A General Three-Body Interaction with the GPT-Potential

A general three-body interaction could be generated by the two-body linear and nonlinear interactions which could appear in the very short and in the long range regions, although the three-body Faddeev equation is written in terms of a two-body linear interaction.
However, in the very short range, many meson or multi quark/gluon exchanges may take place which are taken into account by a "three-body short range force: $V_{3 \mathrm{BSF}}$ ". In the long range region, the linear threebody Faddeev equation can not be exactly described by a two-body long range potential.
In this context, we could employ a general three-body interaction $V_{3 \mathrm{BF}}$ by using the general particle transfer (GPT) potential $V_{\alpha}\left(\mathbf{r}_{\beta \gamma} ; n\right)$ [1], i.e.,
$\left[V_{3 \mathrm{BF}}\right]_{\alpha \beta} \equiv\left[b_{\alpha \beta}+\left\{1 / V_{\alpha}\left(\mathbf{r}_{\beta \gamma} ; n\right)+1 / V_{\beta}\left(\mathbf{r}_{\gamma \alpha} ; n\right)\right\}\right]^{-1}$
$=V_{\alpha}\left(\mathbf{r}_{\beta \gamma} ; n\right) V_{\beta}\left(\mathbf{r}_{\gamma \alpha} ; n\right) / c a l V$
and
$c a l V=b_{\alpha \beta} V_{\alpha}\left(\mathbf{r}_{\beta \gamma} ; n\right) V_{\beta}\left(\mathbf{r}_{\gamma \alpha} ; n\right)+V_{\alpha}\left(\mathbf{r}_{\beta \gamma} ; n\right)+V_{\beta}\left(\mathbf{r}_{\gamma \alpha} ; n\right) \equiv\left(E-H_{0}\right)$,
with the three-body kinetic energy H_{0} and the total energy E, respectively.
$b_{\alpha \beta}$ denotes a parameter which represents a border between the linear and the nonlinear interactions.
We obtain
$\left[V_{3 \mathrm{BF}}\right]_{\alpha \beta}$
$=V_{\alpha}\left(\mathbf{r}_{\beta \gamma} ; n\right) V_{\beta}\left(\mathbf{r}_{\gamma \alpha} ; n\right) /\left(E-H_{0}+i \epsilon\right)$.
This formula is a generalized Alt-Grassberger-Sandhas (AGS) Born term which includes both the three-body short range force (3BSF), and the three-body long range force (3BLF).
[1] Shinsho Oryu, ~~~~J. Phys. Commun. $\{\backslash \mathrm{bf} 6\} 015009$ (2022).

Primary author: ORYU, Shinsho (Tokyo University of Science)
Presenter: ORYU, Shinsho (Tokyo University of Science)
Session Classification: Poster Session

