Unraveling Universal Correlations Gaussian Characterization of Systems Near the Unitary Limit

Mario Gattobigio

Institut de Physique de Nice

Magonza, 31 July 2023

Outline

(Enlarged) Unitary Window

S-matrix Effective Range Expansion Zero-shape Universality Gaussian (Eckart) characterization

Three-body sector

Efimov Effect Level Functions - Gaussian Characterization Moving along the universal curve Note on DSI

More particles

LO Gaussian Potential - Two- and Three-Body Force

References

Outline

(Enlarged) Unitary Window

S-matrix Effective Range Expansion Zero-shape Universality Gaussian (Eckart) characterization

Three-body sector

Efimov Effect Level Functions - Gaussian Characterization Moving along the universal curve Note on DSI

More particles

LO Gaussian Potential - Two- and Three-Body Force

References

• Two-body Schrödinger equation $\Longleftrightarrow S\text{-matrix}$

- Two-body Schrödinger equation \iff S-matrix
- Simplest S-matrix

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

- Two-body Schrödinger equation $\Longleftrightarrow S\text{-matrix}$
- $\bullet \ \mbox{Simplest} \ S\mbox{-matrix}$

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

• Physical pole $k = i/a_B$

$$B_2 = \frac{\hbar^2}{m a_B^2} \begin{cases} \text{Bound state} & \text{if } a_B > 0\\ \text{Virtual state} & \text{if } a_B < 0 \end{cases}$$

- Two-body Schrödinger equation $\Longleftrightarrow S\text{-matrix}$
- $\bullet \ \mbox{Simplest} \ S\mbox{-matrix}$

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

• Physical pole $k = i/a_B$

$$B_2 = rac{\hbar^2}{m a_B^2} egin{cases} {
m Bound\ state} & {
m if\ } a_B > 0 \ {
m Virtual\ state} & {
m if\ } a_B < 0 \end{cases}$$

Spurius pole $k = i/r_B$

 $r_B =$ Dimensional Constant (Scale)

- Two-body Schrödinger equation $\Longleftrightarrow S\text{-matrix}$
- $\bullet \ \mbox{Simplest} \ S\mbox{-matrix}$

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

• Physical pole $k = i/a_B$

$$B_2 = rac{\hbar^2}{m a_B^2} egin{cases} {
m Bound\ state} & {
m if\ } a_B > 0 \ {
m Virtual\ state} & {
m if\ } a_B < 0 \end{cases}$$

Spurius pole $k = i/r_B$

 r_B = Dimensional Constant (Scale)

Scaling (zero-range) limit

$$r_B/a_B
ightarrow 0$$
 with a_B fixed $S(k) \sim -rac{k+i/a_B}{k-i/a_B}$

 \bullet S-matrix

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

 \bullet S-matrix

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

• Relation with the scattering

$$S(k) = 1 - i \frac{k m}{2\pi} T(k)$$

 \bullet S-matrix

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

• Relation with the scattering

$$S(k) = 1 - i \frac{k m}{2\pi} T(k)$$

$$T(k) = -\frac{4\pi}{m} \left(-\frac{1}{a} + \frac{1}{2}r_ek^2 + v_2k^4 + v_3k^6 + \dots - ik \right)^{-1}$$

 \bullet S-matrix

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

• Relation with the scattering

$$S(k) = 1 - i \frac{k m}{2\pi} T(k)$$

$$T(k) = -\frac{4\pi}{m} \left(-\frac{1}{a} + \frac{1}{2}r_ek^2 + v_2k^4 + v_3k^6 + \dots - ik \right)^{-1}$$

• Parameter Identification

• S-matrix

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

• Relation with the scattering

$$S(k) = 1 - i \frac{k m}{2\pi} T(k)$$

$$T(k) = -\frac{4\pi}{m} \left(-\frac{1}{a} + \frac{1}{2}r_ek^2 + v_2k^4 + v_3k^6 + \dots - ik \right)^{-1}$$

• Parameter Identification

• Shape parameters vanish - $v_n = 0$

 \bullet S-matrix

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

• Relation with the scattering

$$S(k) = 1 - i \frac{k m}{2\pi} T(k)$$

$$T(k) = -\frac{4\pi}{m} \left(-\frac{1}{a} + \frac{1}{2}r_ek^2 + v_2k^4 + v_3k^6 + \dots - ik \right)^{-1}$$

- Parameter Identification
 - Shape parameters vanish $v_n = 0$
 - \blacktriangleright r_B relates the scattering lenght and the physical pole

$$r_B = a - a_B$$

• S-matrix

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

• Relation with the scattering

$$S(k) = 1 - i \frac{k m}{2\pi} T(k)$$

$$T(k) = -\frac{4\pi}{m} \left(-\frac{1}{a} + \frac{1}{2}r_ek^2 + v_2k^4 + v_3k^6 + \dots - ik \right)^{-1}$$

- Parameter Identification
 - Shape parameters vanish $v_n = 0$
 - \blacktriangleright r_B relates the scattering lenght and the physical pole

$$r_B = a - a_B$$

Effective range relation

$$r_e a = 2r_B a_B$$

Eckart Potential

$$V(r) = -2\beta\lambda^2 \frac{\mathbf{e}^{-\lambda r}}{(1+\beta \mathbf{e}^{-\lambda r})^2}$$

Eckart Potential

$$V(r) = -2\beta\lambda^2 \frac{\mathrm{e}^{-\lambda r}}{(1+\beta\mathrm{e}^{-\lambda r})^2}$$

• Binding length

$$a_B = \frac{1}{\lambda} \frac{2(\beta+1)}{\beta-1}$$

• Scattering length

$$a = \frac{4\beta}{\lambda(\beta - 1)}$$

• Effective range

$$r_e = \frac{2(\beta + 1)}{\lambda\beta}$$

• "Interaction pole"

$$r_B = \frac{2}{\lambda}$$

Gaussian characterization

Effective Description using Gaussian Potential

$$V(r) = V_0 e^{-(r/r_0)^2}$$

Gaussian characterization

Effective Description using Gaussian Potential

$$V(r) = V_0 e^{-(r/r_0)^2}$$

8/30

Outline

(Enlarged) Unitary Window

S-matrix Effective Range Expansion Zero-shape Universality Gaussian (Eckart) characterization

Three-body sector Efimov Effect Level Functions - Gaussian Characterization Moving along the universal curve Note on DSI

More particles

LO Gaussian Potential - Two- and Three-Body Force

References

$$E_{2} \propto \frac{1}{a^{2}}$$

$$\begin{cases}
E_{3}^{0} \propto \frac{1}{\ell^{2}} \\
E_{3}^{n} \to 0 \quad n \to \infty \\
E_{3}^{n+1}/E_{3}^{n} \to 1/515 \\
E_{3}^{n} \sim (1/515)^{n} \kappa_{*}^{2}
\end{cases}$$

$$E_{2} \propto \frac{1}{a^{2}}$$

$$= 0 \quad \begin{cases} E_{3}^{0} \propto \frac{1}{\ell^{2}} \\ E_{3}^{n} \to 0 \qquad n \to \infty \\ E_{3}^{n+1}/E_{3}^{n} \to 1/515 \\ E_{3}^{n} \sim (1/515)^{n} \kappa_{*}^{2} \end{cases}$$

Finite # E_3 's

Efimov Effect

Polar coordinates

$$(H)^2 = (E_3 + E_2)/(\hbar^2/m)$$

 $\tan^2 \xi = E_3/E_2$

Polar coordinates

$$(H)^2 = (E_3 + E_2)/(\hbar^2/m)$$

 $\tan^2 \xi = E_3/E_2$

Polar coordinates

$$(H)^2 = (E_3 + E_2)/(\hbar^2/m)$$

 $\tan^2 \xi = E_3/E_2$

For each ξ

$$H^{n+1}/H^n \to 1/22.7$$

Polar coordinates

$$(H)^2 = (E_3 + E_2)/(\hbar^2/m)$$

 $\tan^2 \xi = E_3/E_2$

$$H^{n+1}/H^n \to 1/22.7$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi\\ \kappa_* a = \mathrm{e}^{(n-n^*)\pi/s_0} \frac{\mathrm{e}^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

Polar coordinates

$$(H)^2 = (E_3 + E_2)/(\hbar^2/m)$$

 $\tan^2 \xi = E_3/E_2$

$$H^{n+1}/H^n \to 1/22.7$$

• Zero Range
$$\kappa_* a = e^{-\Delta(\xi)/2s_0}/\cos\xi$$

• Scale Invariance

$$\kappa_* a_B \Big|_{\mathsf{Gaussian}} = \mathcal{F}(\xi)$$

• Scale Invariance

$$\kappa_* a_B \Big|_{\text{Gaussian}} = \mathcal{F}(\xi) = \kappa_* a_B \Big|_{\text{Other finite range potentials}}$$

• Scale Invariance

$$\kappa_* a_B \Big|_{\mathsf{Gaussian}} = \mathcal{F}(\xi) = \kappa_* a_B \Big|_{\mathsf{Other finite range potentials}}$$

• Scale Invariance

$$\kappa_* a_B \Big|_{\text{Gaussian}} = \mathcal{F}(\xi) = \kappa_* a_B \Big|_{\text{Other}}$$

Other finite range potentials

• Unique r_0

Potential	E_2 (mK)	E_3 (mK)	E_4 (mK)	$r_0^{(3)}(a_0)$	$r_0^{(4)}(a_0)$
HFD-HE2	0.8301	117.2	535.6	11.146	11.840
LM2M2	1.3094	126.5	559.2	11.150	11.853
HFD-B3-FCH	1.4475	129.0	566.1	11.148	11.853
CCSAPT	1.5643	131.0	571.7	11.149	11.851
PCKLJS	1.6154	131.8	573.9	11.148	11.852
HFD-B	1.6921	133.1	577.3	11.149	11.854
SAPT96	1.7443	134.0	580.0	11.147	11.850

• Scale Invariance

$$\kappa_* a_B \Big|_{\text{Gaussian}} = \mathcal{F}(\xi) = \kappa_* a_B \Big|_{\text{Other finite range potentials}}$$

• Unique r_0

Potential	E_2 (mK)	E_3 (mK)	E_4 (mK)	$r_0^{(3)}(a_0)$	$r_0^{(4)}(a_0)$
HFD-HE2	0.8301	117.2	535.6	11.146	11.840
LM2M2	1.3094	126.5	559.2	11.150	11.853
HFD-B3-FCH	1.4475	129.0	566.1	11.148	11.853
CCSAPT	1.5643	131.0	571.7	11.149	11.851
PCKLJS	1.6154	131.8	573.9	11.148	11.852
HFD-B	1.6921	133.1	577.3	11.149	11.854
SAPT96	1.7443	134.0	580.0	11.147	11.850

• Energy at the unitary limit given by r_0

$$\begin{array}{ll} E_3^* & \approx 83 \, \mathrm{mK} \\ E_4^* & \approx 433 \, \mathrm{mK} \end{array}$$

• Scale Invariance

$$\kappa_* a_B \Big|_{\text{Gaussian}} = \mathcal{F}(\xi) = \kappa_* a_B \Big|_{\text{Other finite range potentials}}$$

• Unique r_0

Potential	E_2 (mK)	E_3 (mK)	E_4 (mK)	$r_0^{(3)}(a_0)$	$r_0^{(4)}(a_0)$
HFD-HE2	0.8301	117.2	535.6	11.146	11.840
LM2M2	1.3094	126.5	559.2	11.150	11.853
HFD-B3-FCH	1.4475	129.0	566.1	11.148	11.853
CCSAPT	1.5643	131.0	571.7	11.149	11.851
PCKLJS	1.6154	131.8	573.9	11.148	11.852
HFD-B	1.6921	133.1	577.3	11.149	11.854
SAPT96	1.7443	134.0	580.0	11.147	11.850

• Energy at the unitary limit given by r_0

$$E_3^* \approx 83 \,\mathrm{mK}$$

 $E_4^* \approx 433 \,\mathrm{mK}$

Universal numbers

$$\kappa_3^* a_-^3 = -2.13 \qquad \kappa_4^* a_-^4 = -2.32$$

• DSI \Rightarrow Log-periodic functions

• DSI \Rightarrow Log-periodic functions

$$W = W_3 \, e^{-(r_{12}^2 + r_{13}^2)/r_0^2}$$

• DSI \Rightarrow Log-periodic functions

$$W = W_3 e^{-(r_{12}^2 + r_{13}^2)/r_0^2}$$

• DSI \Rightarrow Log-periodic functions

$$W = W_3 e^{-(r_{12}^2 + r_{13}^2)/r_0^2}$$

• DSI \Rightarrow Log-periodic functions

• Three-body force

$$W = W_3 e^{-(r_{12}^2 + r_{13}^2)/r_0^2}$$

• Non analyticity

$$W_3 \sim \frac{\hbar^2}{mr_0^2} e^{(r_{\#}/r_0)^{1.13}}$$

• Log-periodicity

 $\log(r_{\rm H}/r_0) \rightarrow \log(r_{\rm H}/r_0) - \pi/s_0$

Outline

(Enlarged) Unitary Window

S-matrix Effective Range Expansion Zero-shape Universality Gaussian (Eckart) characterization

Three-body sector

Efimov Effect Level Functions - Gaussian Characterization Moving along the universal curve Note on DSI

More particles

LO Gaussian Potential - Two- and Three-Body Force

References

Effective Gaussian Description of ⁴He

• *"Reference"* ⁴He given by LM2M2 potential

$$\bar{a} = 189.415 a_0, \bar{r}_e = 13.845 a_0, \text{and} r_B = 7.194 a_0$$

N	\bar{E}_N (mK)	$\bar{E}_{N}^{*}(\mathbf{mK})$
2	-1.30348	
3	-126.40	-2.2706
4	-558.98 [Hiyama 2012]	-127.33 [Hiyama 2012]
5	-1300 [Bazak 2020]	
6	-2315 [Bazak 2020]	
7	-3571 [Bazak 2020]	

Effective Gaussian Description of ⁴He

• *"Reference"* ⁴He given by LM2M2 potential

$$\bar{a} = 189.415 \ a_0, \bar{r}_e = 13.845 \ a_0, \text{and} \ r_B = 7.194 \ a_0$$

N	$ar{E}_N$ (mK)	$ar{E}^*_N({ m mK})$
2	-1.30348	
3	-126.40	-2.2706
4	-558.98 [Hiyama 2012]	-127.33 [Hiyama 2012]
5	-1300 [Bazak 2020]	
6	-2315 [Bazak 2020]	
7	-3571 [Bazak 2020]	

• Effective Gaussian Potential

$$V_{\rm LO}(r) = V_0 \, e^{-(r/r_0)^2}$$

Effective Gaussian Description of ⁴He

• *"Reference"* ⁴He given by LM2M2 potential

$$\bar{a} = 189.415 \ a_0, \bar{r}_e = 13.845 \ a_0, \text{and} \ r_B = 7.194 \ a_0$$

N	$ar{E}_N$ (mK)	$ar{E}^*_N({ m mK})$
2	-1.30348	
3	-126.40	-2.2706
4	-558.98 [Hiyama 2012]	-127.33 [Hiyama 2012]
5	-1300 [Bazak 2020]	
6	-2315 [Bazak 2020]	
7	-3571 [Bazak 2020]	

• Effective Gaussian Potential

$$V_{\rm LO}(r) = V_0 e^{-(r/r_0)^2}$$

• Small parameter

$$arepsilon=ar{r}_e/ar{a}pprox7$$
%

Two Body

• Effective Gaussian Potential

$$V_{\rm LO}(r) = V_0 e^{-(r/r_0)^2}$$

• Fix only \bar{a}

Two Body

• Effective Gaussian Potential

$$V_{\rm LO}(r) = V_0 e^{-(r/r_0)^2}$$

• Look for $\varepsilon = \bar{r}_e/\bar{a} \approx$ 7% description also for r_e

• Not inside the $\varepsilon = 7\%$ band

- Not inside the $\varepsilon=$ 7% band
- Collapse as $N \to \infty$

$$\frac{E_N}{N} = \frac{V_0}{2}N$$

- Not inside the $\varepsilon = 7\%$ band
- Collapse as $N \to \infty$

$$\frac{E_N}{N} = \frac{V_0}{2}N$$

• Need for a three-body force

$$W_{\rm LO} = W_0 \, e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

• Three-body force

$$W_{\rm LO} = W_0 \, e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

• A family of values (W_0, ρ_0) which fix \overline{E}_3
Few Body

• Three-body force

$$W_{\rm L0} = W_0 \, e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

- A family of values (W_0, ρ_0) which fix \bar{E}_3
- Variation in \bar{E}_N

Few Body

• Three-body force

$$W_{\rm L0} = W_0 \, e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

- A family of values (W_0, ρ_0) which fix \bar{E}_3
- Variation in \bar{E}_N

• We can use (W_0, ρ_0) to best fix \overline{E}_4

LO Gaussian Description

• LO Potential

$$V_0 e^{-(r/r_0)^2} + W_0 e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

LO Gaussian Description

• LO Potential

$$V_0 e^{-(r/r_0)^2} + W_0 e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

• Best point is where we reproduce \bar{a} , \bar{a}_B , and $r_e!!$

LO Gaussian Description

۲	Description	within	the ε -LO	band	up to) liq	quid
---	-------------	--------	-----------------------	------	-------	-------	------

	Physical point		
	SGP	HFD-HE2	
$r_0[a_0]$	10.0485		
$V_0[\mathbf{K}]$	1.208018		
$\rho_0[a_0]$	8.4853		
$W_0[\mathbf{K}]$	3.011702		
$E_4[K]$	0.536	0.536	
$E_5[K]$	1.251	1.266	
$E_6[K]$	2.216	2.232	
$E_{10}/10[K]$	0.792(2)	0.831(2)	
$E_{20}/20[K]$	1.525(2)	1.627(2)	
$E_{40}/40[K]$	2.374(2)	2.482(2)	
$E_{70}/70[K]$	3.07(1)	3.14(1)	
$E_{112}/112[K]$	3.58(2)	3.63(2)	
$E_N/N(\infty)[\mathbf{K}]$	7.2(3)*	7.14(2)	
HFD-B [K]		7.33(2)	

Outline

(Enlarged) Unitary Window

S-matrix Effective Range Expansion Zero-shape Universality Gaussian (Eckart) characterization

Three-body sector

Efimov Effect Level Functions - Gaussian Characterization Moving along the universal curve Note on DSI

More particles

LO Gaussian Potential - Two- and Three-Body Force

References

References

• For the finite-range universality

- Efimov Physics and Connections to Nuclear Physics

 A. Kievsky, M. Gattobigio, L. Girlanda, M. Viviani
 A. Kievsky, M. Gattobigio, L. Girlanda, M. Viviani
 Annual Review of Nuclear and Particle Science 7, 465-490 (2021)
- [2] Gaussian characterization of the unitary window for N = 3: Bound, scattering, and virtual states A. Deltuva, M. Gattobigio, A. Kievsky, and M. Viviani Phys. Rev. C **102**, 064001 (2020) Link

• For the universal Level functions

- [3] Universality and scaling in the N-body sector of Efimov physics M. Gattobigio and A. Kievsky Phys. Rev. A 90, 012502 (2014)
- [4] Matching universal behavior with potential models
 R. Álvarez-Rodríguez, A. Deltuva, M. Gattobigio, and A. Kievsky
 Phys. Rev. A 93, 062701 (2016) Link
- [5] Gaussian Parametrization of Efimov Levels: Remnants of Discrete Scale Invariance Recchia, P., Kievsky, A., Girlanda, and M. Gattobigio Few-Body Syst 63, 8 (2022) Link

$\bullet\,$ For the LO- and NLO-Gaussian description of $^4\mathrm{He}\,$

[6] Few bosons to many bosons inside the unitary window: A transition between universal and nonuniversal behavior

A. Kievsky, A. Polls, B. Juliá-Díaz, N. K. Timofeyuk, and M. Gattobigio Phys. Rev. A **102**, 063320 (2020)

 [7] Subleading contributions to N-boson systems inside the universal window P. Recchia, A. Kievsky, L. Girlanda, and M. Gattobigio Phys. Rev. A 106, 022812 (2022)

Collaborators

Paolo Recchia

Alejandro Kievsky

Natalia Timofeyuk

Michele Viviani

Artur Polls

Bruno Julia Diaz

Collaborators

Paolo Recchia

Alejandro Kievsky

Natalia Timofeyuk

Michele Viviani

Artur Polls

Luca Girlanda

Bruno Julia Diaz

NLO Gaussian Description - Two body

• NLO two-body force

$$V_{\rm NLO}(r) = V_0 \, e^{-(r/r_0)^2} + V_1 \, \frac{r^2}{r_0^2} e^{-(r/r_0)^2}$$

NLO Gaussian Description - Two body

• NLO two-body force

$$V_{\rm NLO}(r) = V_0 e^{-(r/r_0)^2} + V_1 \frac{r^2}{r_0^2} e^{-(r/r_0)^2}$$

• We fix both \bar{a} and \bar{r}_e

NLO Gaussian Description - Two body

• NLO two-body force

$$V_{\rm NLO}(r) = V_0 e^{-(r/r_0)^2} + V_1 \frac{r^2}{r_0^2} e^{-(r/r_0)^2}$$

• We fix both \bar{a} and \bar{r}_e

NLO Two body - Few-body energies

NLO Two body - Few-body energies

• Without 3-body force the system is unstable

$$\frac{E_N}{N} \propto N$$

NLO Two body + LO Three body

• With the LO 3-body force

$$W_{\rm LO} = W_0 \, e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

NLO Two body + LO Three body

• With the LO 3-body force

$$W_{\rm LO} = W_0 \, e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

NLO Two body + LO Three body

• With the LO 3-body force

$$W_{\rm LO} = W_0 \, e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

• Need another force at NLO!!!

• NLO Three-body force

$$W_{\text{NLO}} = W_0 e^{-r_{123}^2/\rho_0^2} + W_1 \left(\frac{r_{123}}{\rho_0}\right)^2 e^{-r_{123}^2/\rho_0^2}$$

$$1.03 \begin{vmatrix} \bullet & N = 4 \\ \bullet & N = 5 \\ \bullet & N = 6 \\ \bullet & N = 7 \end{vmatrix}$$

• What happens to different three-body observables?

- What happens to different three-body observables?
- Atom Dimer scattering length $\bar{a}_2 = 218 \ a_0$

- What happens to different three-body observables?
- Atom Dimer scattering length $\bar{a}_2 = 218 a_0$

- What happens to different three-body observables?
- Atom Dimer scattering length $\bar{a}_2 = 218 a_0$

- What happens to different three-body observables?
- Atom Dimer scattering length $\bar{a}_2 = 218 a_0$

• Different 3-Body potential strengths

- What happens to different three-body observables?
- Atom Dimer scattering length $\bar{a}_2 = 218 a_0$

- Different 3-Body potential strengths
- Space for a NLO 4-Body potential