$0 \nu \beta \beta$ in Effective Field Theory

Wouter Dekens

with

J. de Vries, E. Mereghetti, V. Cirigliano, G. Zhou, J. Menéndez, P. Soriano, M. Hoferichter, U. van Kolck, A. Walker-Loud

• Violates lepton number, $\Delta L=2$

Schechter, Valle, `82;

Future reach: (LEGEND, nEXO, CUPID)

 $T_{1/2}^{0\nu} > 10^{28} \mathrm{yr}$

• Violates lepton number, $\Delta L=2$	$T_{1/2}^{0\nu}(^{76}\text{Ge})$	$T_{1/2}^{0\nu}(^{130}\text{Te})$	$T_{1/2}^{0\nu}(^{136}\text{Xe})$
 Stringently constrained experimentally To be improved by 1-2 orders 	Gerda	Cuore	KamLAND-zen
	$> 9 \cdot 10^{25} \mathrm{yr}$	$> 3.2 \cdot 10^{25} \mathrm{yr}$	$> 2.3 \cdot 10^{26} \mathrm{yr}$
 Would imply Neutrino's are Majorana particles Physics beyond the SM Connections to LHC, leptogenesis? 	Future reach: (LEGEND, nEXO, CUPID) $T_{1/2}^{0\nu} > 10^{28} \mathrm{yr}$		

Schechter, Valle, `82; Graesser et al '22; G. Li et al, '21,'22; Peng et al '15; Harz et al '22; Deppisch et al. '15, '17;

Well-known Majorana mass mechanism

Well-known Majorana mass mechanism

•

BSM mechanisms

- Many possible scenarios
 - Sterile neutrinos
 - Left-right model
 - Leptoquarks...

Well-known Majorana mass mechanism

•

BSM mechanisms

- Many possible scenarios
 - Sterile neutrinos
 - Left-right model
 - Leptoquarks...
- How to describe all LNV sources systematically?

Heavy $\Delta L = 2$ physics

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Dimension-five	Dimension-seven	Dimension-nine
	 12 ΔL=2 operators 	• Consider subset of operators
$\mathcal{L}_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L)$	$1: \psi^{2}H^{4} + \text{h.c.}$ $\boxed{\mathcal{O}_{LH}} \epsilon_{ij}\epsilon_{mn}(L^{i}CL^{m})H^{j}H^{n}(H^{\dagger}H)$ $3: \psi^{2}H^{3}D + \text{h.c.}$ $\boxed{\mathcal{O}_{LHDe}} \epsilon_{ij}\epsilon_{mn}(L^{i}C\gamma_{\mu}e)H^{j}H^{m}D^{\mu}H^{n}$ $5: \psi^{4}D + \text{h.c.}$ $\boxed{\begin{array}{c}\mathcal{O}_{LHDe}^{(1)} \\ \mathcal{O}_{LLduD}^{(2)} \\ \mathcal{O}_{LLduD}^{(2)} \\ \mathcal{O}_{LLduD}^{(2)} \\ \mathcal{O}_{LLduD}^{(2)} \\ \mathcal{O}_{LQdD}^{(1)} \\ \mathcal{O}_{LQdD}^{(1)} \\ \mathcal{O}_{LQdD}^{(2)} \\ \mathcal{O}_{dddeD}^{(2)} \\ \mathcal{O}_{dd}^{(2)} \\ O$	$\begin{split} \mathrm{LM1} &= i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}Q_{c})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\ \mathrm{LM2} &= i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}\lambda^{A}Q_{c})(\overline{u}_{R}\gamma_{\mu}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\ \mathrm{LM3} &= (\overline{u}_{R}Q_{a})(\overline{u}_{R}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\ \mathrm{LM4} &= (\overline{u}_{R}\lambda^{A}Q_{a})(\overline{u}_{R}\lambda^{A}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\ \mathrm{LM5} &= i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}d_{R})(\overline{Q}_{c}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\ \mathrm{LM6} &= i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{Q}_{c}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\ \mathrm{LM7} &= (\overline{u}_{R}\gamma^{\mu}d_{R})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{e}_{R}e_{R}^{C})\\ \mathrm{LM8} &= (\overline{u}_{R}\gamma^{\mu}d_{R})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM9} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM10} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda_{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM11} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{Liao} \text{ and Ma '20; Li et al '20;} \end{split}$

Heavy $\Delta L = 2$ physics

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16; Liao and Ma '20; Li et al '20;

Heavy $\Delta L = 2$ physics

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16; Liao and Ma '20; Li et al '20;

Heavy $\Delta L = 2$ physics

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16; Liao and Ma '20; Li et al '20;

Low-energy operators At/below the weak scale*

SU(3)xSU(2)xU(1) invariant EFT M_{EW} 100 GeV $M_{L} \rightarrow v_{L} \rightarrow c_{5}$ $v_{L} \rightarrow v_{L}$ Dim-3 SU(3)xU(1) invariant EFT

Low-energy operators At/below the weak scale*

* very similar for operators involving ν_R

Low-energy operators At/below the weak scale*

* very similar for operators involving ν_R

Matching to Chiral EFT

Form of operators determined by chiral symmetry

The operators come with unknown constants (LECs)

Need a power-counting scheme

• Often used: Weinberg counting / Naive dimensional analysis (NDA)

Manohar, Georgi, `84; Weinberg, `90, `91

Warning: Based on NDA

Matching to Chiral EFT

Example: dimension-3 LNV

Warning: Based on NDA

Matching to Chiral EFT

Example: dimension-3 LNV

At LO in Weinberg counting, only need the nucleon one-body currents
All needed low-energy constants are known

• Contributions of dimension-6,7,9 operators

Ramsey-Musolf '03; Cirigliano, (WD) et al. '17; Detmold et al, '22; Nicholson et al.'18

- Contributions of dimension-6,7,9 operators
 - Give additional interactions and LECs
 - LECs for the nucleon currents and $\pi\pi$ interactions are partially known

Ramsey-Musolf '03; Cirigliano, (WD) et al. '17; Detmold et al, '22; Nicholson et al.'18

• Contributions of dimension-6,7,9 operators

- Give additional interactions and LECs
- LECs for the nucleon currents and $\pi\pi$ interactions are partially known

Kaplan, Savage, Wise, '96; Beane, Bedaque, Savage, van Kolck, '03, Nogga, Timmermans, van Kolck, '05, Long, Yang, '12;

Dimension-3

Check that $\mathcal{A}(nn \rightarrow ppee)$ is finite

Dimension-3

Dimension-3

Dress the $\Delta L=2$ potential with (renormalized) strong interactions:

Dimension-3

Dimension-3

Dimension-3

Dress the $\Delta L=2$ potential with (renormalized) strong interactions:

In MS-bar:

$$n \longrightarrow e^{p} = -\left(\frac{m_N}{4\pi}\right)^2 \left(1 + 2g_A^2\right) \frac{1}{2} \left(\log \frac{\mu^2}{-(|\mathbf{p}| + |\mathbf{p}'|)^2 + i0^+} + 1\right)$$

$$+\text{finite}$$
Regulator dependent

Numerical results

Need for a counter term

New interaction needed at leading order to get physical amplitudes:

Need for a counter term

How to determine g_{ν}^{NN}

- Could get $g_{\nu}^{N\!N}$ from a Lattice calculation
 - Controlled errors
 - Active area of research

Davoudi & Kadam, '20, '21 Feng et al, '19; Detmold & Murphy, '20
Need for a counter term

How to determine g_{ν}^{NN} • Could get g_{ν}^{NN} from a Lattice calculation• Controlled errors• Active area of research• Active area of research• Currently only (model) estimates available:• Comparison with isospin-breaking observables• Cottingham approach• Large-NcRichardson et al, '21

Need for a counter term

'Non-Weinberg' counting

'Non-Weinberg' counting

'Non-Weinberg' counting affects higher dimensional interactions as well

'Non-Weinberg' counting affects higher dimensional interactions as well

Nuclear matrix elements

	NMEs	⁷⁶ Ge						
		[74]	[31]	[81] [82, 83]			
	M_F	-1.74	-0.67	-0.59	-0.68			
	M_{GT}^{AA}	5.48	3.50	3.15	5.06			
 All NMEs can be obtained from literature* 	M_{GT}^{AP}	-2.02	-0.25	NMEs		76	⁵ Ge	
 9 long-distance & 6 short-distance 	M_{GT}^{PP}	0.66	0.33	$M_{F,sd}$	-3.46	-1.55	-1.46	-1.1
	M_{GT}^{MM}	0.51	0.25	$M_{GT, sd}^{AA}$	11.1	4.03	4.87	3.62
	M_T^{AA}	-	-	$M^{AP}_{GT, sd}$	-5.35	-2.37	-2.26	-1.37
	M_T^{AP}	-0.35	0.01	$M_{GT.sd}^{PP}$	1.99	0.85	0.82	0.42
Eollow I O ChiPT relations fairly well	M_T^{PP}	0.10	0.00	$M_{T, sd}^{AP}$	-0.85	0.01	-0.05	-0.97
	M_T^{MM}	-0.04	0.00	$M_{T,sd}^{PP}$	0.32	0.00	0.02	0.38

Nuclear matrix elements

	NMEs	⁷⁶ Ge						
		[74]	[31]	[81]	[82, 83]			
	M_F	-1.74	-0.67	-0.59	-0.68			
	M_{GT}^{AA}	5.48	3.50	3.15	5.06			
 All NMEs can be obtained from literature* 	M_{GT}^{AP}	-2.02	-0.25	NMEs		⁷⁶ G	e	
 9 long-distance & 6 short-distance 	M_{GT}^{PP}	0.66	0.33	$M_{F, sd}$	-3.46	-1.55 -1	1.46	-1.1
	M_{GT}^{MM}	0.51	0.25	$M_{GT,so}^{AA}$	11.1	4.03	1.87	3.62
	M_T^{AA}	-	-	$M^{AP}_{GT,so}$	l -5.35	-2.37 -2	2.26 -	1.37
	M_T^{AP}	-0.35	0.01	$M^{PP}_{GT,so}$	1.99	0.85 ().82	0.42
Follow I O ChiPT relations fairly well	M_T^{PP}	0.10	0.00	$M_{T,sd}^{AP}$	-0.85	0.01 -().05 -	0.97
		-0.04	0.00	$M_{T,sd}^{PP}$	0.32	0.00 (0.02	0.38

Barea et al. '15; Hyvarinen et al, '15; Horoi et al. '17, Menendez et al, '18; Agostini et al. `22

Phenomenology

Phenomenology

- O(1) uncertainties:
 - Unknown LECs
 - Nuclear Matrix elements

Phenomenology

•

Light lepton-number violation: ν_R

- ν_R 's can help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in numerous BSM models: Left-Right/Leptoquarks/GUTs..

- ν_R 's can help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in numerous BSM models: Left-Right/Leptoquarks/GUTs..

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial \!\!\!/ \nu_R - \frac{1}{2}\bar{\nu}_R^c M_R \nu_R - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)}$$

- ν_R 's can help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in numerous BSM models: Left-Right/Leptoquarks/GUTs..
- Add *n* singlets, ν_R , to the SM-EFT:

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial \!\!\!/ \nu_R - \frac{1}{2} \bar{\nu}_R^c M_R \nu_R - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)}$$

 Majorana mass (L violating)

- ν_R 's can help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in numerous BSM models: Left-Right/Leptoquarks/GUTs..

- ν_R 's can help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in numerous BSM models: Left-Right/Leptoquarks/GUTs..

Sterile neutrinos

Sterile neutrinos

- When/if u_R can be integrated out depends on m_{ν_R}

- LECs and NMEs now depend on m_{ν_R}

Example: minimal ν_R scenario

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial\!\!\!/ \nu_R - \frac{1}{2}\bar{\nu}_R^c M_R \nu_R - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)}$$

$$\mathcal{L}_{\nu_R} \xrightarrow{\text{EWSB}} -\frac{1}{2}\bar{N}^c M_{\nu} N$$

$$\mathcal{L}_{\nu_R} \xrightarrow{\text{EWSB}} -\frac{1}{2}\bar{N}^c M_{\nu}N$$

$$N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad \qquad M_{\nu} = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}} Y_{\nu}^T \\ \frac{\nu}{\sqrt{2}} Y_{\nu} & M_R^{\dagger} \end{pmatrix}$$

$$\nu_{\rm mass} = UN_{\rm flavor}$$

• Add *n* singlets, ν_R , to the SM:

$$\mathcal{L}_{\nu_R} \xrightarrow{\text{EWSB}} -\frac{1}{2}\bar{N}^c M_{\nu} N$$

$$N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad \qquad M_{\nu} = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}} Y_{\nu}^T \\ \frac{\nu}{\sqrt{2}} Y_{\nu} & M_R^{\dagger} \end{pmatrix}$$

$$\nu_{\rm mass} = UN_{\rm flavor}$$

• Usually leading contributions $\sim m_{\beta\beta}$ vanish in this case:

$$\begin{array}{ccc}
 & W_L & e^- \\
 & W_L & e^- \\
 & W_L & e^-
\end{array} \propto \sum_{i=1}^{3+n} \frac{m_i}{q^2 - m_i^2} U_{ei}^2
\end{array}$$

• Add *n* singlets, ν_R , to the SM:

$$\mathcal{L}_{\nu_R} \xrightarrow{\text{EWSB}} -\frac{1}{2}\bar{N}^c M_{\nu} N$$

$$N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad \qquad M_{\nu} = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}} Y_{\nu}^T \\ \frac{\nu}{\sqrt{2}} Y_{\nu} & M_R^{\dagger} \end{pmatrix}$$

$$\nu_{\rm mass} = UN_{\rm flavor}$$

• Usually leading contributions $\sim m_{\beta\beta}$ vanish in this case:

$$\sum_{W_L}^{W_L} e^{-} \propto \sum_{i=1}^{3+n} \frac{m_i}{q^2 - m_i^2} U_{ei}^2 \simeq \frac{1}{q^2} \left(M_{\nu} \right)_{ee}^* = 0$$

• Add *n* singlets, ν_R , to the SM:

$$\mathcal{L}_{\nu_R} \xrightarrow{\text{EWSB}} -\frac{1}{2}\bar{N}^c M_{\nu} N$$

$$N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad \qquad M_{\nu} = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}} Y_{\nu}^T \\ \frac{\nu}{\sqrt{2}} Y_{\nu} & M_R^{\dagger} \end{pmatrix}$$

$$\nu_{\rm mass} = U N_{\rm flavor}$$

• Usually leading contributions $\sim m_{\beta\beta}$ vanish in this case:

$$\sum_{i=1}^{W_L} e^{-} \propto \sum_{i=1}^{3+n} \frac{m_i}{q^2 - m_i^2} U_{ei}^2 \simeq \frac{1}{q^2} (M_{\nu})_{ee}^* = 0$$

$$\mathcal{L}_{\nu_R} \xrightarrow{\text{EWSB}} -\frac{1}{2}\bar{N}^c M_{\nu} N$$

$$N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad M_{\nu} = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}} Y_{\nu}^T \\ \frac{\nu}{\sqrt{2}} Y_{\nu} & M_R^{\dagger} \end{pmatrix} \qquad \nu_{\text{mass}} = U N_{\text{flavor}}$$

Usually leading contributions
$$\sim m_{etaeta}$$
 vanish in this case:

$$W_{L} = e^{-} \propto \sum_{i=1}^{3+n} \frac{m_{i}}{q^{2} - m_{i}^{2}} U_{ei}^{2} \simeq \frac{1}{q^{2}} (M_{\nu})_{ee}^{*} = 0$$
Need to keep track of m_{i}
dependence!

ν_i contributions

`Usual' contributions:

- Similar to $m_{\beta\beta}$ case:
 - NMEs and LECs now m_i dependent

ν_i contributions

`Usual' contributions:

- Similar to $m_{\beta\beta}$ case:
 - NMEs and LECs now m_i dependent

New: 'Ultrasoft' neutrinos

G. Zhou, J. de Vries, E. Mereghetti, J. Menéndez, P. Soriano, WD '23

- Neutrinos with momenta $q^0 \sim \vec{q} \sim k_F^2/m_N$
 - See to the nucleus as a whole
 - Usually N2LO effect, now leading order

Cirigliano et al, '17

ν_i contributions

`Usual' contributions:

- Similar to $m_{\beta\beta}$ case:
 - NMEs and LECs now m_i dependent

New: 'Ultrasoft' neutrinos

G. Zhou, J. de Vries, E. Mereghetti, J. Menéndez, P. Soriano, WD '23

- Neutrinos with momenta $q^0 \sim \vec{q} \sim k_F^2/m_N$
 - See to the nucleus as a whole
 - Usually N2LO effect, now leading order $Cirigliano et al, '17 \qquad 136 \text{Xe} \qquad 136 \text{Ba}$ $A_{\nu}^{\text{usoft}} \sim \sum_{n} \langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle \times \begin{cases} \frac{m_{i}}{k_{F}}, & \Delta E \leq m_{i} \leq k_{F} \\ \frac{m_{i}^{2}}{4\pi k_{F} \Delta E} \ln \frac{m_{i}}{\Delta E}, & m_{i} \leq \Delta E \end{cases}$
- Depends on intermediate state energies, $\Delta E \equiv E_n + E_e E_i$
- Overlap integrals

Phenomenology: A toy model

Toy model: 1+1+1 pseudo-Dirac

- Involves 1 active, two sterile neutrinos
 - Assume steriles much heavier than the active neutrinos; $M_1\simeq M_2\gg m_{\nu}$
 - Two heavier ν 's, form a pseudo-Dirac pair
 - Light neutrino mass proportional to LNV parameter (opposite to seesaw)

Toy model: 1+1+1 pseudo-Dirac

- Involves 1 active, two sterile neutrinos
 - Assume steriles much heavier than the active neutrinos; $M_1 \simeq M_2 \gg m_{\nu}$
 - Two heavier ν 's, form a pseudo-Dirac pair
 - Light neutrino mass proportional to LNV parameter (opposite to seesaw)

Bolton et al, 2020; Mohapatra et al, '86; Nandi and Sarkar '86;

Summary

- EFTs allow one to systematically describe $\Delta L=2$ sources
 - Standard mechanism (dim-5)
 - Dimension-7 & -9 sources
 - Effects from ν_R

Summary

- EFTs allow one to systematically describe $\Delta L=2$ sources
 - Standard mechanism (dim-5)
 - Dimension-7 & -9 sources
 - Effects from ν_R

- Matching to chiral EFT involves unknown LECs
 - Renormalization requires terms beyond usual counting
- Needed Nuclear Matrix Elements determined in literature

Summary

- EFTs allow one to systematically describe $\Delta L=2$ sources
 - Standard mechanism (dim-5)
 - Dimension-7 & -9 sources
 - Effects from ν_R
- Matching to chiral EFT involves unknown LECs
 - Renormalization requires terms beyond usual counting
- Needed Nuclear Matrix Elements determined in literature

- $0 \nu \beta \beta$ probes
 - Up to O(100) TeV scales heavy BSM
 - Light sterile ν_R interactions

Back up slides

Why dim 7, 9?

Effective Field Theory

Naive scaling of Dimension 5, 7, 9 operators

 $\sqrt{v/\Lambda} \ll$

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \underbrace{(v)}_{\Lambda} \underbrace{(c_7)}_{C_5} + \underbrace{(v)}_{\Lambda} \underbrace{(c_9)}_{C_5} \right]$$
So why keep dimension 7 & 9?

 $m_{
u} \sim c_5 v^2 / \Lambda$ Allows for relative enhancement:

•
$$c_5 \ll O(1), \qquad \Lambda = \mathcal{O}(1 - 100) \text{TeV}$$

• Relative enhancement of higher-dimensional terms due to $(c_{7,9}/c_5\gg 1)$

- Happens, for example, in the left-right model
- However, if $c_5 = \mathcal{O}(1)$, $\Lambda = 10^{15} \,\mathrm{GeV}$ • dimension-7, -9 irrelevant in this case

Disentangling operators

Phenomenology

From heavy new physics

Disentangling operators

What if a $0\nu\beta\beta$ signal is measured?

g_{ν}^{NN} : Relation to electromagnetism

The appearance of the photon propagator allows one to relate the two!

• Only two $\Delta I=2$ operators can be induced

$$O_{1} = \bar{N}\mathcal{Q}_{L}N\,\bar{N}\mathcal{Q}_{L}N - \frac{\operatorname{Tr}\mathcal{Q}_{L}^{2}}{6}\bar{N}\vec{\tau}N\,\bar{N}\vec{\tau}N + (L \to R)$$

$$O_{2} = \bar{N}\mathcal{Q}_{L}N\,\bar{N}\mathcal{Q}_{R}N - \frac{\operatorname{Tr}\mathcal{Q}_{L}\mathcal{Q}_{R}}{6}\bar{N}\vec{\tau}N\,\bar{N}\vec{\tau}N + (L \leftrightarrow R)$$
with spurions

$$\mathcal{Q}_{L} = u^{\dagger}Q_{L}u, \ \mathcal{Q}_{R} = uQ_{R}u^{\dagger},$$

$$u = \exp\left(i\pi \cdot \tau/2F_{\pi}\right)$$

• Only two $\Delta I=2$ operators can be induced

$$O_{1} = \bar{N}\mathcal{Q}_{L}N\,\bar{N}\mathcal{Q}_{L}N - \frac{\operatorname{Tr}\mathcal{Q}_{L}^{2}}{6}\bar{N}\vec{\tau}N\,\bar{N}\vec{\tau}N + (L \to R)$$

$$O_{2} = \bar{N}\mathcal{Q}_{L}N\,\bar{N}\mathcal{Q}_{R}N - \frac{\operatorname{Tr}\mathcal{Q}_{L}\mathcal{Q}_{R}}{6}\bar{N}\vec{\tau}N\,\bar{N}\vec{\tau}N + (L \leftrightarrow R)$$

$$u = \exp\left(i\pi \cdot \tau/2F_{\pi}\right)$$
with spurions

$$u = \exp\left(i\pi \cdot \tau/2F_{\pi}\right)$$

• ΔI=2 in NN scattering

- Charge-independence breaking
 - $(a_{nn} + a_{pp})/2 a_{np}$
 - From photon exchange & the pion mass difference
 - $C_1 + C_2$ (needed at LO in isospin breaking)

• Extract $C_1 + C_2$ from CIB

• Assume
$$g_{\nu}^{NN}(\mu) = \frac{C_1(\mu) + C_2(\mu)}{2}$$

- Roughly 10% effect for Rs = 0.6 fm
- Uncontrolled error

g_{ν}^{NN} : Estimate from Cottingham approach

Determination of the counterterm

Cirigliano, (WD) et al, '20, '21

Analogy to the Cottingham approach for pion/nucleon mass differences

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\mu\nu}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp | T\{j_{\rm w}^{\mu}(x)j_{\rm w}^{\nu}(0)\} | nn \rangle$$

$$\mathcal{A}_{\nu} = \underbrace{\prod_{n \to -p}^{e}}_{e} \propto \int dk \, a(k) = \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + i\epsilon} \qquad \underbrace{\prod_{n \to -p}^{e}}_{k \neq \frac{2}{2}} \underbrace{\prod_{n \to -p}^{e}}_{k \to \frac{2}{2}} \underbrace{\prod_{n \to -p}^{e}}_{k \to -p}^{e}}_{k \to \frac{2}{2}} \underbrace{\prod_{n \to -p}^{e}}_{k \to \frac{2}{2}} \underbrace{\prod_{n \to -p}^{e}}_{k \to -p}^{e}}_{$$

- Estimate the A_{ν} by constraining the integrand
 - $k \ll \Lambda_{\gamma}$ region determined by $\chi \overline{\rm EFT}$
 - $k \gg {\rm GeV}$ region determined by OPE
 - Model intermediate region using:
 - Form factors
 - Off-shell effects from $N\!N$ intermediate states

Determination of the counterterm

Cirigliano, (WD) et al, '20, '21

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\mu\nu}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp|T\{j_{\rm w}^{\mu}(x)j_{\rm w}^{\nu}(0)\}|nn\rangle$$
$$\mathcal{A}_{\nu} = \underbrace{\prod_{n}^{e}}_{e} \propto \int dk \, a(k) = \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + i\epsilon} \qquad \underbrace{\prod_{n}^{e}}_{k \neq \frac{2}{2}} \underbrace{\prod_{n}^{e}}_{k \neq$$

• Gives
$${ ilde g}_
u^{NN}(\mu=m_\pi)=1.3(6)$$
 in $\overline{
m MS}$

- Estimated 30% uncertainty
- Validated in isospin-breaking observables
- Consistent with large-Nc estimate

Richardson et al, '21

g_{ν}^{NN} : Impact in nuclei

Estimate of impact

Light nuclei

M. Piarulli, R. Wiringa, S. Pastore

- Using $g_{\nu}=(C_1+C_2)/2$
- With:
 - Chiral potential
 M. Piarulli et. al. '16
 - AV18 potential R. Wiringa, Stoks, Schiavilla, '95
 - ~10% effect in ⁶He \rightarrow ⁶Be
 - ~60% effect in ¹²Be \rightarrow ¹²C
 - Due to presence of a node
 - Feature in realistic 0vββ candidates

Estimate of impact

Heavy nuclei

- Ab initio NMEs for $A \ge 48$ are starting to appear Belley et al '23,'20; Yao et al '20; Wirth, Yao, Hergert '21
 - Can estimate effect of $g_{
 u}^{NN}$:
 - ~40% effect in ${}^{48}\text{Ca}$, assuming *Cottingham* estimate g_{ν}^{NN}
 - ~60-90% in Te, Xe

Sterile neutrinos

Momentum scales

Active + sterile $\nu's$

EFT approach

One momentum scale at a time

$$\Lambda_{\chi} \sim 1 \ {
m GeV}$$
 m_i
 $m_{\pi} \sim k_F \sim 100 \ {
m MeV}$

 $m_i \gg \Lambda_{\chi}$

• ν_i can be integrated-out at quark level

• Determines m_i dependence: $A_{\nu}(m_i) \sim U_{ei}^2/m_i^2$

 $m_i \gg$ Λ_{γ}

• ν_i can be integrated-out at quark level

• Determines m_i dependence: $A_{\nu}(m_i) \sim U_{ei}^2/m_i^2$

- Match to chiral EFT without ν_i
- Involves several LECs

 $m_i \gg$ Λ_{γ}

• ν_i can be integrated-out at quark level

• Determines m_i dependence: $A_{\nu}(m_i) \sim U_{ei}^2/m_i^2$

- Match to chiral EFT without ν_i
- Involves several LECs
 - Only $g_1^{\pi\pi}$ known

Nicholson et al '18; Detmold et al '22

EFT approach

One momentum scale at a time

$$\Lambda_{\chi} \sim 1 \ {
m GeV}$$
 m_i
 $m_{\pi} \sim k_F \sim 100 \ {
m MeV}$

EFT approach

One momentum scale at a time

 $\Lambda_{\chi} \sim$ 1 GeV m_i $m_\pi \sim k_F \sim 100 \ {
m MeV}$ $Q \sim E_n - E_i \sim 10 \; {\rm MeV}$

 $\Lambda_{\chi} \gtrsim m_i \gtrsim k_F$

- Have to keep ν_i in the chiral theory
- Again have `potential' + `hard' contributions
- m_i dependence in NMEs and g_{ν}^{NN}

 $\Lambda_{\chi} \gtrsim m_i \gtrsim k_F$

 $\Lambda_{\chi} \gtrsim m_i \gtrsim k_F$

Required NMEs/LECs

Overview

Phenomenology with sterile neutrinos

Phenomenology

From heavy new physics + light ν_R

• Higher dimensional ν_R terms can have a large impact!