Discrete scale symmetry and non-integer dimensions in few-body systems at the unitarity limit

Tobias Frederico tobias@ita.br Instituto Tecnológico de Aeronáutica, Brazil

Collaborators:

Dérick S. Rosa (ITA)
Rafael M. Francisco (UF/S. João del Rei) Marcelo Yamashita (IFT/UNESP) Gastão Krein (IFT/UNESP)

Mario Gattobigio (Côte d'Azur/CNRS/IPN) Lauro Tomio (IFT/UNESP)
Mohammadreza Hadizadeh (Ohio)
Wayne de Paula (ITA)
Antônio Delfino ${ }^{+}(\ln$ Memorian)

25th European conference on few-body problems in physics(EFB25) Mainz, Germany, July 30th to August 4th, 2023.

Context

$>$ cold atoms;
$>$ short-range potentials (range $\rightarrow 0$);
$>$ scatt. lengths \rightarrow infinity (unitarity limit);
$>$ weakly bound systems;
$>$ noninteger dim./squeezed traps 3D \rightarrow 2D

3-Bosons $3 \mathrm{D} \rightarrow 2 \mathrm{D}$
 Efimov-Thomas \rightarrow No E.-T.

Discrete Scale Symmetry \rightarrow No DScS
limit cycles \rightarrow scaling with two-body energy
How that happens?
Start with what we know...

What do we know in 3D for three-bosons:

Scaling function as a limit cycle for the trimer bound-state
TF, Tomio, Delfino, Amorim. Phys. Rev. A60, R9 (1999).
Yamashita et al PRA66(2003)052702

Thomas-Efimov states

$\rightarrow \rightarrow \rightarrow$ Scaling plot - universal correlation Discrete scale symmetry
${ }^{4} \mathrm{He}_{3}$ Kunitski et al, Science 348 (2015) 551

Efimov/zero-range limits

$$
|\mathrm{a}| / \mathrm{r}_{\mathrm{o}} \rightarrow \infty
$$

[1] Cornelius \& Glöckle. JCP 85, 1 (1996).
[2] Huber. PRA31, 3981 (1985).
[3] Barletta \& Kievsky. PRAA64, 042514 (2001).
[4] Fedorov \& Jensen. JPA34, 6003 (2001).
[5] Kolganova, Motovilov, Sofianos. PRA56, R1686 (1997).

What do we know in 3D for four-bosons:

Scaling function (limit cycle) for the bound-state \& Interwoven cycles

$$
B_{4}^{(N)} / B_{4}^{(N+1)} \sim 151
$$

In EFT 4-body scale @ NLO

- Bazak et al. PRL 122 (2019) 143001

Universal tetramer limit-cycle at the unitary limit

TF \& M. Gattobigio, arXiv:2303.14952 [physics.atm-clus]

Gaussian two, three and four-body potentials @ unitarity

- - - Hadizadeh et al PRL 107, 135304 (2011)
\square Deltuva PRA82 (2010) \& arXiv 1202.0167

Limit Cycle in potential models

LLHH, LLLHH ... systems: B.O. approximation

LLHH Naidon, Few-Body Syst. 59, 64 (2018)

$$
\mathrm{m}_{\mathrm{H}} \gg \mathrm{~m}_{\mathrm{L}} \quad \text { L-H interaction only }
$$

"Interwoven limit cycles in the spectra of mass imbalanced many-boson system"
De Paula, Delfino, TF, Tomio, JPB53, 205301 (2020)

Born-Oppenheimer approx.

Fonseca, Redish, Shanley, Nucl. Phys. A320 (1979) 273
Bhaduri, Chatterjee, van Zyl, Am. J. Phys. 79 (2011) 274-281; Am. J. Phys. 80 (2012) 94.

$$
\left[\frac{d^{2}}{d R^{2}}+\frac{s_{N}^{2}+\frac{1}{4}}{R^{2}}-\mathcal{B}_{N}\right] u=0 \quad(N \geq 3)
$$

$$
\begin{aligned}
& s_{N} \equiv s_{N}(A) \equiv \sqrt{\left(\frac{2+A}{4 A}\right)(N-2) \gamma^{2}-\frac{1}{4}} \quad \mathrm{~A}=\mathrm{m}_{\mathrm{L}} / \mathrm{m}_{\mathrm{H}} \\
& \gamma=e^{-\gamma}=0.5671433
\end{aligned}
$$

What do we know 2D for 2, 3 and 4 bosons in the limit of $E_{2} \rightarrow 0$

$$
\langle k| t(E)|k\rangle=\frac{2}{\pi}(-\cot \delta+i)^{-1},
$$

with 14
${ }^{14}$ S. K. Adhikari, W. G. Gibson, and T. K. Lim, J. Chem. Phys. 85, 5580 (1986); S. K. Adhikari, Am. J. Phys. 54, 362 (1986).
$\cot \delta=a_{2}+\frac{1}{\pi} \ln E+b E+c E^{2}+\cdots$.
zero-range limit:

Bruch \&Tjon, Phys. Rev. A 19, 425 (1979): NO EFIMOV EFFECT IN 2D!

$$
\text { 3-bosons: } \mathrm{E}_{3,0}=16.1 \mathrm{E}_{2} \text { and } \mathrm{E}_{3,1}=1.25 \mathrm{E}_{2}
$$

Platter, Hammer, Meißner FBS 35 (2004) 169
4-bosons $\mathrm{E}_{4,0}=197.3(1) \mathrm{E}_{2}$ and $\mathrm{E}_{4,1}=25.5(1) \mathrm{E}_{2}$

Dimensional reduction 3D $\rightarrow 2 \mathrm{D}$

* Non-integer dimension: E. Nielsen, et al. Phys. Rep. 347, 373 (2001)
* Harmonic confinement: $3 D \rightarrow 2 D$

Levinsen, Massignan, Parish, PRX 4, 031020 (2014)

* Compactification (periodic bound. conditions) $3 D \rightarrow 2 D$ (3body) Sandoval et al, JPB 51 (2018) 065004
* Danilov's equations in non-integer dimensions (3body)

Rosa, TF, Krein, Yamashita, PRA97 (2018) 050701(R)

* Bethe-Peierls boundary-conditions \& hyperspherical method (3body)

Rosa, TF, Krein, Yamashita, PRA106 (2022) 023311 \& arXiv:2305.18064

* EFT compactification \& dim reg 4D $\rightarrow 3 \mathrm{D} \rightarrow 2 \mathrm{D}, 4 \mathrm{D} \rightarrow 2 \mathrm{D}$ (2body)

Beane, Jafry, JPB52(2019) 035001

Dimensional reduction: compactification

$>R_{z} \rightarrow$ infty $D \rightarrow 3$
$>R_{z} \rightarrow 0 D \rightarrow 2$

2-body scatt amplitude zero-range interaction:

$$
\begin{aligned}
& R_{z} \tau_{A \beta ; R_{z}}^{-1}(E)=2 m_{A \beta} \sum_{n}\left\{\int \frac{d^{2} p_{\perp}}{\tilde{E}-p_{\perp}^{2}-\frac{n^{2}}{R_{z}^{2}}}-\int \frac{d^{2} p_{\perp}}{\tilde{E}_{A \beta}-p_{\perp}^{2}-\frac{n^{2}}{R_{z}^{2}}}\right\} \\
& \tau_{A \beta ; R_{z}}(E)=R_{z}\left[4 \pi m_{A \beta} \ln \left(\frac{\sinh \pi \sqrt{-2 m_{A \beta} E} R_{z}}{\sinh \pi \sqrt{-2 m_{A \beta} E_{A \beta}} R_{z}}\right)\right]^{-1}
\end{aligned}
$$

$$
\begin{array}{ll}
D \rightarrow 2 & \left.\tau_{A \beta, R_{z}}(E)\right|_{R_{z} \rightarrow 0}=R_{z}\left[4 \pi m_{A \beta} \ln \left(\sqrt{-E} / \sqrt{-E_{A \beta}}\right)\right]^{-1} \\
D \rightarrow 3 & \left.\tau_{A \beta, R_{z}}(E)\right|_{R_{z} \rightarrow \infty}=\left[4 \pi^{2} m_{A \beta}\left(\sqrt{-2 m_{A \beta} E}-\sqrt{-2 m_{A \beta} E_{A \beta}}\right)\right]^{-1}
\end{array}
$$

Solution of the compactified SKM equations for AAB systems

Sandoval et al. JPB 51 (2018) 065004
$m_{B} / m_{A}=6 / 133$
J H Sandoval et al

$$
\begin{aligned}
& \int d^{3} p \frac{1}{E_{2}^{3 D}-\frac{p^{2}}{2 M}}-\frac{1}{R_{y}} \sum_{n} \int d^{2} p_{\perp} \frac{1}{E_{2}^{Z R}-\frac{p_{\perp}^{2}}{2 M}-\frac{n^{2}}{2 M R_{y}^{2}}}=0 \\
& E_{2}^{Z R}=-\frac{a_{3 D}^{2}}{\left(\pi R_{y}\right)^{2}} \ln ^{2}\left(\frac{e^{\pi R_{y} / a_{3 D}}}{2}+\sqrt{\frac{e^{2 \pi R_{y} / a_{3 D}}}{4}+1}\right)
\end{aligned}
$$

b oscillator length

$$
\begin{aligned}
& E_{2}\left(b_{y}\right)=-\frac{4 a_{3 D}^{2}}{\alpha+\beta b_{y}^{2}} \ln ^{2}\left(\frac{e^{b_{y} / 2 a_{3 D}}}{2}+\sqrt{\frac{e^{b_{y} / a_{3 D}}}{4}+1}\right) \\
& E_{2}\left(b_{\omega} \rightarrow 0\right) \equiv E_{2}^{2 D}
\end{aligned}
$$

$$
E_{2}\left(b_{\omega} \rightarrow \infty\right) \equiv E_{2}^{3 D}
$$

Non-integer dimension and harmonic trap

Garrido \& Jensen, Phys. Rev. Res. 2 (2020) 033261

$b_{\text {ho }}$ oscillator length

$$
\frac{b_{\mathrm{ho}}}{r_{2 \mathrm{D}}}=\sqrt{\frac{3(d-2)}{(d-1)(3-d)}} .
$$

$r_{2 D}$ 3-body rms radius in 2D

FIG. 5. Numerical relation between the dimension d and the harmonic oscillator parameter $b_{\text {ho }}$ obtained after making $E_{\text {ext }}$ in Fig. 3 and the ground-state energy E_{d} in Fig. 4 equal. The oscillator parameter $b_{\text {ho }}$ is normalized to the root-mean-square radius of the 2D three-body calculation. The cases of potentials A_{g}, B_{g}, A_{m}, and B_{m} are shown by the solid, dashed, dot-dashed, and dot-dot-dashed curves, respectively. These results are compared with the estimate given in Eq. (38), which is shown by the dotted curve.

Danilov's equations in non-integer dimensions for AAB systems

zero-range 3B equations in non-integer D: Rosa, TF, Krein, Yamashita PRA97, 050701(R) (2018)

$$
\mathcal{A}=m_{B} / m_{A}
$$

Region where there is a real solution for the scaling factor s

FIG. 1. Regions (in blue) where there is a real solution for the scaling factor s, solution to Eq. (8); outside this "dimensional band," the Efimov effect does not exist. For $\mathcal{A}=1$ we reproduce exactly the result in Ref. [7], where the dimensional limits are given by $2.3<D<3.8$.

$$
\mathcal{A}=1 ; 2.3<D<3.8
$$

E. Nielsen, et al. Phys. Rep. 347, 373 (2001).

FIG. 2. Discrete scaling factor as a function of the mass ratio $\mathcal{A}=m_{B} / m_{A}$, and dimension D. The black dashed line shows the well-known situation of $D=3$.

Analytic bound-state wave function for abc systems [scatt lengths $\rightarrow \infty$]

Rosa, TF, Krein, Yamashita PRA 106, 023311 (2022)
Faddeev equation: $\Psi=\sum_{i=1}^{3} G_{0} V_{i} \Psi=\sum_{i=1}^{3} \psi_{i}$
Bethe-Peierls Boundary condition

$$
\left[\frac{\partial}{\partial r_{i}} r_{i}^{\frac{D-1}{2}} \Psi\left(\boldsymbol{r}_{i}, \boldsymbol{\rho}_{i}\right)\right]_{r_{i} \rightarrow 0}=\frac{3-D}{2}\left[\frac{\Psi\left(\boldsymbol{r}_{i}, \boldsymbol{\rho}_{i}\right)}{r_{i}^{\frac{3-D}{2}}}\right]_{r_{i} \rightarrow 0}
$$

$$
\begin{aligned}
\psi^{(i)}\left(r_{i}^{\prime}, \rho_{i}^{\prime}\right) & =C^{(i)} \frac{K_{s_{n}}\left(\kappa_{0} \sqrt{r_{i}^{\prime 2}+\rho_{i}^{\prime 2}}\right)}{\left(r_{i}^{\prime 2}+\rho_{i}^{\prime 2}\right)^{D / 2-1 / 2}} \frac{\sqrt{\sin \left(2 \arctan \left(r_{i}^{\prime} / \rho_{i}^{\prime}\right)\right)}}{\left[\cos \left(\arctan \left(r_{i}^{\prime} / \rho_{i}^{\prime}\right)\right) \sin \left(\arctan \left(r_{i}^{\prime} / \rho_{i}^{\prime}\right)\right)\right]^{D / 2-1 / 2}} \\
& \times\left[P_{s_{n} / 2-1 / 2}^{D / 2-1}\left(\cos \left(2 \arctan \left(r_{i}^{\prime} / \rho_{i}^{\prime}\right)\right)\right)-\frac{2}{\pi} \tan \left(\pi\left(s_{n}-1\right) / 2\right) Q_{s_{n} / 2-1 / 2}^{D / 2-1}\left(\cos \left(2 \arctan \left(r_{i}^{\prime} / \rho_{i}^{\prime}\right)\right)\right)\right]
\end{aligned}
$$

where $K_{s_{n}}$ is the modified Bessel function of the second kind. $P_{n}^{m}(x)$ and $Q_{n}^{m}(x)$ are the associated Legendre functions
$-\kappa_{0}^{2}=2 E$

$$
{ }^{6} \mathrm{Li}-{ }^{133} \mathrm{Cs}-{ }^{87} \mathrm{Rb}
$$

Finite κ_{0}

Dimensionless radial distribution as a function of dimensionless quantities $r=\kappa_{0} r_{3}\left({ }^{133} \mathrm{Cs}-{ }^{87} \mathrm{Rb}\right.$ relative distance) and $\rho=\kappa_{0} \rho_{3}\left({ }^{6} \mathrm{Li}\right.$ relative distance to the ${ }^{133} \mathrm{Cs}-{ }^{87} \mathrm{Rb}$ system). We consider the three-body system ${ }^{6} \mathrm{Li}-{ }^{133} \mathrm{Cs}-{ }^{87} \mathrm{Rb}$ for $D=2.5$ (blue) with $b_{\text {no }} / r_{2 \mathrm{D}}=\sqrt{2}$, and $D=3.0$ (green).
The angle between \vec{r} and $\vec{\rho}$ is fixed to $\pi / 3$.

Single-particle momentum distribution of AAB Efimov states in non-integer dimensions

Rosa, TF, Krein, Yamashita, arXiv preprint arXiv:2305.18064

$$
\begin{array}{r}
\left\langle\mathbf{q}_{B} \mathbf{p}_{B} \mid \Psi\right\rangle=\frac{1}{E_{3}+p_{B}^{2} / 2 \eta_{B}+q_{B}^{2} / 2 \mu_{B}}\left[\chi^{(B)}\left(\mathbf{q}_{B}\right)\right. \\
\left.+\chi^{(A)}\left(\left|\mathbf{p}_{B}-\frac{\mathbf{q}_{B}}{2}\right|\right)+\chi^{(A)}\left(\left|\mathbf{p}_{B}+\frac{\mathbf{q}_{B}}{2}\right|\right)\right]
\end{array}
$$

spectator functions

FIG. 1. Spectator functions in momentum space for the ${ }^{6} \mathrm{Li}-{ }^{133} \mathrm{Cs}_{2}$ system with finite three-body energy, $\chi^{(i)}\left(q_{i}\right)$ ($i=A \equiv{ }^{133} \mathrm{Cs}$ or $B \equiv{ }^{6} \mathrm{Li}$), computed with Eq. (2.14) for $\chi^{(A)}\left(q_{A}\right)$ (long-dashed line) and $\chi^{(B)}\left(q_{B}\right)$ (short-dashed line), compared to the zero-energy case from Eq. (2.16) for $\chi_{0}^{(A)}\left(q_{A}\right)$ (green solid line) and $\chi_{0}^{(B)}\left(q_{B}\right)$ (blue solid line). Top: three dimensions. Bottom: $D=2.5$, which corresponds to a harmonic-trap length of $b_{h o} / r_{2 D}=\sqrt{2}$.

Single-particle momentum distribution

$$
n_{B}\left(q_{B}\right)=\int d^{D} p_{B}\left|\left\langle\mathbf{q}_{B} \mathbf{p}_{B} \mid \Psi\right\rangle\right|^{2} \quad \int d^{D} q_{B} n_{B}\left(q_{B}\right)=1
$$

FIG. 2. Single particle momentum distribution, $n_{B}\left(q_{B}\right)$ of an ${ }^{6} \mathrm{Li}^{133}{ }^{133} \mathrm{Cs}_{2}$ Efimov state in $D=3$ (solid line), $D=2.5$ (long-dashed line) and $D=2.3$ (short-dashed line).

Contacts: $q_{B} \rightarrow$ infinity

AAA \& D=3: Castin \& Werner, PRA 83, 063614 (2011)

AAB \& D=3: Yamashita et al, PRA 87, 062702 (2013)

FIG. 4. Three- and two-body contact parameters (top panel) and phase (bottom panel), considering a $A A B$ system with different mass ratios embedded in three dimensions.

Contacts: $q_{B} \rightarrow$ infinity

FIG. 5. Three- and two-body contact parameters and phase for the ${ }^{6} \mathrm{Li}-{ }^{133} \mathrm{Cs}_{2}$ system in noninteger dimensions from 2.3 to three. Top panel: $100 C_{3}^{\prime} / \kappa_{0}^{2}$ (solid line), $100\left|C_{3}\right| / \kappa_{0}^{2}$ (longdashed line), $20\left|C_{2}\right| / \kappa_{0}^{4-D}$ (short-dashed line) and s_{0} (dotdashed line). Lower panel: phase Φ / π (dotted line).

FIG. 6. Three- and two-body contact parameters and phase for three-identical bosons in noninteger dimensions. Top panel: C_{3} / κ_{0}^{2} (long-dashed line) and C_{2} / κ_{0}^{4-D} (short-dashed line). Bottom panel: phase Φ / π (dotted line).

LLHH, LLLHH... systems: B.O. approximation in non-integer dimensions

 L-H interaction onlyRosa, TF, Krein, Yamashita, JPB 52, 025101 (2018)
Francisco, Rosa, TF, PRA 106, 063305 (2022)

$$
\begin{aligned}
& {\left[-\frac{d^{2}}{d R^{2}}-\frac{m_{A}}{2 \mu_{B, A A}}(N-2) \frac{g(D)}{R^{2}}\right.} \\
& \left.\quad+\frac{(D-3+2 l)(D-1+2 l)}{4 R^{2}}\right] \chi(R)=0
\end{aligned}
$$

Solve transcendental equation: $g(D)=\left[-\frac{\pi \csc (D \pi / 2)}{2^{\frac{D}{2}} \Gamma(D / 2) K_{\frac{D-2}{2}}(\sqrt{g(D)})}\right]^{\frac{4}{2-D}}$

$$
s=\sqrt{\frac{m_{A}}{2 \mu_{B, A A}}(N-2) g(D)-\frac{(D-2+2 l)^{2}}{4}}
$$

$>3,4,5 \ldots$ independent cycles
> 4-body cycle and no 3-body cycle
turn-off cycles with D!

Summary

\checkmark Discrete scaling in non-integer dimension \& Efimov and Thomas effects;
\checkmark Bethe-Peierls B.C.: analytic form of the wave function ABC system in D dimensions @unitarity (applications to halo nuclei)
\checkmark Contacts of the $A A B$ system increase with $D=3 \rightarrow 2$ (up to a factor ~ 2);
\checkmark Discrete scaling in N-boson systems - BO approx.: new scales and discrete cycles ;
\checkmark Dimension/squeezing for when $D=3 \rightarrow 2$ manipulates the discrete N-body cycles independently.

THANK YOU!!!!

Acknowledgments

Grants \# 2017/05660-0, 2019/07767-1, 2020/00560-0, 309262/2019-4 from São Paulo Research Foundation (FAPESP).

Grants \# 308486/2015-3 (TF), 303579/2019-6 (MTY), and 309262/2019-4 (GK) from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

