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External trap potential and interatomic interaction

Atom-atom interaction (in pseudo-potential approximation):

Vmol(R) → Vpseudo(R) =
4π ~2

µR2
asc δ(R)

• This relation was derived for k → 0 (limit of zero-collision energy).
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External trap potential and interatomic interaction

Atom-atom interaction (in pseudo-potential approximation):

Vmol(R) → Vpseudo(R) =
4π ~2

µR2
asc δ(R)

• This relation was derived for k → 0 (limit of zero-collision energy).

• In a (tight) trap energy is (noticeably) quantized: zero-point energy.

• However, energy (and length) scales are usually very different.

• “Usual” molecular bound states: orders of magnitude larger (binding) energies
and much more spatially confined than trap states.

• As weaker the least bound state is bound, as closer the scales get to each other.

−→ standard pseudo-potential approximation breaks down!
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Pseudopotential approximation (in a trap): wavefunctions
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Example: spin-polarized 6Li atoms (a 3Σu) in a 10 kHz trap:

“correct” wavefunction (black, asc = −2030 a0)

vs. standard pseudo-potential result (red, asc = −2030 a0).
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External trap potential and interatomic interaction

Atom-atom interaction: Vmol(R) → Vpseudo(R) = 4π ~2

µR2 asc δ(R)

• This relation was derived for k → 0 (limit of zero-collision energy).

• In a (tight) trap energy is (noticeably) quantized: zero-point energy.

• Consequence: Interception of ψ with the R axis 6= asc.

Present example 6Li (state a 3Σu) in 10 kHz trap:

Effect for correct ψ is small: interception at −2023 a0 for asc = −2030 a0.

This is not true for ψpseudo: interception at −1447 a0 for asc = −2030 a0.
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External trap potential and interatomic interaction

Atom-atom interaction: Vmol(R) → Vpseudo(R) = 4π ~2

µR2 asc δ(R)

• This relation was derived for k → 0 (limit of zero-collision energy).

• In a (tight) trap energy is (noticeably) quantized: zero-point energy.

• Consequence: Interception of ψ with the R axis 6= asc.

Present example 6Li (state a 3Σu) in 10 kHz trap:

Effect for correct ψ is small: interception at −2023 a0 for asc = −2030 a0.

This is not true for ψpseudo: interception at −1447 a0 for asc = −2030 a0.

• Work-around: Introduce an energy-dependent asc(E) that inserted in
Vpseudo(R) matches (for E = 3

2 ~ωtrap) the correct ψ (at R →∞).

Note: In contrast to the physical asc the empirical parameter asc(E) follows only
from the correct ψ obtained with Vmol(R)!

−→ knowledge of Vmol(R) is essential!
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Pseudopotential approximation (in a trap): wavefunctions
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Spin-polarized 6Li atoms (a 3Σu) in a 10 kHz trap:

“correct” wavefunction (black, asc = −2030 a0) vs. energy independent (red, asc = −2030 a0)

and energy-dependent (blue, asc = −2872 a0) pseudo-potential results.
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Tunable interaction: magnetic Feshbach resonances

∆(B)

E

R

Simple picture:

Only 2 channels:

− open (continuum) channel,

− closed (bound) channel.
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Tunable interaction: magnetic Feshbach resonances
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Simple picture:

Only 2 channels:

− open (continuum) channel,

− closed (bound) channel.

Multichannel reality:

Example 6Li-87Rb : 8 coupled channels,

− very different length scales involved,

− high quality molecular potential curves

required.
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Tuning the interparticle interaction

Magnetic Feshbach resonance: magnetic field modifies scattering length a.

Scattering length determines interparticle interaction.

−→ Tuning the interparticle interaction with a magnetic field!
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Magnetic Feshbach resonances (MFRs) in a harmonic trap

• Description as coupled single open and closed channels (|Ψ〉 = C|open〉+ A|closed〉)
• Use analytically known long-range behavior of the wave functions (parabolic cylinder fcts.)

[P.-I.Schneider, Y.V. Vanne, A.S., Phys. Rev. A, 83, 030701 (Rapid Comm.) (2011)]
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(aho =
√
~/mω)

a

aho

= f(E) ≡
Γ (1/4− E/2~ω)

Γ (3/4− E/2~ω)

2. derive the energy-dependent scattering length

a(E,B) = abg

(
1−

∆B

B − B0 + δB − E/µ

)
in contrast to a previously suggested form

a(E,B) = abg

(
1−

∆B
(
1 + (kabg)

2
)

B − B0 + δB + (kabg)2∆B − E/µ

)
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3. derive the admixture of the closed channel

A

C
∝
f(E)− abg/aho√

f ′(E)

[P.-I.Schneider, Y.V. Vanne, A.S., Phys. Rev. A, 83, 030701 (Rapid Comm.) (2011)]
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How good is the model?

Comparison with full coupled-channel calculations for 6Li-87Rb in a 200 kHz trap:
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• Energy deviation < 0.003 ~ω.

• Closed-channel admixture deviation < 0.1%.
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Resolving a seven-year debate

• Resonances of a ∝ f(E) are located at E(n)
res = ~ω(2n+ 1

2)⇒ thus NOT at bare resonance

position BR = B0 − δB, but at
B = B(n)

res = B0 − δB + E(n)
res /µ .

• This explained the disagreement of experimentally observed MFR positions of 87Rb;

predicted shift of 0.034 Gauss in good agreement with experimental results.

weak dipole trap, M. Erhard et al.

Phys. Rev. A 69 032705 (2004)

tight optical trap, A. Widera et al.

Phys. Rev. Lett. 92 160406 (2004).
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Reduced dimension: fermionization of bosons (1D vs. quasi 1D)
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Radial density of two atoms in a quasi-1D (cigar-shaped) confinement:

− scattering length a0 = 5624 a.u.

− anisotropy η = (dz/d⊥)2

− transversal trap length d⊥ = 1.46 a0

− full Born-Oppenheimer potential.
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Radial density of two atoms in a quasi-1D (cigar-shaped) confinement:

− scattering length a0 = 5624 a.u.

− anisotropy η = (dz/d⊥)2

− transversal trap length d⊥ = 1.46 a0

− full Born-Oppenheimer potential.
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Confinement-induced resonances (CIR)

Relative-motion s-wave scattering theory for two ultracold atoms in an harmonic
quasi 1D confinement: mapping of quasi-1D system onto pure 1D system.

Renormalized 1D interaction strength [M. Olshanii, PRL 81, 938 (1998)]:

g1D =
2a~2

µd2
⊥

1

1 + ζ(1
2) a

d⊥

a := s-wave scattering length d⊥ =
√

~
µω⊥

: transversal confinement

µ := reduced mass ζ(x) =
∑∞
k=1 k

−x

Universal resonance: g1D →∞ for d⊥
a = −ζ(1

2) ≈ 1.46 . . .

Analogously: confinement-induced resonance occurs also in (quasi) 2D

[Petrov, Holzmann, Shlyapnikov, PRL 84, 2551 (2000)].
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Olshanii’s model (I)

Resonance occurs if artificially excited bound state crosses the free ground-state
threshold:
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Blue: quasi 1D spectrum
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ted bound state

Green: quasi continuum
threshold
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Olshanii’s model (II)

T. Bergeman et al., PRL 91, 163201 (2003)

Result:

Confinement-induced resonances (CIR) are not an artefact of the δ potential.

Note: No data points on the artificially shifted curve!
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Innsbruck experiment (Cs atoms)

Blue curve: Atom losses for ωx = ωy � ωz (anisotropy fixed, a varied).

Red and blue curves: Atom losses for ωx 6= ωy � ωz

E. Haller et al., PRL 104, 153203 (2010)
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Problem: agreement and conflict with theory
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E. Haller et al., PRL, 104, 153203 (2010)

⇒ Good agreement with Olshanii prediction for single anisotropy (ωx = ωy)
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E. Haller et al., PRL, 104, 153203 (2010)

⇒ Good agreement with Olshanii prediction for single anisotropy (ωx = ωy)

⇒ Olshanii theory: no splitting (ωx 6= ωy)!!! Peng et al., PRA 82, 063633 (2010)
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Complete confusion:

Innsbruck loss experiment (Haller et al.):

• Position of 1D CIR agrees with Olshanii prediction for ωx = ωy.
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Complete confusion:

Innsbruck loss experiment (Haller et al.):

• Position of 1D CIR agrees with Olshanii prediction for ωx = ωy.

• Splitting of 1D CIR for ωx 6= ωy seems trivial, but conflicts with Olshanii
theory.
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• Position of 1D CIR agrees with Olshanii prediction for ωx = ωy.
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• Quasi-2D: CIR appears for a with “wrong” sign compared to Petrov, Holzmann,
Shlyapnikov prediction.
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Complete confusion:

Innsbruck loss experiment (Haller et al.):
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Complete confusion:

Innsbruck loss experiment (Haller et al.):

• Position of 1D CIR agrees with Olshanii prediction for ωx = ωy.

• Splitting of 1D CIR for ωx 6= ωy seems trivial, but conflicts with Olshanii
theory.

• Quasi-2D: CIR appears for a with “wrong” sign compared to Petrov, Holzmann,
Shlyapnikov prediction.

• Quasi-2D: No losses at the “correct” value of a.

Cambridge radio-frequency experiment (Froehlich et al.):

• Quasi-2D: CIR appears at “correct” value of a (also seen by Chris Vale).

• Note: this experiment is a direct measurement of the binding energies.
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Harmonic vs. anharmonic confinement (optical lattice)

Analytical separable solution exists for the atom pair, if

• the interatomic interaction is described by a pseudo potential
(Vatom−atom ∝ asc δ(~r ) with s-wave scattering length asc),

• the harmonic approximation is adopted for the lattice potential, and

• both atoms “feel” the same lattice potential.
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Harmonic vs. anharmonic confinement (optical lattice)

Analytical separable solution exists for the atom pair, if

• the interatomic interaction is described by a pseudo potential
(Vatom−atom ∝ asc δ(~r ) with s-wave scattering length asc),

• the harmonic approximation is adopted for the lattice potential, and

• both atoms “feel” the same lattice potential.

However, coupling of center-of-mass (COM) and relative (REL) motion

• for the (correct) sin2 potential of an optical lattice,

• in fact for any realistic trap potential,

• even in harmonic traps, if the two atoms experience different trap potentials

? heteronuclear atom pairs or

? atoms in different electronic states (if polarisability differs).
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Our theoretical approach

Hamiltonian (6D):

Ĥ(~R,~r ) = ĥCOM(~R ) + ĥREL(~r ) + Ŵ(~R,~r )

with ~R : center-of-mass (COM) ~r : relative motion (REL) coordinate .

• Taylor expansion of the sin2 lattice potential (to arbitrary order).

• Also cos2, mixed, and fully anisotropic (orthorhombic) lattices possible.

• All separable terms included in either ĥCOM or ĥREL.

• Full interatomic interaction potential (typically a numerical BO curve).

• Configuration interaction (CI) type full solution using the eigenfunctions

(orbitals) of ĥCOM and ĥREL.

• Full consideration of orthorhombic lattice symmetry (and possible indistinguis-
hability of atoms).
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Our theoretical approach (extensions)

• Inclusion of time-dependent external potential (fully non-perturbative),

so far: additional linear or harmonic potential (extension straightforward).

[P.I. Schneider, S. Grishkevich, A.S., Phys. Rev. A 87, 053413 (2013).]
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• Inclusion of time-dependent external potential (fully non-perturbative),

so far: additional linear or harmonic potential (extension straightforward).

[P.I. Schneider, S. Grishkevich, A.S., Phys. Rev. A 87, 053413 (2013).]

• Anisotropic dipole-dipole interparticle interaction (field-aligned dipoles along
one of the orthorhombic crystal axes).

[B. Schulz, S. Sala, A.S., New J. Phys. 17, 065002 (2015)]
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• Generalization to arbitrary polynomial trapping potentials.

[F. Revuelta, S. Onyango, B. Schulz, A.S., in preparation]
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Our theoretical approach (extensions)

• Inclusion of time-dependent external potential (fully non-perturbative),

so far: additional linear or harmonic potential (extension straightforward).

[P.I. Schneider, S. Grishkevich, A.S., Phys. Rev. A 87, 053413 (2013).]

• Anisotropic dipole-dipole interparticle interaction (field-aligned dipoles along
one of the orthorhombic crystal axes).

[B. Schulz, S. Sala, A.S., New J. Phys. 17, 065002 (2015)]

• Generalization to arbitrary polynomial trapping potentials.

[F. Revuelta, S. Onyango, B. Schulz, A.S., in preparation]

• Off-set between the traps/lattices of the two atoms, especially for atom-ion
pairs.

[S. Onyango, F. Revuelta, A.S., in preparation]
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Full treatment of two atoms in quasi-1D trap:

Full Hamiltonian: center-of-mass (COM) and relative motion (REL) motion:

H(r,R) = TREL(r) + TCOM(R) + VREL(r) + VCOM(R) + Uint(r) +W (r,R)

Note:

Anharmonic optical-lattice potential ⇒ COM and REL coupling (W (r,R) 6= 0)!
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Energy spectra (cartoon)

Relative-motion spectrum in harmonic trap vs. full (rel + com) spectrum

Relative motion only

ψb: (molecular) bound state

ψ1: lowest-lying trap state
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Energy spectra (cartoon)

Relative-motion spectrum in harmonic trap vs. full (rel + com) spectrum

Relative motion only

ψb: (molecular) bound state

ψ1: lowest-lying trap state

Full spectrum

Φ(0,0,0): ground com state

Φ(2,0,0): excited com state
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Molecule formation due to confinement

Full spectrum Avoided crossing

Coupling of center-of-mass (com) and relative (rel) motion (W 6= 0):

−→ avoided crossing

−→ molecule formation possible!
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Energy spectra (ab initio results)

Relative-motion spectrum in harmonic trap vs. coupled spectrum in sextic trap
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Many crossings are found in the coupled model,
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Energy spectra (ab initio results)

Relative-motion spectrum in harmonic trap vs. coupled spectrum in sextic trap
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Many crossings are found in the coupled model,

but which of them lead to resonances?
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Approximate selection rules

Coupling matrix element:

W(n,m,k) = 〈 φn(R)ψb(r) | W (r,R) | φm(R)ψk(r) 〉

W (r,R) =
∑
j=x,y,zWj(rj, Rj)

W(n,m,k) ≈ δnz,mz F(n,m,k)(W )

F(n,m,k)(W ) =

[
δny,my〈φnx(X) |Wx(X) |φmx(X) 〉〈ψb(r) |Wx(x) |ψk(r) 〉

+δnx,mx〈φny(Y ) |Wy(Y ) |φmy(Y ) 〉〈ψb(r) |Wy(y) |ψk(r) 〉
]

REL bound state:
|ψb(r)〉

REL trap state: ψk(r)

COM states: φn(R) =
φnx(X)φny(Y )φnz(Z)

Ultracold: only ground trap state populated =⇒ m = k = 0.

Resonances:

Crossing of transversally COM excited REL bound state with ground (COM and
REL) trap state.
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Avoided Crossings (I)

Only few crossings are avoided (approx. selection rules):
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Zoom-in in spectrum.
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Avoided Crossings (II)

Only few crossings are avoided (approx. selection rules):
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⇒ single anisotropy (ωx = ωy � ωz): degeneracy

⇒ totally anisotropic case ωx 6= ωy � ωz: splitting
[S. Sala, P.-I. Schneider, A.S., Phys. Rev. Lett. 109, 073201 (2012)]
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Comparison with Innsbruck Experiment
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Agreement not only for positions, but also for width.

Quantitative agreement also for quasi-2D resonance: a = 0.593 dy (exp.)
vs. a = 0.595 dy (th.) [S. Sala, P.-I. Schneider, A.S., Phys. Rev. Lett. 109, 073201 (2012)]
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Preliminary summary

Our conclusion:

• Two types of resonances: elastic (Olshanii, Petrov et al.) and inelastic ones.

• Elastic CIR: no molecule formation, (almost) no losses (invisible in Innsbruck
experiment).

• Inelastic CIR: molecule formation, thus atom loss.
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• Two types of resonances: elastic (Olshanii, Petrov et al.) and inelastic ones.

• Elastic CIR: no molecule formation, (almost) no losses (invisible in Innsbruck
experiment).

• Inelastic CIR: molecule formation, thus atom loss.

• Quasi 1D: accidentally at similar positions (in fact overlapping), but widths
differs by about one order of magnitude (elastic: broader).

• Quasi 2D: positions differ even by sign of a.
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Preliminary summary

Our conclusion:

• Two types of resonances: elastic (Olshanii, Petrov et al.) and inelastic ones.

• Elastic CIR: no molecule formation, (almost) no losses (invisible in Innsbruck
experiment).

• Inelastic CIR: molecule formation, thus atom loss.

• Quasi 1D: accidentally at similar positions (in fact overlapping), but widths
differs by about one order of magnitude (elastic: broader).

• Quasi 2D: positions differ even by sign of a.

Note: The possibility to create molecules due to anharmonicity had earlier been
suggested: Bolda, Tiesinga, Julienne [PRA 71, 033404 (2005)]; Schneider, Grishkevich, A.S,

[Phys. Rev. A 80, 013404 (2009)]; Kestner, Duan [N. J. Phys. 12, 053016 (2010)].
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Preliminary summary

Our conclusion:

• Two types of resonances: elastic (Olshanii, Petrov et al.) and inelastic ones.

• Elastic CIR: no molecule formation, (almost) no losses (invisible in Innsbruck
experiment).

• Inelastic CIR: molecule formation, thus atom loss.

• Quasi 1D: accidentally at similar positions (in fact overlapping), but widths
differs by about one order of magnitude (elastic: broader).

• Quasi 2D: positions differ even by sign of a.

Note: The possibility to create molecules due to anharmonicity had earlier been
suggested: Bolda, Tiesinga, Julienne [PRA 71, 033404 (2005)]; Schneider, Grishkevich, A.S,

[Phys. Rev. A 80, 013404 (2009)]; Kestner, Duan [N. J. Phys. 12, 053016 (2010)].

However, are the losses in the Innsbruck experiment really due to molecule
formation?
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Experimental validation (with group of S. Jochim)

Exclusion of many-body and multi-channel effects:

Experiment with exactly two Li atoms in high-fidelity ground state

[Serwane et al., Science 332, 336 (2011)]
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Experimental validation (with group of S. Jochim)

Exclusion of many-body and multi-channel effects:

Experiment with exactly two Li atoms in high-fidelity ground state

[Serwane et al., Science 332, 336 (2011)]

1. Confirmation of the elastic CIR by measuring the tunnel rate:

Interaction energy shifts two-atom ground state ⇒ modified atomic tunnel rate.
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Experimental validation (with group of S. Jochim)

Exclusion of many-body and multi-channel effects:

Experiment with exactly two Li atoms in high-fidelity ground state

[Serwane et al., Science 332, 336 (2011)]

1. Confirmation of the elastic CIR by measuring the tunnel rate:

Interaction energy shifts two-atom ground state ⇒ modified atomic tunnel rate.

2. Detection of molecules created by inelastic CIRs: measurement of
tunneling atoms at B field where bound molecules do not tunnel (doubled mass).

[Sala, Zürn, Lompe, Wenz, Murmann, Serwane, Jochim, A.S., PRL 110, 203202 (2013).]
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Universality of confinement-induced resonances:

Quantum-dot systems (electron pairs or excitons):

Inelastic confinement-induced resonances occur also for Coulomb interaction.

For electron pairs (no bound state) (smaller) change of density.

For excitons (electron-hole pairs) larger change of density.
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Universality of confinement-induced resonances:

Quantum-dot systems (electron pairs or excitons):

Inelastic confinement-induced resonances occur also for Coulomb interaction.

For electron pairs (no bound state) (smaller) change of density.

For excitons (electron-hole pairs) larger change of density.

−→ on-demand single-photon source!

[M. Troppenz, S. Sala, P.-I. Schneider, and A.S., arXiv:1509.01159]
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Universality of confinement-induced resonances:

Quantum-dot systems (electron pairs or excitons):

Inelastic confinement-induced resonances occur also for Coulomb interaction.

For electron pairs (no bound state) (smaller) change of density.

For excitons (electron-hole pairs) larger change of density.

−→ on-demand single-photon source!

[M. Troppenz, S. Sala, P.-I. Schneider, and A.S., arXiv:1509.01159]

Ion-atom pairs: [S. Onyango, F. Revuelta, A.S., in preparation]

Dipolar gases (heteronuclear molecules, Rydberg atoms):

Inelastic confinement-induced resonances seen in ab initio calculations.

They are tunable by varying the dipole-coupling strength!

[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]
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Ion-atom pairs: [S. Onyango, F. Revuelta, A.S., in preparation]

Dipolar gases (heteronuclear molecules, Rydberg atoms):

Inelastic confinement-induced resonances seen in ab initio calculations.

They are tunable by varying the dipole-coupling strength!

[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]

A. Saenz: Few-body systems under confinement (32) EFB 25 (Mainz), 31.07.2023



Inelastic confinement-induced dipolar resonances (ICIDR)
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Note: In this case, tuning is achieved via the dipolar interaction (external electric
or magnetic fields).

[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]

[More resonances in dipolar gases and double-well potentials:

B. Schulz, A.S., ChemPhysChem 17, 3747 (2016)]
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Inelastic vs. elastic CIRs

Elastic CIRs:

• can be explained using relative-motion coordinates only
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(extreme case: 1d, ratio = −ζ(1/2))

• can only occur in reduced dimensionality (1d or 2d).
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• caused by center-of-mass / relative-motion coupling
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(extreme case: 1d, ratio = −ζ(1/2))

• can only occur in reduced dimensionality (1d or 2d).

Inlastic CIRs:

• caused by center-of-mass / relative-motion coupling

• allow for molecule (dimer) formation or break-up
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• can only occur in reduced dimensionality (1d or 2d).
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• allow for molecule (dimer) formation or break-up
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Inelastic vs. elastic CIRs

Elastic CIRs:

• can be explained using relative-motion coordinates only

• modify the interaction strength

• absolutely universal: fixed ratio of scattering to confinement length
(extreme case: 1d, ratio = −ζ(1/2))

• can only occur in reduced dimensionality (1d or 2d).

Inlastic CIRs:

• caused by center-of-mass / relative-motion coupling

• allow for molecule (dimer) formation or break-up

• resonance position and strength can be tuned

• should occur in all dimensions, i. e. also under 3d (0d) confinement.
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Observation of ICIRs in 3d confinement

(a) Scattering length as for Cs
(F = 3,mf = 3) as a function of
the magnetic field B.

The dashed lines labeled P0, P1,
P2, and P3 mark the positions of
the experimentally observed reso-
nant features.
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Observation of ICIRs in 3d confinement

(b) Schematic representation of
the states involved in the ICIRs:
unbound trap state without COM
exciation (upper) and bound
(lower) states without COM ex-
citation.

A lattice model M1 and a single-
well (sextic) model M2 are used
for theoretaical modeling of the
experimental results.
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Observation of ICIRs in 3d confinement

(c) Schematic energy diagram (for iso-

tropic trap).

The thick and thin solid li-

nes correspond to ψRM
t φCM

iso (0, 0, 0)

and ψRM
t φCM

iso (2, 0, 0), respective-

ly, whereas the dashed, dotted,

and dashed-dotted curves represent

ψRM
b φCM

iso (4, 0, 0), ψRM
b φCM

iso (2, 2, 0),

and ψRM
b φCM

iso (6, 0, 0), respectively.

Intersections causing the ICIRs of the

present work are indicated by crosses

[color coding as in (a)].
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Resonance assignment

Resonance positions for P1 (blue), P2 (red),
and P3 (green) for the isotropic (circles) and
the anisotropic (triangles) case.

For the isotropic case, Vx = Vy = Vz was
set to 20.0(3), 18.5(3), 17.5(3), 16.5(3),
and 15.5(3) ER for the data from left to right.

For the anisotropic case, Vx = Vy = 18.5(3)
ER was chosen for Vz = 17.5(3) ER (left
triangles) and 16.5(3) ER (right triangles).

The results from M1 (only isotropic case) are
shown as the blue, red, and green areas.

The predictions of M2 are plotted as dotted
(dashed) lines for the isotropic (anisotropic)
case.

[D. Capecchi et al. , arXiv2209.12504 (under review in Phys. Rev. Lett.]

A. Saenz: Few-body systems under confinement (38) EFB 25 (Mainz), 31.07.2023



Lattice-induced resonances (delocalized ICIRs)

[arXiv:2208.06054, Phys. Rev. Lett. (in print)]
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Lattice-induced resonances (delocalized ICIRs)

  

Our double-well simulation (and comparison to single-well results) agrees very well
with the experimentally found resonance positions and confirms delocalized ICIRs.

[F. Revuelta, A.S., in preparation]
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Summary

• Ultracold quantum gases are in most cases trapped: the influence of the confi-
nement (possibly reduced dimensionality, anharmonicity) is important.

• Resonances may be useful (modification of the interaction strength, molecule
formation) or harmful (losses, unwanted effects overlaying the wanted ones).

• The microscopic few-body effects are not only relevant for few-body, but also
for understanding many-body systems.

• If artificial confinement is adopted for computational convenience, the influence
of the confinement needs to be understood.
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