

STINT The Swedish Foundation for International Cooperation in Research and Higher Education

Swedish Research Council

ish *Knut* .rch Wal cil Four

Stranger Things – Investigating Hyperon Structure at the Femtometer Scale

25th European Conference on Few-body Problems in Physics Mainz, Germany, 2023-08-04

Prof. Dr. Karin Schönning, Uppsala University

Outline

- Prologue
- Electromagnetic Form Factors
- Recent results from BESIII
- Summary

Strong interactions manifest in *e.g.* hadron structure and size

 \rightarrow quantities at the femtometer scale!

Protons: rapid progress the last ~ 5 years!*

Neutrons: asymmetric distribution of *d* quarks and *u* quark results in a negative squared charge radius $< r_E^2 > .^{**}$

*Talk by U.G. Meissner (Monday) **Atac *et al.*, Nature Com. 12, 1759 (2021)

Picture cred. Y-H Lin, U. Bonn

FAQ1: How does the presence of heavy strange and charm quarks affect the strong interaction dynamics?

To find out, we first need to answer **FAQ2**: *How can we study the structure of unstable hadrons*?

Proton: $\tau > 10^{34}$ y Neutron: $\tau \sim 15$ min Strange hyperons: $\tau \sim 10^{-10}$ s Charm hyperons: $\tau \sim 10^{-13}$ s

To find out, we first need to answer **FAQ2**: *How can we study the structure of unstable hadrons*?

Proton: $\tau > 10^{34}$ y **Neutron:** *τ* ~ 15 min **Strange hyperons:** $\tau \sim 10^{-10}$ s **Charm hyperons:** $\tau \sim 10^{-13}$ s Answer: By time-like electromagnetic form factors!

Space-like vs. time-like EMFF's

Cred. E. Perotti, PhD thesis $(UU _{2020})$

Space-like form factors

- Number of EMFFs = $2J+1 \rightarrow \text{spin } \frac{1}{2}$ baryons have 2.
- Sachs FFs: the electric G_E and magnetic G_M

- Charge radius:

$$< r_E^2 > = 6 \frac{dG_E(q^2)}{dq^2} |_{q^2=0}$$

- Magnetic radius:

$$\langle r_M^2 \rangle = \frac{6}{G_M(0)} \frac{dG_M(q^2)}{dq^2} |_{q^2=0}$$

Space-like vs. time-like FF's

Space-like

Time-like

Time-like form factors

- Related to space-like EMFFs *via* dispersion relations.
- Are complex:
 - $\ G_{E}(q^{2}) = |G_{E}(q^{2})| \cdot e^{i\Phi_{E}} \quad , \quad G_{M}(q^{2}) = |G_{M}(q^{2})| \cdot e^{i\Phi_{M}}$
 - Ratio $R = \frac{|G_E(q^2)|}{|G_M(q^2)|}$ accessible from baryon scattering angle.
 - $\Delta \Phi(q^2) = \Phi_M(q^2) \Phi_E(q^2) =$ phase between G_E and G_M
 - Phase a reflection of intermediate fluctuations of the γ^* into *e.g.* $\pi\pi$.
 - → Polarizes final state!

Picture credit: Elisabetta Perotti, PhD Thesis, UU (2020)

Advantage of hyperons

Polarization experimentally accessible by the weak, parity violating decay:

Example:

$$I(\cos\theta_{\rm p}) = N(1 + \alpha_{\Lambda} P_{\Lambda} \cos\theta_{\rm p})$$

Space-like vs. Time-like EMFFs

- **Onset of asymptotic scale** q_{asy}^2 where SL = TL
 - Nucleons: SL and TL accessible.
 - Hyperons: Only TL accessible, but also phase! $\Delta \Phi(q^2) \rightarrow o \leftrightarrow SL = TL$
- **Zero crossings***: Existence and location in the SL region from the TL behaviour!

*Mangoni et al., Phys. Rev. D 104, 116016 (2021)

The BESIII experiment

- Study $e^+e^- \rightarrow B\overline{B}$, where $B = p, n, \Lambda, \Sigma, \Xi, \Lambda_c^+$
- Beijing Electron Positron Collider (BEPC II):
 e⁺e⁻ collider within CMS range 2.0 4.95 GeV.
- Beijing Spectrometer (BES III):
 - Near 4π coverage
 - Tracking, PID, Calorimetry
 - Broad physics scope

$B\overline{B}$ production in BESIII

Energy Scan

 $e^+e^- \rightarrow B\overline{B}$

- Simple final state
- "Simple" formalism → Straight-forward to analyze
- Requires dedicated data campaigns

Initial State Radiation (ISR)

 $e^+e^- \to e^+e^-\gamma_{ISR} \to \gamma_{ISR} B\bar{B}$

- ISR photon tagged or untagged
- Effective cross section much smaller than in direct $e^+e^- \rightarrow B\overline{B}$
- Possible to benefit from large data samples collected at *e.g.* J/Ψ 14

Production cross sections

- Energy dependence give information about the quark dynamics through
 - The effective form factor: $G_{eff} \propto \sqrt{\sigma}$
 - Di-quark correlations
 - Coupling to vector mesons and/or $B\overline{B}$ bound states
- Convenient for studies of
 - protons and (semi-) stable neutrons
 - small hyperon data samples

Proton and neutron EMFFs

Energy dependence of G_{eff} :

- $G_{eff} = G_0 + G_{osc}$ G_0 : Dipole-like
- *G*osc: Oscillations

BESIII: $G_{osc}(p)^*$ and $G_{osc}(n)^{***}$ have same frequency but different phase: $\Delta D = D_p - D_n = 125^\circ \pm 12^\circ$

SND: Smaller frequency for neutron oscillations***.

See also talk by U.G. Meissner

Picture credit SND: Eur. Phys. J. C (2022) 82: 761

BESIII proton EMFFs:

Phys. Rev. D 91, 112004 (2015) Phys. Rev. D 99, 092002 (2019) Phys. Rev. Lett. 124, 042001 (2020) Phys. Lett. B 817, 136328 (2021) **BESIII neutron EMFFs:** BESIII, Nature Phys. 17, p 1200–1204 (2021) BESIII, Phys. Rev. Lett. 130, 151905 (2023) **SND:** Eur. Phys. J. C (2022) 826 761

- Neutron EMFFs
- New BESIII study*: Production angle distribution enables separation of electric *G_E* and magnetic *G_M*
 - \rightarrow First measured neutron time-like G_E !
 - → Agreement with dispersive calculations, but not FENICE data.

Single-strange hyperons

Diquark correlations in baryons?

- The Σ^{o} has isospin 1 whereas Λ has isospin o
 - Strange quark has no isospin \rightarrow difference is in the *ud* diquark
 - \rightarrow different spin structure
 - \rightarrow different cross sections expected.*
- In Σ^+ , the *uu* should have same spin structure as the *ud* in Λ .
 - Similar cross sections expected.*

*Dobbs et al.,: Phys. Lett. B 739, 90 (2014)

- Scan data between 2.386 GeV and 2.98 GeV.
- Λ/Σ^+ G_{eff} similar as expected from diquark correlations.^{*,**,***}
- Σ^+/Σ^- cross section ratio ~ 9^{**}

- ISR method applied on 12 *fb*⁻¹ of data between 3.773 GeV and 4.258 GeV.*
- The $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ cross section measured at 16 energies 2.231 3.0 GeV.
- Cross section enhancement at threshold confirmed.
- Fit accounting for the strong running coupling near threshold into give better agreement than a pQCD approach.

Production of Λ at high q^2

- ΛΛ production near vector charmonia*,**
- BR(Ψ → ΛΛ̄) > 10 times larger than assumed in previous studies by CLEO-c***.

* BESIII: Phys. Rev. D 104, L091104 (2021) ** BESIII: Phys. Rev. D 105, L011101 (2022) *** Dobbs *et al*.: Phys. Rev. D 96, 092004 (2017); Phys. Lett. B 739, 90 (2014)

- $e^+e^- \rightarrow \Xi^-\overline{\Xi}^+$ and $e^+e^- \rightarrow \Xi^0\overline{\Xi}^0$ studied for the first time.
- Possible resonance around 3 GeV.

New: Single-charm Λ_c^+ baryons

BESIII energy scans published in 2018* and 2023**

- Very precise cross section measurements
- First direct measurement of Λ_c^+ form factors
- Sharp rise in cross section near threshold

Angular distributions enable extraction of ratio $R = |G_E/G_M|$ of Λ_c^+ near threshold* and away from threshold**.

New: Single-charm Λ_c^+ baryons

25

Energy dependence of $R = |G_E/G_M|^*$:

- Described by monopole model + damped oscillations
 - \rightarrow Oscillation frequency ~3.5 times larger than for the proton

Spin Analysis

Consider $e^+e^- \rightarrow \overline{Y}Y, Y \rightarrow BM + c.c$

UPPSALA UNIVERSITET

Spin Analysis

 e^+

 π^+

e

*Fäldt & Kupsc, PLB 772 (2017) 16.

 (θ_2, φ_2)

Production parameters of spin ¹/₂ baryons:

- Angular distribution parameter $\eta = \frac{\tau R^2}{\tau + R^2}$ where $\tau = q^2/4M_B^2$
- Phase $\Delta \Phi$

Decay parameters for 2-body decays: α_1 and α_2 . If CP symmetry, $\alpha_1 = -\alpha_2 = \alpha$ Unpolarized part Polarized part Spin correlated part $W(\xi) = F_0(\xi) + \eta F_5(\xi) + \alpha^2 (F_1(\xi) + \sqrt{1 - \eta^2} \cos(\Delta \Phi) F_2(\xi) + \eta F_6(\xi)) + \alpha \sqrt{1 - \eta^2} \sin(\Delta \Phi) (F_3(\xi) + F_4(\xi))$

- $\mathscr{T}_1(\xi) = \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 + \cos^2\theta \cos\theta_1 \cos\theta_2$
- $\mathscr{T}_{2}(\xi) = \sin\theta\cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\phi_{1} + \cos\theta_{1}\sin\theta_{2}\cos\phi_{2})$
- $\mathscr{T}_3(\xi) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$
- $\mathscr{T}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$
- $\mathscr{T}_5(\xi) = \cos^2 \theta$

 $\mathscr{T}_6(\xi) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2$

First complete measurement of Λ EMFF

- BESIII data at 2.396 GeV with 555 exclusive $\overline{\Lambda}\Lambda$ events in sample.
 - $R = |G_E/G_M| = 0.96 \pm 0.14 \pm 0.02$
 - $-\Delta\Phi = 37^o \pm 12^o \pm 6^o$
 - $-\sigma = 118.7 \pm 5.3 \pm 5.1 \text{ pb}$

BESIII: Phys. Rev. Lett. 123, 122003 (2019)

28

- Most **precise** result on *R* and σ
- **First** conclusive result on $\Delta \Phi$

UPPSALA UNIVERSITET

2

0 <u></u> 2.2

2.3

 $|G_{\rm E}/G_{\rm M}|$

Theory Interpretation

Theoretical study of the $e^+e^- \rightarrow Y\overline{Y}$ by Haidenbauer, Meissner and Dai^{*}

- $Y\overline{Y}$ potentials constructed from $\overline{p}p \rightarrow \overline{Y}Y$ data from PS185.
- Spin-dependent observables much more sensitive to the $Y\overline{Y}$ potential.
- Fairly good agreement with BESIII data.

2.4

 \sqrt{s} (GeV)

BaBar

BESIII

2.5

2.6

Theory interpretation

Dispersive calculations by Mangoni, Pacetti & Tomasi-Gustafsson*:

- Study of the phase $\Delta \Phi$ must be integer multiple of π at threshold (N_{th}) and at the asymptotic scale $q_{asy}(N_{asy})_{.}$
- Fit of different data from ** and *** to different scenarios of N_{th} and N_{asy}

 \rightarrow calculations of charge radius!

*Mangoni *et al.,* Phys. Rev. D 104, 116016 (2021) **BESIII: Phys. Rev. Lett. 123, 122003 (2019) ***BaBar: Phys. Rev. D 76, 092006 (2007)

Λ Spin Analyses

*Phys. Rev. Lett. 123, 122003 (2019)

**Nature Phys. 15, p. 631-634 (2019)

Similar analyses performed at J/ Ψ^{**} , $\Psi(3686)^{***}$ and $\Psi(3773)^{****}$

• R and $\Delta \Phi$ interpreted as *psionic* structure functions

Picture credit Michael Papenbrock

New: Σ^+ Spin Analysis

- Energy dependence of R and $\Delta \Phi$ in three different points*
 - Double-tag $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^- \rightarrow p \pi^0 \overline{p} \pi^0$ at 2.64 GeV and 2.9 GeV
 - Single-tag $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^- \rightarrow p\pi^0 X + c.c.$ at 2.396 GeV
 - $\rightarrow \Delta \Phi$ / 180° $\Delta \Phi$ ambiguity
- Better precision than in previous work**.
- Worse agreement with $Y\overline{Y}$ potential model *** compared to Λ .

Summary

- Time-like form factors a viable tool to study structure and femtometer sizes.
- Many new results from the BESIII experiment
 - single- and double strange hyperons
 - charm baryons
- Hyperon polarisation provide information about space-like structure *e.g.* charge radius.
- More data collected \rightarrow STAY TUNED !!!

Thanks for your attention!

Swedish Research Council

STINT

The Swedish Foundation for International Cooperation in Research and Higher Education

Backup

- New BESIII study: Search for $e^+e^- \rightarrow \Omega^-\overline{\Omega}^{+*}$
 - No signals seen \rightarrow only upper limits determined.
 - Will need much larger luminosities to match other hyperon studies**

** Schönning et al., Chin. Phys. C 47, 5, 052002 (2023)

Single-strange hyperons

- Σ^+ Form Factor Ratio:
- $R = \frac{|G_E(q^2)|}{|G_M(q^2)|}$ measured at 2.396 GeV to be 1.83±0.26

