Halo and Pionless Effective Field Theories for Describing Nuclear Structures and Reactions

Central China Normal University

EFB25 Mainz, Germany 2023.08.03

Nucleosynthesis & astrophysical processes

fusion \rightarrow stellar burning s process \rightarrow AGB star r process \rightarrow supernovae & neutron-star merger p & rp process \rightarrow sun-neutron-star binary

 ${\sim}3000$ known isotopes \sim 4000 unknown isotopes

pic: Senger, Particles 3 (2020) 320

Halo nuclei

- far from stability (close to drip line)
- exhibit unique quantum features
 - light, p-rich or n-rich
 - bound/resonant states close to breakup threshold
- cluster structures
 - tight core surrounded loosely by valence nucleon(s)
 - Iarge spatial extent
- enhanced cross section in astrophysical reaction at finite temperature

Halo nuclei challenge nuclear theories

Phases of halo theories

- Back-of-the-envelope period
 - "quick and dirty" estimates of halo properties by reproducing σ_R
 - gaussian spatial distribution \rightarrow reproduce $\sigma_I \rightarrow R_m$ too small!
- Few-body models period
 - cluster structure models (core + valence nucleons)
 - few-body reaction models (Glauber, DWBA, CDCC,...)
 - unresolved model dependence
 - limited applicable regimes
- Microscopic models period
 - ab initio structure theory
 - difficulties in computational power & extension to threshold physics
 - need to develop ab initio reaction theory (e.g. optical potential)

Halo Nuclei, Al-Khalili, Morgan & Claypool Publishers, 2017

- Effective field theory
 - systematically embed microscopic information in cluster model
 - provide guidance to build reaction theory

$NN\xspace$ interaction in atomic nuclei

NN interaction in atomic nuclei

NN interaction in atomic nuclei

EFT with contact interactions

Effective field theory with contact interactions originate from pionless EFT

chiral EFT $NN \ensuremath{\,\text{force}}$

- short range: $V_s = C_0$
- intermediate/long range:

$$V_{1\pi} \sim \frac{1}{q^2 + m_\pi^2}$$

$$N N N N N N$$

EFT with contact interactions

Effective field theory with contact interactions originate from pionless EFT

chiral EFT $NN \mbox{ force}$

- short range: $V_s = C_0$
- intermediate/long range:

$$V_{1\pi} \sim \frac{1}{q^2 + m_\pi^2}$$

$\mathbf{\# EFT} \ NN \text{ force}$

 $\bullet \ NN \ {\rm momentum} \ q^2 \ll m_\pi^2$

$$V_{1\pi} \xrightarrow{q^2 \ll m_\pi^2} C_0 + C_2 q^2 + \cdots$$

Universality in # EFT

- # EFT indicates universal correlations among few-body observables
- long-range (low-energy) physics is insensitive to details of short-range interactions

Nuclear halo and cluster

few-body molecular structure

● ²H

- simplest neutron halo
- neutron halos
 ⁶He, ¹¹Be, ...
- proton halos
 - ¹⁷F^{*}, ⁸B
- α -clustering
 - ${}^{9}\text{Be:} \alpha + \alpha + n$ • ${}^{8}\text{Be}, {}^{12}\text{C}^{*}$

Halo physics near clustering threshold

Halo physics near clustering threshold

ab initio theory

 $\Lambda \sim \sqrt{m_N E_{\rm core}^*}$

 $Q \sim \sqrt{m_N S_N}$

halo physics is difficult for ab initio theories

- continuum problem in many-body calculations NCSMC, GSM-Bergren, Lattice-EFT, LIT, · · ·
- uncertainty control in chiral potentials threshold observable converges slower in χEFT

halo scale : $Q_{\text{halo}} \ll Q_{\chi \text{EFT}} \approx (2M_N B/A)^{1/2}$

uncertainty :
$$\Delta_{\text{halo}} \% \approx \frac{Q_{\chi \text{EFT}}}{Q_{\text{halo}}} \left(\frac{Q_{\chi \text{EFT}}}{\Lambda_{\chi \text{EFT}}} \right)^{(n+1)}$$

ab initio description of halo features

FIG. 2. NCSMC spectrum of ¹¹Be with respect to the $n + {}^{10}$ Be threshold. Dashed black lines indicate the energies of the 10 Be states. Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

- ab initio calculation of ¹¹Be has been done by NCSMC
- predictions of threshold properties rely significantly on the nuclear interactions

Calci et al. Phys. Rev. Lett. 117 (2016) 242501

Halo physics near clustering threshold

Halo physics near clustering threshold

Halo Effective Field Theory

We adopt EFT with <u>contact interactions</u> to describe clustering in halo nuclei
 introduce auxiliary two-body fields for bound/resonance states

$$\begin{aligned} \mathscr{L} &= \mathscr{L}_{1} + \mathscr{L}_{2} + \mathscr{L}_{3} \\ \mathscr{L}_{1} &= n^{\dagger} \left(i\partial_{0} + \frac{\nabla^{2}}{2m_{n}} \right) n + c^{\dagger} \left(i\partial_{0} + \frac{\nabla^{2}}{2m_{c}} \right) c \\ \mathscr{L}_{2} &= s^{\dagger} \left[\eta_{0} \left(i\partial_{0} + \frac{\nabla^{2}}{4m_{n}} \right) + \Delta_{0} \right] s + \sigma^{\dagger} \left[\eta_{1} \left(i\partial_{0} + \frac{\nabla^{2}}{2(m_{n} + m_{c})} \right) + \Delta_{1} \right] \sigma \\ &+ g_{0} \left[s^{\dagger}(nn) + \text{h.c.} \right] + g_{1} \left[\sigma^{\dagger}(nc) + \text{h.c.} \right], \\ \mathscr{L}_{3} &= h \left(\sigma n \right)^{\dagger} \left(\sigma n \right) \end{aligned}$$

One-neutron s-wave halos

	2 H	11 Be	15 C	¹⁹ C
Experiment				
S_{1n} [MeV]	2.224573(2)	0.50164(25)	1.2181(8)	0.58(9)
E_c^* [MeV]	140	3.36803(3)	6.0938(2)	1.62(2)
$\langle r^2_{nc} angle^{1/2}$ [fm]	3.936(12)	6.05(23)	4.15(50)	6.6(5)
	3.95014(156)	5.7(4)	7.2±4.0	6.8(7)
		5.77(16)	4.5(5)	5.8(3)
Halo EFT				
Q/Λ	0.33	0.39	0.45	0.6
r_0/a_0	0.32	0.32	0.43	0.33
$\sqrt{\mathcal{Z}_R}$	1.295	1.3	1.63	1.3
$\langle r_{nc}^2 angle^{1/2}$ [fm]	3.954	6.85	4.93	5.72

Electric form factor \rightarrow radius $\langle r_{nc}^2\rangle^{1/2}$

$$F_{nc}(q^2) = \mathcal{Z}_R \frac{2\gamma_0}{q} \arctan\left(\frac{q}{2\gamma_0}\right) + 1 - \mathcal{Z}_R$$

$$F_{nc}(q^2) = 1 - \frac{1}{6} \langle r_{nc}^2 \rangle q^2 + \mathcal{O}(q^4),$$

Coulomb dissociation in $1n\ {\rm halos}$

- Coulomb dissociation
 - breakup by colliding a halo nucleus with a high-Z nucleus
 - the halo dynamics dominates when $E_{\gamma} \sim S_{1n}$

EFT on Coulomb dissociation

$$\frac{dB(E1)}{dE_{\gamma}} = \frac{1}{(2\pi)^3} \left(|\mathcal{M}_{E1}^{(J=1/2)}|^2 + |\mathcal{M}_{E1}^{(J=3/2)}|^2 \right) \frac{d^3p}{dE_{\gamma}} = \frac{\mathcal{Z}_R Q_{\text{eff}}^2}{\mu_{nc} S_{1n}^2} \frac{3\alpha_{em}}{\pi^2} \frac{(E_{\gamma}/S_{1n})^{3/2}}{(E_{\gamma}/S_{1n}+1)^4} + \frac{1}{2} \frac{1$$

deuteron E1 strength

Hammer, CJ, Phillips, JPG 44 (2017) 103002

EFT on Coulomb dissociation

EFT on Coulomb dissociation

6 He: $oldsymbol{2n}$ Halo with p-wave nc interactions

ab intio calculation

- no-core shell model Navrátil et al. '01; Sääf, Forssén '14
- NCSM-RGM/Continuum Romero et al. '14 '16
- Green's function Monte Carlo Pieper et al. '01; '08
- hyperspherical harmonics (EIHH) Bacca et al. '12

• Halo EFT in ⁶He ground state

- EFT+Gamow shell model (GSM)Rotureau, van Kolck Few Body Syst. '13
- EFT+Faddeev equation C.J., Elster, Phillips, PRC '14; Göbel, Hammer, CJ, Phillips, Few Body Syst. 60 (2019) 61
- $^{6-10}$ He effective interaction + GSM Fossez, Rotureau, Nazarewicz, PRC '18

P-wave neutron halos

$$a = \frac{2\pi}{\mu} \frac{\vec{p} \cdot \vec{q}}{-1/a_1 + r_1 k^2/2 - ik^3}$$

• $a_1 < 0$: shallow resonance: ⁵He (3/2⁻)

• $a_1 > 0$: shallow bound state: ¹¹Be (1/2⁻), ⁸Li (2⁺), ⁸Li^{*} (1⁺)

p-wave power counting

• resum ik^3 : $1/a_1 \sim Q^3, r_1 \sim Q$ [Bertulani, Hammer, van Kolck NPA '02]

• perturbative ik^3 : $1/a_1 \sim Q^2 \Lambda$, $r_1 \sim \Lambda$ [Bedaque, Hammer, van Kolck PLB '03]

$2n\ {\rm halos}\ {\rm in}\ {\rm Faddeev}\ {\rm formalism}$

• solving transition amplitudes A_c and A_n

C.J., Elster, Phillips, PRC '14; Hammer, CJ, Phillips, JPG '17

$2n\ {\rm halos}\ {\rm in}\ {\rm Faddeev}\ {\rm formalism}$

• solving transition amplitudes \mathcal{A}_c and \mathcal{A}_n

$$A_c = 2 \times$$

three-body wave functions

- -

C.J., Elster, Phillips, PRC '14; Hammer, CJ, Phillips, JPG '17

Momentum-space probability density

completeness in energy-dependent hamiltonian

$$1 = \sum_{\alpha} |\psi_{\alpha}\rangle \langle \langle \psi_{\alpha}| = \sum_{\alpha} |\psi_{\alpha}\rangle \langle \psi_{\alpha}| D^{-1}$$

$$\langle \psi_{\alpha} | D^{-1} \approx \langle \psi_{\alpha} | \sqrt{1 - V'(E_{\alpha})}$$

The probability density:

$$egin{aligned} &
ho_i(oldsymbol{p},oldsymbol{q}) = {}_i\langleoldsymbol{p},oldsymbol{q}|\Psi
angle \ & \left[\langle\Psi|oldsymbol{p},oldsymbol{q}
angle_i - \operatorname{Re}\sum_j\langle\Psi|V_j'(E_lpha - rac{q_j^2}{2\mu_{j(ki)}})|oldsymbol{p},oldsymbol{q}
angle_i \end{aligned}
ight]$$

Ith moment (partial-wave decomposition)

$$\rho_i^{(l)}(p,q) = \int_{-1}^1 d(\hat{p} \cdot \hat{q}) P_\ell(\hat{p} \cdot \hat{q}) \rho_i(\boldsymbol{p}, \boldsymbol{q})$$

• $\rho_n^{(0)}(p,q)$ and $\rho_n^{(1)}(p,q)$ Göbel, Hammer, <u>CJ</u>, Phillips, Few Body Syst. 60 (2019) 61

Unconventional momentum-dependent $n\alpha$ interaction

• If $a_0 \sim r_0 \sim Q^{-1}$ in s-wave interaction, we need to tune both a_0 and r_0 at LO

$$V_0(p,p') = -\frac{2\pi}{\mu} \frac{\lambda}{\sqrt{p'^2 + 2\mu\Delta}\sqrt{p^2 + 2\mu\Delta}}$$

Peng, Lyu, König, Long (2021), PRC 105, 054002 (2022); Beane, Farrell, FBS 63, 45 (2022); van Kolck, Symmetry 14, 1884 (2022)

• For $n\alpha$ p-wave interaction, both a_1 and r_1 are at LO

$$V_1(p,p') = -\frac{2\pi}{\mu} \frac{\lambda pp'}{\sqrt{p'^2 + 2\mu\Delta}\sqrt{p^2 + 2\mu\Delta}}$$

on-shell t-matrix:

$$T^{(0)}(k,k;k) = -\frac{2\pi}{\mu} \frac{k^2}{-\frac{1}{a_1} + \frac{1}{2}r_1k^2 - ik^3} \quad V(E):k^2 \to pp'$$

 \rightarrow resonance + spurious pole

off-shell t-matrix:

$$T_{1}(p',p;k) = -\frac{2\pi}{\mu} \frac{p'}{\sqrt{p'^{2} + \gamma^{2}}} \frac{ik - \gamma}{k^{2} + i(\gamma + \frac{r_{1}}{2})k + \frac{1}{a_{1}\gamma}} \frac{p}{\sqrt{p^{2} + \gamma^{2}}}$$
$$\gamma + \frac{r_{1}}{2} + a_{1}^{-1}\gamma^{-2} = 0 \qquad \text{spurious pole vanishes}$$
Li, Lvu, CJ, Long, arXiv:2303.17292 (accepted at PRC)

Unconventional $n\alpha$ interaction in ⁶He

• Implementing unconventional p-wave potential in $nn\alpha$ system

Li, Lyu, CJ, Long, arXiv:2303.17292 (accepted at PRC)

Unconventional $n\alpha$ interaction in ⁶He

- Implementing unconventional p-wave potential in nnα system
- Running of $H(\Lambda)$ and $B(\Lambda)$
- Faster cutoff convergence of Faddeev components with unconventional potential

Li, Lyu, CJ, Long, arXiv:2303.17292 (accepted at PRC)

Universal Correlations Among Radii & S_{2n} in ⁶He

Universal Correlations Among Radii & S_{2n} in ⁶He

α -clustering in nuclei

• 9 Be $\alpha - \alpha - n$ Borromean structure

- Formation of ⁹Be strongly influences r-process nucleosynthesis in neutron-rich environment
- α -clustering drives ${}^9\mathrm{Be}$'s fusion mechanism:
 - sequential: $\alpha + \alpha = {}^{8}\mathsf{Be}(n,\gamma)^{9}\mathsf{Be}$ direct: $\alpha(\alpha n,\gamma)^{9}\mathsf{Be}$
- reaction rate of ⁹Be formation is sensitive to fusion mechanism

Garrido, et al., EPJA 47 (2011) 102

⁹Be photodisintegration

- o direct measurement of ⁹Be formation: difficult
- indirect measurement: photodisintegration (inverse process)
 - 1/2+ resonance: difficult to separate two- and three-body breakup
 - 1/2+ resonance is close to ⁸Be resonance
 - requires accurate theoretical analysis

⁹Be photodisintegration in Halo EFT at NLO

- construct α-α and n-α interaction from halo EFT
- calculate $\alpha \alpha n$ quantumm three-body problem:
 - ightarrow hyperspherical harmonics expansion
- calculate photoabsorption cross section
 - \rightarrow Lorentz integral transform continuum \rightarrow bound-state

Capitani, Filandri, CJ, Orlandini, Leidemann

9 Be photodisintegration in Halo EFT

• B_3 of ⁹Be converges when expanding the model space

EFT calculation of photo-disintegration cross section

See Ylenia Capitani's Poster

Proton radius and related experiments

The proton radius puzzle has motivated many new experiments

- proton radius
 - ep scattering (JLab, Mainz, Tohoku U.)
 - μp scattering (PSI-MUSE)
 - H spectroscopy (MPQ, LKB, York U.)
 - hyperfine splitting in μ H (PSI, RIKEN)
- nuclear radius
 - Lamb shift in $\mu^2 H$, $\mu^{3,4} He^+$ (PSI-CREMA)
 - hyperfine splitting in $\mu^2 H$, $\mu^3 He^+$ (PSI-CREMA)

Two-photon exchange contributions to Lamb shift

Lamb shift & Nuclear structure

$$\delta E_{\rm LS} = \delta_{\rm QED} + \mathcal{A}_{\rm OPE} R_E^2 + \delta_{\rm TPE}$$

• $\delta_{\text{TPE}} \Longrightarrow$ two-photon contributions

χEFT + EIHH calculations

<u>CJ</u>, Nevo-Dinur, Bacca, Barnea, PRL 111 (2013) 143402 Hernandez, <u>CJ</u>, Bacca, Nevo-Dinur, Barnea, PLB 736 (2014) 344 Nevo Dinur, <u>CJ</u>, Bacca, Barnea, PLB 755 (2016) 380 Hernandez, Ekström, Nevo Dinur, <u>CJ</u>, Bacca, Barnea, PLB 788 (2018) 377 <u>CJ</u>, Bacca, Barnea, Hernandez, Nevo-Dinur, JPG 45 (2018) 093002

TPE calculation within Pionless EFT framework

- Simple interactions
- Few input parameters: a_t, r_t at NNLO (5% accuracy)

$$\mathcal{L} = N^{\dagger} \left[i\partial_{0} + \frac{\nabla^{2}}{2M} \right] N - C_{0} \left(N^{T} P_{i} N \right)^{\dagger} \left(N^{T} P_{i} N \right) \\ + \frac{C_{2}}{8} \left[\left(N^{T} P_{i} N \right)^{\dagger} \left(N^{T} \overleftrightarrow{\nabla}^{2} P_{i} N \right) + h.c. \right] - \frac{C_{4}}{16} \left(N^{T} \overleftrightarrow{\nabla}^{2} P_{i} N \right)^{\dagger} \left(N^{T} \overleftrightarrow{\nabla}^{2} P_{i} N \right)$$

Kaplan, Savage, Wise, Nuclear Physics B 534 (1998) 329

order-by-order calculation of np scattering t-matrix A_n

Longitudinal polarizability & Lamb shift in $\mu^2 H$

- Longitudinal polarization dominates in δ_{pol} correction to Lamb shift $\delta_{pol} \propto \iint dq \, d\omega \, g(\omega, q) S_{L}(\omega, q)$
- Longitudinal response function $S_L(\omega, q)$ in # EFT

Emmons, CJ*, Platter, J. Phys. G 48, 035101 (2021)

Longitudinal polarizability & Lamb shift in $\mu^2 H$

response functions display an order-by-order convergence in #EFT

• δ_{pol} at NNLO in #EFT is consistent with calculations using χ EFT interactions

$\delta_{ m pol}$	NR kernel	R kernel
$\pi \rm EFT$	-1.605	-1.574
$\chi {\rm EFT}$	-1.590	-1.560

Emmons, CJ*, Platter, J. Phys. G 48, 035101 (2021)

 $\delta_{
m pol}$ at N 3 LO in #
m EFT:

Lensky, Hagelstein, Pascalutsa,

PLB 835 (2022) 137500; EPJA 58 (2022) 224

- Theory prediction of TPE corrections to HFS in e^2 H agrees with $u_{
 m exp}
 u_{
 m QED}$
- Theory prediction of TPE corrections to HFS in μ^2 H disagrees with $u_{\mathrm{exp}}
 u_{\mathrm{QED}}$

e^2 H 1S $E_{HFS}(2\gamma)$ [kH	z]

$\nu_{\rm exp}-\nu_{\rm qed}$	45 [1]
Faustov 2004	-47
Khriplovich 2004	50
Friar 2005	46

 μ^2 H 2S $E_{HFS}(2\gamma)$ [meV]

$\nu_{\rm exp}-\nu_{\rm qed}$	0.0966(73) [2]			
Kalinowski 2018	0.0383			
[1] Wineland, Ramsey, PRA (1972)				
[2] Pohl et al., Science (2016)				

TPE effects on HFS in ${\rm J\!\!/ EFT}$

response functions involved

$$S_{0}(\omega,q) = \frac{1}{q^{2}} \operatorname{Im} \sum_{\substack{N \neq N_{0} \\ N \neq N_{0}}} \int \frac{d\hat{q}}{4\pi} \langle N_{0}II| \left[\vec{q} \times \vec{J}_{m}^{\dagger}(\vec{q})\right]_{3} |N\rangle \langle N|\rho(\vec{q})|N_{0}II\rangle \delta(\omega - \omega_{N})$$

$$S_{1}(\omega,q) = \operatorname{Im} \sum_{\substack{N \neq N_{0} \\ N \neq N_{0}}} \int \frac{d\hat{q}}{4\pi} \epsilon^{3jk} \langle N_{0}II| \vec{J}_{m,j}^{\dagger}(\vec{q})|N\rangle \langle N| \vec{J}_{c,k}(\vec{q})|N_{0}II\rangle |N_{0}II\rangle \delta(\omega - \omega_{N})$$

• $ho_E, \vec{J_c}, \vec{J_m}$ all contribute to this problem

TPE effects on HFS in ${\rm \# EFT}$

• two-nucleon current in # EFT

$$\mathcal{L}_{2,B} = -ieL_2\epsilon_{ijk} \left(N^T P_i N \right)^{\dagger} \left(N^T P_j N \right) B_k + \text{h.c.}$$

 $S_{0,1}(\omega,q)$ (NLO):

• np *S*-*D* mixing (N2LO)

CJ, Zhang, Platter, in progress

 $S_0(\omega,q)$ in ${\rm \# EFT}$

• $S_0(\omega,q)$ display order-by-order convergence

- $S_0(\omega,q)$ is dominated by the iso-vector part ($E1 \times M2$ transition)
- introduce a "conceptual" transition form factor

$$T_0(q) = \int d\omega S_0(\omega, q)$$

CJ, Zhang, Platter, in progress

Extending to χ EFT: Thomas Richardson's talk

Summary

- Effective field theory comes with limited powers determined by Q and Λ , different EFTs are efficient at different energy regimes
- Development of Pionless EFT and Halo EFT provides many tools to tackle low-energy few-body structure and reaction physics
- Halo EFT
 - describes near-threshold physics in a controlled expansion of Q/Λ
 - rejuvenates cluster models with a systematic uncertainty estimates
 - can be combined with ab initio calculations
 - helps to understand nucleosynthesis in astrophysical processes
- Pionless EFT
 - provides accurate description of low-energy physics ($Q \ll m_\pi)$ in few-nucleon systems
 - is extended to study nuclear structure effects to atomic spectrum, which is crucial for the determination of nuclear radii