments/Theory*
MoS, 39 0.81 40 34, 35
MoSe; 40 0.86 38 30
WS, 38 0.84 40 34, 36
WSe; 45 0.85 34 30

(Results checked with an alternative trial function)

*Taken from Szyniszewski, et al. Phys. Rev. 95, 2017 12/15



Summary

e Excitons: benchmark variational calculations for energies and (locally
accurate) wave functions.

e Trions: correlated wave function leads to binding energies in good agree-
ment with experimental results.

e We find a simple formula for the binding energy as a function of the
mass ratio of the constituent particles.
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