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The gcncral chirnl invariant cfl’cctivc legrangians is used to study the lending terms in 

powers of momenta in the S-matrix for :I process involving arbitrary numbers of low-momentum 

pions and nucleons. This work extends and in part corrects an earlier report [S. Weinberg, Phys. 

Lett. 8251 (1990) 28X]. 

1. Introduction 

Chiral invariant effective lagrangians were originally introduced as a labor-sav- 

ing device, allowing a quick and easy derivation of the soft pion theorems that had 
earlier been deduced by the methods of current algebra. The lagrangians were 
highly non-linear and non-renormalizable, but this was not a problem because in 
those early days the lagrangians were only supposed to be used in the tree 
approximation. Later it was realized that effective chiral lagrangians could be used 

to calculate soft pion processes to any desired order in the pion energies, including 
loop as well as tree graphs; all ultraviolet divergences could be absorbed into a 
redefinition of the coupling constants of the lagrangian, provided one included in 
the lagrangian all terms consistent with chirality and other symmetry principles. 

This widened view of the use of chiral effective lagrangians was first described in 
the context of purely pionic processes. It would clearly be to our advantage to be 
able to apply these methods to processes involving low-momentum nucleons as 

well as pions, where much more experimental data is available, but it takes a little 
thought to see how to do this. After all, there is no such thing as a soft nucleon. 

As we shall see here, the familiar ordering of diagrams by numbers of powers of 
soft pion momenta can be extended to processes involving a single low-energy 
nucleon as well as pions. However, a special treatment is needed for problems 
involving two or more nucleons, including the classic problem of nuclear forces. A 
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preliminary treatment of such problems has already been presented*. Here we will 

give a fuller account, including a revised discussion of the case of three or more 

nucleons. 

The picture of nuclear forces that emerges in the leading order in small 

momenta is quite crude, though not entirely unrealistic. The purpose of this work 

is not to improve our detailed picture of nuclear forces, which it is hardly likely 

could be accomplished with these methods, but rather to take a first step toward 

identifying those aspects of nuclear forces and pion-nucleon interactions that can 

be derived from the symmetry properties of quantum chromodynamics. An assess- 

ment of the success of these methods will have to wait for the evaluation of the 

corrections of the next few orders in small momenta. 

2. Power counting and its problems 

We shall deal here with reactions involving arbitrary numbers of low-energy 

pions and nucleons, all with three-momenta (in the rest frame of any one of the 

initial nucleons) less than an amount Q, of the order of one or two hundred MeV. 

To calculate the matrix elements for such reactions, we shall use an effective 

lagrangian in which we integrate out all other particle types, including heavy 

mesons and nucleon isobars. We also integrate out those nucleon loops that are 
connected to the rest of the diagram only by pion lines, burying their contributions 

in the constants of the effective low-energy pion interactions. The ultraviolet 

divergences that arise in calculations using this effective theory are absorbed into a 

renormalization of the parameters of this lagrangian, using renormalization points 

also characterized by momenta of order Q or less. After renormalization, the 

effective cut-off is Q, not only on virtual pion four-momenta but also on the 

four-momenta transferred to or from the remaining internal nucleon lines. Since Q 

is taken small compared with typical QCD scales such as the nucleon mass, we may 

treat the nucleons (but not the pions) non-relativistically, with corrections to the 

non-relativistic limit regarded as additional interactions with extra derivatives, and 

we may order terms in perturbation theory according to the number v of powers of 

Q that they contain. In I this number was calculated using the methods of 

old-fashioned perturbation theory. It will be instructive to see here how this works 

in terms of the more familiar Feynman diagrams. 

Chiral symmetry dictates that the form of the effective lagrangian for this theory 

is 

p= -~D-2a,rr.a’=-tD-‘m~=2 

i~3,,-2D-‘F,-~t+xQr) -mN- 2D-IF,-‘g,t. (5 f),]N 

-+,(m)(m) +,(iszN)+vaq + . . . , (1) 

* See ref. [l]. This paper will be referred to as “I” in the text. 
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So, what have we learned about the role of the χ symmetry? 
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!Chiral Effective Field Theory

GB dynamics
Weinberg, Gasser, Leutwyler, …  

πN dynamics
Bernard-Kaiser-Meißner et al. Chiral Perturbation Theory

Q =
momenta of particles or M

π

breakdown scale Λb

∼
1

4
…

1

3

Weinberg, van Kolck, Kaiser, EGM, …  

Nuclear forces
Park et al, Bochum-Bonn, JLab-Pisa

Nuclear currents
Enhanced ladder graphs are re-summed 

by solving the many-body Schrödinger equation

Lπ =
F 2

4
Tr(rµUrµU

† + �+) + . . . ,

LπN = N̄(iv · D + gA u · S)N + . . . ,

LNN = �
1

2
CS(N̄N)2 + 2CT (N̄SN)2 + . . .

Effective Lagrangian:



!Chiral expansion of the nuclear forces [NDA, DimReg]

Zwei-Nukleon-Kraft

ührender Beitrag 

tur 1. Ordnung

tur 2. Ordnung

tur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  EE et al. ’02

Bernard, EE, Krebs, Meißner,’08, ’11 EE ’06

Entem, Kaiser, Machleidt, Nosyk ’15 

EE, Krebs, Meißner ’15
Girlanda, Kievsky, Viviani ’11 

Krebs, Gasparyan, EE ’12,’13 

(short-range loop contrib. still missing)

(preliminary)

— explains the observed hierarchy of nuclear forces Weinberg, van Kolck, Friar

— chiral dynamics: long-range interactions are predicted in terms of on-shell amplitudes



!Two-pion exchange and the πN amplitude

  exchanged pions can become on-shell for   

           are analytic functions except for the branch cut  

← q2 ≤ − (2M
π
)2

⇒ V2π
(q2) q2 ∈ (−∞, − 4M2

π
]

   ⇒ V c
2π

(q2) =
2

π ∫
∞

2Mπ

dμμ
ρ(μ)

q2 + μ2
   where   ρ(μ) = Im[V c

2π
(q = 0+ − iμ)]

in practice, subtractions are needed to make the integral convergent

The spectral functions  determine the long-range behavior of  and can be calcula-

ted from the on-shell πN amplitude (ChPT) using Cutkosky cutting rules (Norbert Kaiser, 1999)

ρ(μ) V2π
(r)

ρ(μ)

⌫ =
s� u

4m

Kinematic regions for πN scattering

physical region

πN amplitude from the numerical solution 

of the dispersive Roy-Steiner equations  
Ditsche et al., 2012
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Extract LECs from matching ChPT at the 

sub-threshold point  Hoferichter et al., 2015

kinematics probed by V2π
(r)

Closer to the kinematics probed by  

than the physical region

V2π
(r)

Beyond HBChPT:  Δ, 1/m  Siemens et al., 2017

  also talks by Tae-Sun Park and Xiu-Lei Ren→



!Probing the 2π-exchange in peripheral NN scattering
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!The long and short of the nuclear force

m-pion exchange starts contributing at order Qn, n ≥ 2m − 2

M
π
r

set by  ,  and/or scales entering N LECs4πF
π

4πF
π

π

static contributions at order  lead to local potentials of the form Qn

  V (n)
mπ

(r) =
M3

π

F2
π

[
M

π

Λb
]

n

f (x) Ospin( ̂r) Oisospin  f (x)

The functions  are predicted within ChPT,  

e.g.:   

f (x)

f1π, tensor (x) = x−1 + 3x−2 + 3x−3
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—  meaningless for   as it is driven  

      by  with :  

r ≲ Λ−1
b

ρ(μ) μ ∼ Λb

—  controlled ChPT expansion for  :  r ≳ M−1
π

 f (x) ∼ 𝒪(1)

  f (x) ⟶ x−(3+n)  x ≪ 1
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(The short-distance part of the force is 

modeled by all possible contact terms.)
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2014: The SFR removes the unphysical short-range components but one also distorts some 
          good long-range physics… Can one do better?

  local regularization in r-space  EE, Krebs, Meißner, EPJA 51 (15) 53  

                                                                                                                 PRL 115 (15) 122301

⇒
V(r)V(r)

2003: The actual trouble-maker is the (uncontrolled) short-range part of the TPEP

  spectral-function regularization  EE, Glöckle, Meißner ’03⇒
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V2π
(q) =

2

π ∫
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2Mπ

dμμ
ρ(μ)

μ2 + q2
⟶

2

π ∫
∞

2Mπ

dμμ
ρ(μ)

μ2 + q2
fΛ(μ)

Used in the 2004 EE-Glöckle-Meißner and in 2017 Entem-Machleidt-Nosyk potentials. 

DR, 
Λ = ∞

SFR,
 GeV Λ = 0.5 − 0.8

+ additional non-local regulator in p, p’

2018: The r-space regulator turned out to be inconvenient for 3N forces and currents

  local regularization in momentum space  Reinert, Krebs, EE, EPJA (18) 85⇒

V1π
(q) =

α

⃗q 2 + M2
π

V2π
(q) =

2

π ∫
∞

2Mπ

dμμ
ρ(μ)

⃗q 2 + μ2
e

−
⃗q 2 + M2

π

Λ2 + subtraction, e
−

⃗q 2 + μ
2

2Λ2 + subtractions

Unveiling the chiral symmetry



Regularized 2π-exchange potential (central isospin-dependent part of       +      ):

only in q

only in μ (2003)

in q and μ (2018)

Λ = 500 MeV

V2π
(q) = e

−
⃗q 2

2Λ2
2

π ∫
∞

2Mπ

dμμ
ρ(μ)

⃗q 2 + μ2
e

−
μ

2

2Λ2 + subtractions

!Unveiling the chiral symmetry
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!Unveiling the chiral symmetry
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!The two-nucleon system
from: P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

LO NLO N2LO N3LO N4LO N4LO+

χ
2/datum (np, 0� 300 MeV) 75 14 4.1 2.01 1.16 1.06

χ
2/datum (pp, 0� 300 MeV) 1380 91 41 3.43 1.67 1.00

2 LECs + 7 + 1 IB LECs + 12 LECs + 1 LEC (np) + 4 LECs

Results for Λ = 450 MeV

Chiral expansion of the neutron-proton phase shifts [Λ = 450 MeV]
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Beautiful evidence of the parameter-free chiral 2π-exchange!

(similar results found by Rentmeester et al. and by Birse et al.)



!Renormalization and Cutoff

— in HBChPT, the amplitude can be made regulator-independent at any order

— but for NN, we need to re-sum pion-exchange iterations…

Renormalization: Exact Λ-indepen-

dence at every order, Λ ≫ Λb

 dictates power counting →
van Kolck, Long, Yang, Valderrama …

— consistent in the EFT sense?

— achievable at all?

EE, Gegelia, Meißner, Gasparyan

Gasparyan, EE, PRC 107 (23) 034001

Renormalization: Exact Λ-indepen-

dence only at  order, ∞ Λ ∼ Λb

Lepage, EE, Gegelia, Meißner, …

— cutoff independence proven?
   Towards a formal proof:

   Gasparyan, EE, PRC 105 (22) 024001 

                              PRC 107 (23) 044002

  talks by A. Gasparyan and J. Gegelia→

  Still under debate, see Ingo Tews et al., „Nuclear Forces for Precision Nuclear Physics:  
A Collection of Perspectives“, FBS 63 (2022) 



!Regulator (in)dependence
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!Precision physics with χEFT:  Deuteron FFs
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Charge and quadrupole form factors of the deuteron at N4LO

The charge and structure radius:

Combining our result  with very precise

isotope-shift spectroscopy data for , we determine the 

neutron m.s. charge radius:

rstr = 1.9729+0.0015
−0.0012

 fm

r2
d − r2

p

Extracted quadrupole moment:

Qd = 0.2854+0.0038
−0.0017

 fm2

 Qexp

d
= 0.285 699(15)(18) fm2

Puchalski et al., PRL 125 (2020)

EFT truncation, choice of fitting range, 

NN, N and γNN LECsπ

to be compared with experiment

r2
d = (−6)

∂GC(Q2)

∂Q2

Q2=0

= r2
str + r2

p + r2
n +

3

4m2
p

r2
str

KROHN 73
ALEKSANDR... 86
KOESTER 95
KOPECKY 97
KOPECKY 97

(Confidence Level = 0.164)

-0.15 -0.14 -0.13 -0.12 -0.11 -0.1 -0.09

our result

Atac et al., Nature Commun. 12 (21)

Haecock et al., Science 373 (21)

r2
n = − 0.105+0.005

−0.006
fm2

PDG

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501;  PRC 103 (2021) 024313



!The three-nucleon force challenge

AV18+UR 218 134 63 86 7.2

10 MeV AV18 288 29 10 6.2 24

AV18+UR 224 23 13 6.1 7.6

Energy potential Ay iT11 T20 T21 T22

1 MeV AV18 276 112 3.5 4.5 2.8
 (Nd scattering)χ

2 /datum

Alejandro Kievsky, in I. Tews et al., FBS 63 (22) 4, 67

Precision physics beyond A = 2?

The 3NF challenge: No Hamiltonian exists that can describe both the 2N and 3N data!
  talk by Kimiko Sekiguchi→

Why is it so difficult to phenomenologically parametrize the 3NF?

Computational cost [  emulators]  +  scarce data base [  talk by Kimiko]  +  extremely rich 

structure [  theory needed]     a great opportunity for χEFT

→ →

→ ⇒
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 looks promising, but not yet 

high-precision…

⇒

LENPIC, 2020

EN = 135 MeV



!3NF and the chiral symmetry

derived using DimReg

Faddeev equation for 3N scattering:

V3N
2π

G0 V1N
1π

V3N
2π

Chiral symmetry is even more important than for the 2NF (2π-exchange is the leading and 

longest-range 3NF mechanism). But do we have it under control?

−Λ
g4

A

96 2π3F6
π

[τ1 ⋅ τ3 ( ⃗q 3 ⋅ ⃗σ 1) −

violates chiral symmetryabsorbable into cD:

4

3
(τ2 ⋅ τ3 − τ1 ⋅ τ3)( ⃗q 2 ⋅ ⃗σ 3)]

⃗q 3 ⋅ ⃗σ 3

q3
3 + M2

π

+ …

  mixing DimReg and Cutoff regularization breaks chiral symmetry ⇒



!3NF and the chiral symmetry

derived using DimReg

Faddeev equation for 3N scattering:

V3N
2π

G0 V1N
1π

V3N
2π

Chiral symmetry is even more important than for the 2NF (2π-exchange is the leading and 

longest-range 3NF mechanism). But do we have it under control?

−Λ
g4

A

96 2π3F6
π

[τ1 ⋅ τ3 ( ⃗q 3 ⋅ ⃗σ 1) −

violates chiral symmetryabsorbable into cD:

4

3
(τ2 ⋅ τ3 − τ1 ⋅ τ3)( ⃗q 2 ⋅ ⃗σ 3)]

⃗q 3 ⋅ ⃗σ 3

q3
3 + M2

π

+ …

  mixing DimReg and Cutoff regularization breaks chiral symmetry ⇒

Using DimReg to calculate loop diagrams in the 3NF + cutoff regularization in the dynamical 

equation violates the chiral symmetry   

Calculate the iterative diagram on the r.h.s. using cutoff regularization:

V1π

2N, Λ
G0 V 2π

3N, Λ
= − Λ

g4
A

96 2π3F6
π

[τ1 ⋅ τ3 ( ⃗q 3 ⋅ ⃗σ 1) −
4

3
(τ2 ⋅ τ3 − τ1 ⋅ τ3)( ⃗q 2 ⋅ ⃗σ 3)]

⃗q 3 ⋅ ⃗σ 3

q3
3 + M2

π

+ …

violates chiral symmetry…absorbable into cD:

The problematic divergence cancels if  is calculated using cutoff regularization.V 2π−1π

3N

Feynman diagram

V2N  G0 V3N
1π 2π

V3N
2π-1π

Iterations of the Faddeev equation

Using DimReg everywhere:  l.h.s. = r.h.s.    consistent ⇒

3NF calculated using DimReg

Betrard, EE, Krebs, Meißner ’08

Zwei-Nukleon-Kraft

ührender Beitrag 

tur 1. Ordnung

tur 2. Ordnung

tur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

While NN interactions are not affected (at a fixed ), 3NF, 4NF and exchange currents 

must be re-derived using a symmetry-preserving regulator Hermann Krebs, EE, work in progress 

        new path integral approach using gradient flow regularization  Lüscher, 2010

M
π

→



!Instead of a summary

„The purpose of this work is not to improve our detailed picture of 
nuclear forces, which is hardly likely could be accomplished with 
these methods, but rather to take a first step toward identifying 
those aspects of nuclear forces […] that can be derived from the 
symmetry properties of quantum chromodynamics.“

Steven Weinberg, NPB 363 (1991)

Good quantitative understanding achieved for the 2N interaction: Clear evidence of the 

2π-exchange, fixed in a parameter-free way by the χ symmetry (and πN data).

The 3NF problem may become a „Holy Grail“ for χEFT. The challenge is to maintain the 

chiral symmetry beyond N2LO level (gradient flow regularization).

We are still at the very beginning of a long journey towards developing 

nuclear χEFT into a precision science

Works even better than anticipated by Weinberg: χEFT has already been developed to 

a precision tool in the 2N sector.
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