Recent progress in hypernuclear physics

Emiko Hiyama (Tohoku Univ./RIKEN)

Major goals of hypernuclear physics

To understand baryon-baryon interactions

Fundamental and important for the study of nuclear physics

Total number of

Nucleon (N) -Nucleon (N) data: 4,000

- Total number of differential cross section Hyperon (Y) -Nucleon (N) data: 40
- NO YY scattering data

YN and YY potential models so far proposed
(ex. Chiral, Nijmegen, Kyoto-Niigata) have large ambiguity.

Therefore, for the study of YN and YY interactions, the systematic investigation of the structure of light hypernuclei is one of the important

way.

(Some YN scattering experiments have been done and further experiment is planned at J-PARC.)

Once YN and YY interactions are determined, we can

predict interesting phenomena which cannot be imagined so far.

In addition, we could study inner part of neutron stars which

have been observed.

Hypernuclear γ-ray data (2019) ¹⁰B (K⁻,π⁻γ) BNL E930('01) Since 1998 ⁷Li etc. (K⁻_{stop}, γπ⁻) ⁷Li (π⁺,K⁺γ) KEK E419 ⁹Be (K⁻,π⁻γ) BNL E930('98) 3.563 0+ 1/2⁺ T=1 3.88 + 1.08 NPA 754 (2005) 58c 3/2+3.068 7/2+ 2.520 3.040 2+ 5/2+ 3.025 ¹⁹F(K, πγ) J-PARC E13 ⁴_AH PLB 62 (1976) 46 -5/2+ 2.050 PLB 83 (1979) 25. 0- 1.081 1/2 1.266 _3/2⁺0.692 5/2+ 0.895 0.937 ⁴He(K, πγ) J-PARC E13 1+ 1.406 6I i 1/2+ 0 3/2+ 0.316 Ab-initio calculation 1/2+ ⁹_ABe 1/2+ 0 18 3H Shell model calculation PRL 88 (2002) 082501 PRL 84 (2000) 5963 4He NPA 754 (2005) 58c PRL 86 (2001) 1982 PRL 120 (2018) 132505 PLB 579 (2004) 258 PRL 115 (2015) 222501 PRC 73 (2006) 012501 High-resolution experiments ¹³C (Κ⁻,π⁻γ) BNL E929 (Nal) ¹⁶O (Κ⁻,π⁻γ) BNL E930('01) 1/2 10.98 x Ap1/2_ ¹²C (π⁺,K⁺γ) KEK E566 x Ap3/2 3/2-10.83 ∞ 2 6.786 ¹¹B (π⁺.K⁺γ) KEK E518 6.562 6.176 3/2+.1/2+ 3/2 4.229 E1 1/2⁺ T=1 2.268 2.00 1/2 .: 2.31 01 2.832 0.718 T=1 3/2+ We have been obtaining 7/2+0 263 0,161 information on ΛN 5/2+0 3/2+0 ¹⁰B 1/2+0 $^{11}_{\Lambda}B$ ¹¹C 150 ¹⁶₁O 15N two-body interaction. 12C 13C PRL 86 (2001) 4255 PRC 77 (2008) 054315 NPA835 (2010) 422 PTEP (2015) 081D01 PRL 93 (2004) 232501 PRC 65 (2002) 034607 EPJ A33 (2007) 247

 $V_{\Lambda N} = V_0 + \boldsymbol{\sigma}_{\Lambda} \cdot \boldsymbol{\sigma}_N V_{\sigma \cdot \sigma} + \mathbf{L} \cdot (\mathbf{s}_{\Lambda} + \mathbf{s}_N) V_{\text{SLS}} + \mathbf{L} \cdot (\mathbf{s}_{\Lambda} - \mathbf{s}_N) V_{\text{ALS}} + S_{12} V_{\text{tensor}} + \cdots$

Mass-Radius Relation of Neutron Stars

2021

missing part of YN interaction: ΛN-ΣN coupling

ΣMass is smaller.ΣIt is expected that
Λ-Σ conversion
might affect80 MeVin structure of
Λ hypernuclei.

S=-1

ΛN-ΣN coupling is key issue to construct YN two-body interaction completely.

Probability of Δ in nuclei is not large.

Role of the $\Lambda N-\Sigma N$ interaction

Three-body effect

Effective two-body force

Three-body force

In the neutron matter or neutron star, three-body force might play important role.

Charge symmetry breaking effect

Charge Symmetry breaking

Energy difference comes from dominantly Coulomb force between 2 protons.
Charge symmetry breaking (n-n,p-p) effect is small.

Exp.

In order to explain the energy difference, 0.35 MeV,

- •E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Phys. Rev. C65, 011301(R) (2001).
- A. Nogga, H. Kamada and W. Gloeckle, Phys. Rev. Lett. 88, 172501 (2002)
- •H. Nemura. Y. Akaishi and Y. Suzuki, Phys. Rev. Lett.89, 142504 (2002).

Coulomb potentials between charged particles (p, Σ^{\pm}) are included.

There has been exist NO YN interaction to reproduce the data.

binding energy of $\Lambda \, [{\rm MeV}]$

T. O. Yamamoto, Phys. Rev. Lett.115, 2225 (2015).

M. Schafer et al., PRC106, L031001(2022)

Still it is difficult to reproduce the data for the study of CSB which is related to $\Lambda N-\Sigma N$ coupling. We need more data related to $\Lambda N-\Sigma N$ coupling.

How do we obtain information on $\Lambda N-\Sigma N$ coupling?

(1)YN scattering experiment at J-PARC

(2) To study neutron-rich Λ hypernuclei at J-PARC

These neutron-rich Λ hypernuclei are important.

difficult to obtain information on ΛΝ-ΣΝ coupling Total isosopin of core nuclei is small.

Total isospin is larger.

 ΛN - ΣN coupling give a great contribution to binding energies of neutron-rich Λ hypernuclei.

Especially, He isotope is important to obtain information on $\Lambda N-\Sigma N$ coupling, Because He isotope Λ hypernuclei have been observed. Among these Λ hypernuclei, ${}_{\Lambda}{}^{9}$ He is planned to produce in the future.

Structure of neutron-rich He Λ Hypernuclei using the cluster orbital shell model

T. $Myo^{1,2}$

¹General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan and ²Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan

E. Hiyama^{3,4}

³Department of Physics, Tohoku University, Sendai, 980-8578, Japan and ³RIKEN, Nishina Center, Wako, Saitama, 351-0198, Japan

We calculated the energy spectra of the neutron-rich He Λ hypernuclei with A = 6 to 9 within the framework of an $\alpha + \Lambda + Xn(X = 1 \sim 4)$ cluster model using the cluster orbital shell model. The employed constituent particles reproduce their observed properties. For resonant states of core nuclei such as ⁵He, ⁶He and ⁷He, the complex scaling method is employed to obtain energies and decay widths. The calculated ground states of ${}_{\Lambda}^{6}$ He and ${}_{\Lambda}^{7}$ He are in good agreement with published data. The energy levels of ${}_{\Lambda}^{8}$ He and ${}_{\Lambda}^{9}$ He are predicted. In ${}_{\Lambda}^{9}$ He, we find one deeply bound state and two excited resonant states, which are proposed to be produced at J-PARC by the double-chargeexchange reaction (π^{-} , K^{+}) using a ⁹Be target.

T. Myo and E. Hiyama, Phys. Rev. C107, 054302(2023)

For ⁹_AHe, there have been no observed data. To predict binding energy of this hypernucleus, it is necessary to reproduce the energy spectra of core nucleus, ⁸He.

Cf. R. Wirth and R. Roth, Phys. Lett. B779, 336 (2019).: Non-core shell model+NN+NNN+YN Since they did not focus on reproducing observed binding energies of hypernuclei and core nuclei, it was difficult to predict the energy spectra of ⁹_AHe.

The theoretical results are in good agreement with data. Let's add a Λ particle into He isotope nuclei.

 B_{Λ} =2.49MeV

In ${}^{9}_{\Lambda}$ He, three bound states are predicted. By (π^{-} ,K⁺) reaction at J-PARC using 9 Be target, it is possible to produce thise hyperucleus. This would be observation of the most heavy He isotope Λ hypernucleus .

- YN scattering experiment
 proposal:J-PARC-E90
 Improvement of potentials
 Chiral potential etc.
 - •YN interaction from view point of Ab-initio calculation such as Lattice QCD

YN interaction by HAL QCD It will be possible to employ the interaction.

slide by T. Doi

S=-2 hypernuclei and YY interaction What is the structure when one or more Λ s are added to a nucleus?

$$+ \mathbf{\Lambda} + \mathbf{\Lambda} + \mathbf{\Lambda} + \cdots$$

It is conjectured that extreme limit, which includes many Λ s in nuclear matter, is the core of a neutron star.

In this meaning, the sector of S=-2 nuclei , double Λ hypernuclei and Ξ hypernuclei is just the entrance to the multi-strangeness world.

However, we have hardly any knowledge of the YY interaction because there exist no YY scattering data.

Then, in order to understand the YY interaction, it is crucial to study the structure of double Λ hypernuclei and Ξ hypernuclei.

Before 2000

Only three double Λ hypernuclei

Ambiguity for identifying these double Λ hypernuclei

There was NO observed double Λ hypernuclei without ambiguity.

In 2001, the epoch-making data has been reported by the KEK-E373 experiment.

Observation of ⁶He

Uniquely identified without ambiguity for the first time

Strategy of how to determine YY interaction from the study of light hypernuclear structure

Successful example to determine spin-parity of double Λ hypernucleus --- Demachi-Yanagi event for ${}^{10}_{\Lambda\Lambda}Be$

Successful interpretation of spin-parity of $^{10}_{\Lambda\Lambda}Be$

Spectroscopy of **AA**-hypernuclei

E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto Phys. Rev. 66 (2002), 024007

For the study of \equiv N interaction, it is important to study the structure of \equiv hypernuclei.

However, so far there was no observed Ξ hypernucleus. Therefore, we do not know that ΞN interaction is attractive or repulsive.

If we observe Ξ hypernuclei as bound states, we understand Ξ N interaction should be attractive. Thus, we have been searching bound Ξ hypernclei experimentally.

The first measurement of bound Ξ hypernucleus, ¹⁴N- Ξ .

PTEP

Prog. Theor. Exp. Phys. 2015, 033D02 (11 pages) DOI: 10.1093/ptep/ptv008

The first evidence of a deeply bound state of Xi⁻¹⁴N system

K. Nakazawa^{1,*}, Y. Endo¹, S. Fukunaga², K. Hoshino¹, S. H. Hwang³, K. Imai³, H. Ito¹,
K. Itonaga¹, T. Kanda¹, M. Kawasaki¹, J. H. Kim⁴, S. Kinbara¹, H. Kobayashi¹,
A. Mishina¹, S. Ogawa², H. Shibuya², T. Sugimura¹, M. K. Soe¹, H. Takahashi⁵,
T. Takahashi⁵, K. T. Tint¹, K. Umehara¹, C. S. Yoon⁴, and J. Yoshida¹

¹Physics Department, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
 ²Department of Physics, Toho University, Funabashi 274-8510, Japan
 ³Advanced Science Research Center, JAEA, Tokai 319-1195, Japan
 ⁴Department of Physics, Gyeongsang National University, Jinju 660-701, Korea
 ⁵Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801, Japan
 *E-mail: nakazawa@gifu-u.ac.jp

Received October 27, 2014; Revised December 25, 2014; Accepted January 9, 2015; Published March 5, 2015

¹⁴N-Ξ-

0 MeV

 $-1.03 \pm 0.18 \text{ MeV}$ or $-3.87 \pm 0.21 \text{ MeV}$

We understood Ξ -nuclear potential should be attractive.

Slide by Nakazawa

After observation of Kiso event, they observed several events of ${}^{14}N$ - Ξ hypernucleus. Some are observed as excited state and some are observed as ground state.

$$V_{\equiv N} = V_{\mathbf{0}} + \boldsymbol{\sigma} \cdot \boldsymbol{\sigma} V_{\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}} + \boldsymbol{\tau} \cdot \boldsymbol{\tau} V_{\boldsymbol{\tau} \cdot \boldsymbol{\tau}} + (\boldsymbol{\sigma} \cdot \boldsymbol{\sigma})(\boldsymbol{\tau} \cdot \boldsymbol{\tau}) V_{\boldsymbol{\sigma} \cdot \boldsymbol{\sigma} - \boldsymbol{\tau} \cdot \boldsymbol{\tau}}$$

By observation of ${}^{15}_{\Xi}C({}^{14}N-\Xi)$, we find that $V_{\Xi N}$ itself is attractive.

Because,

All of the terms contribute to binding energy of ${}^{15}_{\Xi}C$ (${}^{14}N$ is not spin-, isospin- saturated).

Next,

we want to know desirable strength of $V_{0,}$ the spin-, isospin-independent term.

$$V_{\equiv N} = V_0 + \sigma \cdot \sigma V_{\sigma \cdot \sigma} + \tau \cdot \tau V_{\tau \cdot \tau} + (\sigma \cdot \sigma)(\tau \cdot \tau) V_{\sigma \cdot \sigma \tau \cdot \tau}$$

In order to obtain useful information about V_0 , the following systems are suited, because

the $(\sigma \cdot \sigma)$, $(\tau \cdot \tau)$ and $(\sigma \cdot \sigma) (\tau \cdot \tau)$ terms of $V_{\equiv N}$ vanish by folding them into the α -cluster wave function that are spin-, isospin-satulated.

problem : there is NO target to produce them by the (K^- , K^+) experiment .

Because, •••

To produce $\alpha \Xi^-$ and $\alpha \alpha \Xi^-$ systems by (K⁻, K⁺) reaction,

As the second best candidates to extract information about the spin-, isospin-independent term V_0 , we propose to perform...

(more realistic illustration) Core nucleus ⁶He is known to be halo

nucleus. Then, valence neutrons are located far away from α particle.

Valence neutrons are located in p-orbit, whereas \equiv particle is located in 0s-orbit. ⁷H (T=3/2) \equiv Then, distance between \equiv and **n** is much larger than the interaction range of \equiv and **n**.

Then, $\alpha \Xi$ potential, in which only V₀ term works, plays a dominant role in the binding energies of this system.

Before the experiments will be done, we should predict whether this <u>≡</u> hypernucleus will be observed as bound states or not.

Namely, we calculate the binding energies of this hypernucleus.

•ESC04 (Nijmegen soft core) and ND (Nijmegen Model D)

HAL potential (based on Lattice QCD)

 $V_{\equiv N} = V_0(r) + (\sigma_{\equiv} \sigma_N) V_s(r) + (\tau_{\equiv} \tau_N) V_t(r) + (\sigma_{\equiv} \sigma_N) (\tau_{\equiv} \tau_N) V_{ts}(r)$ All terms are central parts only.

Property of the spin- and isospin-components of ESC04, ND, HAL

V(T,S)	ESC04	ND	HAL
T=0, S=1	strongly attractive (a bound state)	weakly attractive	Weakly attractive
T=0, S=0	weakly repulsive		Strongly attractive
T=1, S=1	weakly attractive		Weakly attractive
T=1, S=0	weakly repulsive		Weakly repulsive

Although the spin- and isospin-components of these models are very different (due to the different meson contributions),

we find that the spin- and isospin-averaged property,

 $V_0 = [V(0,0) + 3V(0,1) + 3V(1,0) + 9V(1,1)] / 16,$

namely, strength of the V_0 - term is similar to each other.

4-body calculation of _7H

E. Hiyama et al., PRC**78** (2008) 054316

$$V_0 = [V(0,0) + 3V(0,1) + 3V(1,0) + 9V(1,1)] / 16,$$

S

which partial contribution makes attractive for V_0 ?

ΞN interaction:

we have a two-body bound state for EN system? No idea

Cf. NN interaction

T=0, S=0,I=odd T=0, S=1 \rightarrow strong attraction to have a bound state T=1, S=0 as a deuteronT=1,S=1,I=odd

Property of the spin- and isospin-components of HAL

To investigate bound state of ΞN system, it might be possible to perform the following experiment:

It would be difficult to obtain information on $\exists N$ interaction (T=1,S=0 or 1). Because, there might be no bound state for this system.

To obtain \exists N two-body interaction, the suited systems to study are s-shell \exists hypernuclei such as NN \exists and NNN \exists systems. E. Hiyama et al., PRL124, 092501 (2020)

I show my results of these light systems. NN interaction: AV8 potential EN interaction : Nijimegen extended soft core potential (ESC08c)

Realistic potential (only EN channel)

EN interaction by HAL collaboration (Lattice QCD calculation) The potential was made by K. Sasaki, Miyamoto, Hatsuda and Aoki.

However, I also have two bound states in three-body system.

 $J = 3/2^{+}$

J=1/2+

Using ³He and ⁴He target, It might be possible to produce NNE and NNNE systems by (K^-, K^+) reaction.

Another tool is to use Heavy ion collision.

³He

In the future, we hope to observe these light Ξ hypernuclei.

Concluding remark

Multi-strangeness system such as Neutron star

Three-Dimensional Nuclear Chart

Neutron Number

Thank you