

Contribution ID: 79

Type: Poster Presentation

Two-dimensional transverse charge distributions of the Δ baryon: Interpolation between the nonrelativistic and ultrarelativistic limits

In this talk, we present the results of a recent investigation on the behavior of the charge distributions of the Δ baryon, both unpolarized and transversely polarized, as a function of longitudinal momentum (P_z) in a Wigner phase-space perspective. Specifically, we examine how the charge distributions change as P_z increases from 0 to ∞ . We find that the charge distribution of a longitudinally polarized Δ baryon remains spherically symmetric regardless of P_z . On the other hand, for a transversely polarized Δ baryon along the x-axis, a quadrupole contribution emerges at rest ($P_z = 0$), and as P_z increases, electric dipole and octupole moments are induced. The current analysis reveals that the induced dipole moment dominates over higher multipole contributions and drives the deformation of the Δ baryon's charge distribution. These findings provide insights into the underlying physics of the Δ baryon and its charge structure.

Primary author: Mr HONG, Ki-Hoon (Inha University)
Co-authors: KIM, Hyun-Chul (Inha University); Dr KIM, June-Young (Jefferson Lab)
Presenter: Mr HONG, Ki-Hoon (Inha University)
Session Classification: Poster Session