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Laser spectroscopy of light muonic atoms
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The µHe+ 2S-2P experiment
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Stop low-energy muons in 2 mbar Helium gas 

µHe+  are formed (1% in the 2S-state) 

Excite 2S-2P transition with laser 

Detect X-ray from 2P-1S de-excitation 

Plot number of X-rays vs. laser frequency
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The measured transitions in Heμ4 +

6

333 334
frequency [THz]

0

2

4

)1/22P→(2S +Heµ

claim by

et al. 1978
Carboni

366 367 368 369 370 371 372
frequency [THz]

0

2

4

6

8
)3/22P→(2S +Heµ

Carboni et al. 1977
claim by

Hauser et al. 1992
excluded by

Sick 2008
e-He scatt

no
rm

al
iz

ed
 si

gn
al

 [a
rb

. u
ni

ts
]

1.676 1.678 1.68 1.682 1.684 1.686
alpha particle charge radius [fm]

Sick 2008
e-He scatt

He4µ

2S1/2

2P3/2

2P1/2

1380 meV
Lamb shift

145 meV
fine 

300 meV
finite size 

not be neutralized.

A pulsed laser system (see Fig. 1 (right)) is triggered
upon the arrival of a single muon and illuminates the
muon stop volume about 1 µs after the muon stop. The
laser system comprises a Ti:sapphire (Ti:Sa) oscillator,
which is pumped by a frequency-doubled thin-disk laser
and injection seeded by a continuous wave (cw) Ti:Sa
laser. It is widely tunable from 800 nm to 1,000 nm and
delivers pulses of up to 10 mJ energy with a bandwidth
< 100MHz. The measurements are, however, performed
at a constant pulse energy of 3.9 mJ to avoid power broad-
ening (about 10 mJ and 20 mJ are needed to saturate the
2S!2P3/2 and 2S!2P1/2 transitions, respectively) and
to avoid laser-induced damage of the multipass cavity
used to enhance the laser fluence in the muon stop vol-
ume. Every few hours, the laser frequency is altered by
changing the frequency of the cw seed laser. The energy
delivered to the multipass cavity is adjusted with a �/2-
plate and a polarizer.

The on-resonance laser pulses excite the muonic he-
lium atoms from the 2S to the 2P state. The Lyman-↵ X-
ray at 8.2 keV emitted by the fast decay of the 2P state into
the 1S ground state is detected with large-area avalanche
photodiodes (LAAPDs). For the data analysis we select
laser-induced events in which a single muon enters the
apparatus, and a muonic X-ray is observed in coincidence
with the laser pulse in the cavity. In addition, we require
the detection of an electron from muon decay shortly af-
terwards in either a LAAPD or in a set of plastic scintilla-
tors placed around the target, which suppresses the back-
ground by about an additional order of magnitude, while
maintaining half of the good events. For the LAAPDs we
apply a waveform analysis, which improves energy and
time resolution and allows for discrimination between X-
rays and MeV electrons from µ� decay 31.

The two resonances shown in Fig. 2 are obtained by
plotting the number of such laser-induced events as a
function of laser frequency, normalized by the number
of prompt X-rays from the muonic ion formation to ac-
count for fluctuations in the muon beam intensity. The
2S!2P3/2 transition was measured first due to its larger
matrix element (M = 1.7⇥ 10

�16
cm

2) and correspond-
ingly expected larger signal. The data were taken over
10 days, which included searching for the resonance over
a frequency range of 7 THz. The 2S!2P1/2 transition
with M = 0.8⇥ 10

�16
cm

2 was then found immediately
due to the well-known fine structure (Eq. (2)), and we
spent 13 days measuring it.

The two resonances are fitted with a line shape model
taking into account the saturation fluence and the mea-
sured laser pulse energy, which varied slightly over the
data taking period. We find that a fit of a simple
Lorentzian produces line centers in agreement with the
ones from the line shape model.

The fitted line widths agree well with the 319 GHz 32

expected from the 2P state lifetime, hence the width in the
final analysis is fixed. The frequencies we obtain for the
two transitions are

⌫exp(2S!2P3/2) = 368,653± 18 GHz (3)

⌫exp(2S!2P1/2) = 333,339± 15 GHz. (4)

The uncertainties mostly stem from statistics (298 and
284 events above background for the 2 resonances, re-
spectively). This is because our experiment does not suf-
fer from any relevant systematics: Usual systematic ef-
fects of atomic physics experiments, such as Doppler,
Stark, and even the Zeeman shifts in our 5 Tesla field
(see Methods), amount to less than 0.1 GHz. Uncertain-
ties from the laser frequency calibration, including chirp,
are of the order of 0.1 GHz. The only conceivable rel-
evant systematic shift would originate from a systematic
pulse energy imbalance between measurements on the left
and right wing of the resonance. Because our fit function
accounts for variations of the pulse energy, the fitted po-
sition is essentially free from this systematic. We assign a
conservative systematic error of 3 GHz to this effect to ac-
count for uncertainties in the pulse energy measurements
(see Methods).

The difference of the two frequencies in Eq. (3) and
(4) yields the experimentally determined 2P fine structure
of

�Eexp
2P3/2�2P1/2

= 146.047± 0.096 meV, (5)

converted to meV using 1 meV b= 241.799 GHz. It is less
precise but in good 1.4� agreement with the theory value
of Eq. (2). Hence we use Eq. (2) to combine our two mea-
sured transition frequencies (Eqs. (3) and (4)) and obtain
a value for the Lamb shift of

�Eexp
2P1/2�2S = 1,378.521± 0.048 meV (6)

which in conjunction with Eq. (1) gives

r↵ = 1.67824 (13)exp (82)theo fm. (7)

Here, the experimental uncertainty of 0.13 am is given by
statistics. The theory uncertainty by far limits the extrac-
tion of r↵. Its 0.82 am uncertainty is from 2PE (0.70 am),

3

Numerous laser-off 
events used to 
determine the 
background



EFB25, Mainz           31.07.2023Aldo Antognini 

Theoretical prediction of the Lamb shift
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QED Finite size 2PE 3PE6

be scaled by 1/23 to account for the 2S state.
Item #r2b’ is a VP correction of order –(Z–)5. It is

an elastic contribution and only calculated by the Marty-
nenko group [4]. It is not parameterized with the charge
radius squared and therefore given as a constant. We
do not include this correction for the following reason:
In muonic deuterium this correction cancels to a large
amount with its inelastic counterpart [70] (see below
Eq. (62)). This cancellation is also expected for muonic
helium ions. Since the inelastic correction of same order
has not been calculated yet, we decided to not include
this value in the final sum.

For the finite size term of the order (Z–)6 (#r3) and
the same-order correction (#r3’), Borie and Martynenko
use di�erent methods of calculation. Here, #r3’ is given
as an absolute value, because of its non-trivial depen-
dence on the charge radius, similar to #r2’. A term cor-
responding to the Èln rÍ coe�cient is part of term (#r3)
for Martynenko and part of (#r3’) for Borie, leading to
a correlation between both. In order to stay consistent
with the summary in µD [8] we decided to average both
terms providing #r3 = ≠0.1340 ± 0.0030 meV/fm2 and
#r3Õ = 0.067 ± 0.012 meV until a clear definition is set-
tled on. Note that although the uncertainty of #r3’ is
still a factor of 5 smaller than the uncertainty goal, it
would be helpful if this 20% relative uncertainty in the
term could be improved.

The total r2

– coe�cient of the Lamb shift is given by

�E(F in. size) = ≠ 106.3536(82) meV/ fm2 r2

–

+ 0.0784(112) meV.
(10)

The uncertainty of the first term corresponds to 0.02 meV
(for r– = 1.681 fm), already 30% of our uncertainty goal.

IV. TWO-PHOTON EXCHANGE

Important parts of the nuclear structure dependent
Lamb shift contributions are created by the two-photon
exchange (TPE) between muon and nucleus (see Fig. 3).
Two distinct parts can be separated:

�ELS

TPE
= ”EA+N

Friar
+ ”EA+N

inelastic
, (11)

where ”EA+N
Friar

is the Friar moment contribution c

(Fig. 3 (a)+(b)), also known as “third Zemach mo-
ment contribution”, and ”EA+N

inelastic
is the inelastic part

of the TPE, also called the polarizability contribution
(Fig. 3 (c)+(d)). Each part can again be separated into
a nuclear (A) and a nucleon (N ) part.

c
The term “Friar moment” has been introduced by Karshenboim

et al. in [71].
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FIG. 3. Two-photon exchange in the (µ4He)+ Lamb shift.
The two diagrams (a) + (b) are contributing to the Friar mo-
ment contribution ”EFriar of the Lamb shift while the similar
diagrams (c)+(d) show the nuclear polarizability contribution
of the helium nucleus ”Einelastic. Thick dots indicate form
factor insertions while the gray blobs represent all possible
excitations of the nucleus.

A. The Friar moment contribution in (µ4He)+

The Friar moment contribution ”EA
Friar

is an elastic
contribution, analog to the finite size e�ect, but of or-
der (Z–)5, i.e. in the two-photon interaction (see Fig. 3,
(a), (b)). In the following we discuss five ways of how the
Friar moment can be obtained:

Option a: The most modern calculation of the
Friar moment contribution is provided by the TRI-
UMF/Hebrew group [56, 72, 73]. They obtain the nuclear
Friar moment contribution ”EA

Friar
by performing ab ini-

tio calculations, using state-of-the-art nuclear potentials.
Their result of [56]

”EA
Friar

(a) = 6.14 ± 0.31 meV (12)

uses the sum of their terms ”Z1 and ”Z3 [72] as an approx-
imation for the elastic Friar moment contribution. This
approach has recently made impressive progress. How-
ever, compared to the following options below, the un-
certainty is still rather large. Note, that in the isotope
shift (Sec. VII), a large part of this uncertainty cancels.

The contribution of the individual nucleons ”EN
Friar

is
not automatically included by this approach and has to
be calculated separately. The neutron Friar moment
is found to be negligible [74]. For the proton, we fol-
low [75–77] and obtain its value in (µ4He)+ by using the
proton’s Friar moment contribution in muonic hydrogen
”E(p)

Friar
(µH) = 0.0247(13) meV provided in [78]. We scale

it with the wavefunction overlap, that depends on the re-
duced mass (mr) and proton number (Z) scaling to the
third power. We account for the di�erent number of pro-
tons in both systems with an additional Z ratio. Another
reduced mass scaling factor enters from the third term in
Eq. (11) of [76] according to [79]. We obtain for the total
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#r3Õ = 0.067 ± 0.012 meV until a clear definition is set-
tled on. Note that although the uncertainty of #r3’ is
still a factor of 5 smaller than the uncertainty goal, it
would be helpful if this 20% relative uncertainty in the
term could be improved.

The total r2

– coe�cient of the Lamb shift is given by

�E(F in. size) = ≠ 106.3536(82) meV/ fm2 r2

–

+ 0.0784(112) meV.
(10)

The uncertainty of the first term corresponds to 0.02 meV
(for r– = 1.681 fm), already 30% of our uncertainty goal.

IV. TWO-PHOTON EXCHANGE

Important parts of the nuclear structure dependent
Lamb shift contributions are created by the two-photon
exchange (TPE) between muon and nucleus (see Fig. 3).
Two distinct parts can be separated:

�ELS

TPE
= ”EA+N

Friar
+ ”EA+N

inelastic
, (11)

where ”EA+N
Friar

is the Friar moment contribution c

(Fig. 3 (a)+(b)), also known as “third Zemach mo-
ment contribution”, and ”EA+N

inelastic
is the inelastic part

of the TPE, also called the polarizability contribution
(Fig. 3 (c)+(d)). Each part can again be separated into
a nuclear (A) and a nucleon (N ) part.

c
The term “Friar moment” has been introduced by Karshenboim

et al. in [71].

(a)
µ

–

(b)
µ

–

(c)
µ

–

(d)
µ

–

FIG. 3. Two-photon exchange in the (µ4He)+ Lamb shift.
The two diagrams (a) + (b) are contributing to the Friar mo-
ment contribution ”EFriar of the Lamb shift while the similar
diagrams (c)+(d) show the nuclear polarizability contribution
of the helium nucleus ”Einelastic. Thick dots indicate form
factor insertions while the gray blobs represent all possible
excitations of the nucleus.

A. The Friar moment contribution in (µ4He)+

The Friar moment contribution ”EA
Friar

is an elastic
contribution, analog to the finite size e�ect, but of or-
der (Z–)5, i.e. in the two-photon interaction (see Fig. 3,
(a), (b)). In the following we discuss five ways of how the
Friar moment can be obtained:

Option a: The most modern calculation of the
Friar moment contribution is provided by the TRI-
UMF/Hebrew group [56, 72, 73]. They obtain the nuclear
Friar moment contribution ”EA

Friar
by performing ab ini-

tio calculations, using state-of-the-art nuclear potentials.
Their result of [56]

”EA
Friar

(a) = 6.14 ± 0.31 meV (12)

uses the sum of their terms ”Z1 and ”Z3 [72] as an approx-
imation for the elastic Friar moment contribution. This
approach has recently made impressive progress. How-
ever, compared to the following options below, the un-
certainty is still rather large. Note, that in the isotope
shift (Sec. VII), a large part of this uncertainty cancels.

The contribution of the individual nucleons ”EN
Friar

is
not automatically included by this approach and has to
be calculated separately. The neutron Friar moment
is found to be negligible [74]. For the proton, we fol-
low [75–77] and obtain its value in (µ4He)+ by using the
proton’s Friar moment contribution in muonic hydrogen
”E(p)

Friar
(µH) = 0.0247(13) meV provided in [78]. We scale

it with the wavefunction overlap, that depends on the re-
duced mass (mr) and proton number (Z) scaling to the
third power. We account for the di�erent number of pro-
tons in both systems with an additional Z ratio. Another
reduced mass scaling factor enters from the third term in
Eq. (11) of [76] according to [79]. We obtain for the total

+ radiative-finite-size 
corrections

Chen Ji et al., J.Phys.G 45 (2018) 9, 093002 
Nevo Dinur et al., PRC 99, 034004 (2019) 
Li Muli et al.,  J.Phys.G 49 (2022)  10, 105101 
Pachucki et al., PRA 97, 062511 (2018) 
Pachucki et al., arXiv:2212.13782
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FIG. 2. Important Feynman diagrams contributing to the
QED part of the Lamb shift. #1 The Uehling Term; #4 The
Källén-Sabry contribution; #5 One loop eVP in two Coulomb
lines; #9/9a/10 Light-by-light scattering contributions; #13
Mixed eVP/µVP; #11 Self energy corr. to eVP; #31 Mixed
eVP/hadronic VP; #12 eVP loop in SE contribution; #30
Hadr. loop in SE contribution; #32 µVP loop in SE contri-
bution (included in #21). In our summary, terms #5, #9,
#10, #9a, #13(2) and #31(2) also contain their respective
cross diagrams.

Jentschura agree very well [6, 61]. The calculation from
Martynenko in Ref. [4] provides an incomplete value since
he only calculates the second diagram seen in Fig. 2,
#11(2). He adopts the complete value of Jentschura in
his summary. Borie only partially calculates this term, as
stated in appendix C of her summary [3]. Therefore our
choice is compiled from Karshenboim’s and Jentschura’s
value.

Insertion of an eVP or hVP loop in the µSE correction
leads to corrections of higher order. The contribution of
the additional eVP loop (#12) was calculated by Borie
and Karshenboim and their values agree well. The hVP
term (#30) was only calculated by Karshenboim whose
value we adopt. There is also a contribution due to a
µVP insertion in the µSE line. This contribution is not
separately added to our summary, because it is already
included in the µSE value.

The contribution with an eVP and a µVP loop in the
one photon interaction is given by the first diagram of
#13 in Fig. 2. It was evaluated by Martynenko and Borie
and their values agree. Karshenboim provides values of
this contribution summed with the respective term in
the two Coulomb line diagram (second part of #13) [61].
Both terms are of similar size, therefore the values of
Karshenboim and Borie/Martynenko di�er by nearly a
factor of two. Since the total term is small, this uncer-
tainty is not important for the Lamb shift extraction.

In addition, Karshenboim also calculated the influ-
ence of the mixed eVP-hVP diagram in one and two
Coulomb lines (Fig.2, #31). Borie only gives a term la-
beled “higher order correction to µSE and µVP” (#21)
that also includes the µVP loop in the SE contribution
(previously #32).

The insertion of a hadronic vacuum polarization (hVP;
#14) loop in the one Coulomb-photon interaction leads
to another correction calculated by Borie and Marty-
nenko. Both values agree within the uncertainty given
in Borie’s publication [3]. We use Borie’s result [3] as her
uncertainty includes Martynenko’s value [4].

Item #17 is the main recoil correction in the Lamb
shift, also called the Barker-Glover correction. The avail-
able calculations of the term by Borie, Martynenko and
Karshenboim agree perfectly.

Item (#18) is the term called “recoil finite size” by
Borie [3]. It is of order (Z–)5 ÈrÍ

(2)
/M and is linear in

the first Zemach moment. It has first been calculated
by Friar [63] (see Eq. F5 in App. F) for hydrogen and
has later been given by Borie [3] for µd, (µ3He)+, and
(µ4He)+. We discard item #18 because it is considered
to be included in the elastic TPE [64, 65].

Further relativistic recoil corrections of the order
(Z–)5 and (Z–)6 are also included in our summary (#22,
#23). The (Z–)5 correction was calculated by Borie,
Martynenko and Jentschura and their results agree. The
(Z–)6 term was only determined by Martynenko, but is
two orders of magnitude smaller than the term of the
previous order. Therefore we simply accept his value in
our summary.

Eth
LS = 1668.491(7) − 106.209 r2

α + 9.276(433) meV

Can be calculated 
using form factor

Elastic: can be calculated using form factor 
Inelastic: requires few-body theory

., 
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The 4He charge radius
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Theory

Experiment

Eth
LS = 1668.491(7) − 106.209 r2

α + 9.276(433) meV

Eexp
LS = 1378.521(48) meV

rα = 1.6786 (12) fm Using 2023 theory

rα = 1.67824 (13)exp(82)th fm

Nature 589 (2021) 7843, 527-531 

Using 2021  theory

Uncertainty 2PE increased 
by 45%.  No elastic/
inelastic separation. 
More consistent treatment.

Pachucki et al., arXiv:2212.13782

Bacca, Li Muli, Acharya, Ji, 
Hernandez, Barnea, ….

QED Finite size nucl. str.
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Perfect agreement with the electron scattering result
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1.676 1.678 1.68 1.682 1.684 1.686
alpha particle charge radius [fm]

Sick 2008
e-He scatt

He4µ CREMA 2021 

Today’s data

v.Gunten
Ottermann
McCarthy
Frosch
Arnold

⇒ additional data helps, but would like to do better

Ingo Sick

World data

r2↵ = �6
dF (q2)

dq2

���
q2=0

r↵ = 1.681(4)fm

PRC 77, 041302R (2008)

r2↵ = �6
dF (q2)

dq2

���
q2=0

r↵ = 1.681(4)fm

Good data 
Only one form factor 
He-nucleous has smaller tail compared to proton 
Large-r behaviour of the charge distribution 
constrained from theory 

Proton information is used in this analysis 
Radiative corrections?

A. Signer, 28.06.23 – p.3/25

outline

• basics and challenges of massive NNLO calculations

• (divergent) phase-space integration
• dealing with masses
• numerical stability (of real-virtual corrections)

• MUonE as motivation and validation

• muon-electron scattering @ MUonE and (g � 2)µ

• validation of NNLO results
• NNLO corrections are crucial (and insu�cient)

• lepton-proton scattering for MUSE

• a muon of mass 938.272 MeV
• pointlike vs actual proton

• outlook

Radiative correction  @ NNLO with McMule available
A. Signer et al.,  https://mule-tools.gitlab.io 
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Radius as a benchmark for ab initio few-nucleon theories

10

Results for 4He structure and charge radii

rstr(4He) = (1.4748 ± 0.0030trunc ± 0.0013stat) fm

Prediction for 4He structure radius: 

Prediction for 4He charge radius

rC(4He) = (1.6766 ± 0.0034) fm

rexp
C (4He) = (1.67824 ± 0.00083) fm

Krauth et al., Nature 589 (2021) 7843, 527-531 

The μ 4He exp. value is

proton radius value?

r2
C = r2

str + r2
p + r2

DF + r2
n

!24

preliminary, further uncertainty sources under investigation

preliminary, using CODATA 2018 rp and own determination of rn

Filin et al,  

0.2% accuracy Towards a consistent treatment 
of the nuclear effects:  

radii and 2PE+3PE 

1378.521(48) = 1668.491(7) − 106.209 r2
α + 9.276(433) meV

1378.521(48) meV

QEDMeasured Finite size 2PE + 3PE

Plot from  Filin 
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Radius as benchmark for ab initio few-nucleon predictions
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Filin 

Chiral EFT calculation of the nuclear charge radius

Nuclear wave function - based on high-precision chiral EFT interactions

r2
C = (−6) ∂

∂Q2 FC(Q2)
Q=0

Charge radius rC is related to the charge form factor FC(Q)

FC(Q2) = 1
2J + 1 ∑

MJ

< P′ , MJ |J0
B |P, MJ >

Charge form factor FC can be computed (in the Breit frame) as

The matrix element is a convolution of nuclear wave function and charge density operator

 Charge density operator - consistent with chiral nuclear forces

Ψ

J0

J0
B

ΨMJ′ 
ΨMJ

calculated consistently

in chiral EFT

7

Chiral EFT calculation of the nuclear charge radius

Nuclear wave function - based on high-precision chiral EFT interactions

r2
C = (−6) ∂
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Q=0

Charge radius rC is related to the charge form factor FC(Q)

FC(Q2) = 1
2J + 1 ∑

MJ

< P′ , MJ |J0
B |P, MJ >

Charge form factor FC can be computed (in the Breit frame) as

The matrix element is a convolution of nuclear wave function and charge density operator

 Charge density operator - consistent with chiral nuclear forces

Ψ

J0

J0
B

ΨMJ′ 
ΨMJ

calculated consistently

in chiral EFT

7

Charge  form factor can be computed in the Breit frame as

Using  from H leads to 
[114, 115]. Phillips derived it up to N3LO (that is, up to ν = 0 in our counting)10, while
the first derivation of one-loop corrections, entering at N4LO (ν = 1), has been carried out
in [49] by Kölling et al using the unitary transformation method. A time-ordered
perturbation theory calculation has subsequently appeared in [47]. Within this framework,
the construction of the charge operator up to one-loop necessarily requires the study of
non-static contributions to the chiral OPE and TPE potentials. These corrections that go
beyond the static limit are not uniquely determined off-the-energy-shell, therefore the
specific form of the N3LO (ν = 0) and N4LO (ν = 1) corrections of one- and two-pion
range are found to depend on the off-the-energy-shell prescriptions adopted for non-static
terms in the OPE and TPE potentials, respectively [47]. The ambiguity in the non-static
potential and charge operators is of no consequence, since different forms are related to
each other by a unitary transformation [47], a finding that was first unraveled by Friar
[117] for non-static potentials and charge operators of one-pion range.

In what follows, we refer to figure 5 and list the various contributions to the charge
operator up to corrections of order ν=eQ( 1). The LO (ν = −3) contribution is represented by
the diagram illustrated in panel (a) and corresponds to the non-relativistic IA operator given in
equation (6). In principle, at NLO (ν = −2) there are contributions of one-pion range which,

Figure 5. Diagrams illustrating one- and two-body charge operators entering at LO
( −eQ 3), panel (a), N2LO ( −eQ 1), panels (b), N3LO (eQ0), panels (c)–(e), and N4LO
(eQ1), panels (f)–(o). The square in panel (b) represents the Q m( )2, or v c( )2,
relativistic correction to the LO one-body charge operator (or IA(RC)), whereas the
solid circle in panel (c) is associated with a γπN charge coupling of order eQ (see text
for explanation). Notation is as in figure 2.

10 Note that in the counting utilized by Phillips the IA charge operator at LO is taken to scale as eQ0 as opposed to
−eQ 3 as it is done here, therefore N3LO = QPhillips

3.

J. Phys. G: Nucl. Part. Phys. 41 (2014) 123002 Topical Review

18

Current operator Nuclear forces

r2
C = r2

str+(r2
p+ 3

4m2p ) + A − Z
Z

r2
n

Relation between charge and structure radii

Nuclear charge radius can be decomposed into structure, proton and neutron radii

General

r2
d = r2

str(2H)+(r2
p+ 3

4m2p )+r2
nDeuteron

rC(4He) = r2
str(4He)+(r2

p+ 3
4m2p )+r2

n4He

r2
C(3H) + 2r2

C(3He)
3 = r2

str(3H) + 2r2
str(3He)

3 +(r2
p+ 3

4m2p )+r2
nIsoscalar 3N

We focus on isoscalar A=2,3,4 radii

Some applications of the accurate χEFT calculation of the nuclear structure radii:

 — extract proton and neutron charge radii from precisely measured nuclear charge radii

 — predict other nuclear charge radii

19

(in Breit frame)

Consistent derivation and 
regularization of many body 
forces and nuclear current 

operators + Rel. Dynamics+ 
isospin breaking+…

11

Nuclear Hamiltonians

– Epelbaum E, Krebs H, Meißner UG. PRL 115, 122301  (2015)

– Ekström A, et al. PRL 110, 192502 (2013)
   Ekström A, et al. PRC 91, 05130(R) (2015)

– Entem DR, Machleidt R, Nosyk Y, PRC 96, 024004 (2017)

– Piarulli M, et al. PRC 91, 024003 (2015)

– Gezerlis A, et al. PRC 90 , 054323 (2014)
   Lynn JE, et. al. PRC 96, 054007 (2017)
   

Epelbaum, Krebs, Meissner, 
Reinert, Hammer, Maris, Lynn, 
Ekström, Bacca, Barnea, Li Muli,

Li Muli

Talk Epelbaum
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3He++

µ-

Schuhmann et al., arXiv 2305.11679 
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The measured transitions
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FIG. 3. Measured 2S ! 2P transitions in µ3He+. The black data points show the number of laser-induced K↵ X-ray events
normalized to prompt K↵ events. The data are fitted with a line shape model detailed in the main text. This model applies
only at the measured points, and the colored lines only connect the fit points. The fitted center frequencies including their
uncertainties are indicated by the colored points with error bar above the resonances. The yellow bands indicate the average
±1� backgrounds obtained from events where the laser was not fired.

sure the average background yielding the yellow bands
in Fig. 3.

The transition (1) took about two weeks of continu-
ous measurement, the transitions (2) and (3) have been
measured at once, within about three weeks of continu-
ous data taking. For the first transition, on resonance we
observed a rate of 7-8 events/h including a background
rate of ⇠1.5 events/h.

The center frequency of the measured lines is obtained
by fitting the data with a line shape model. The model
is a Lorentzian corrected for saturation e↵ects and vari-
ations of the laser pulse energy measured for every shot.
It can therefore only be evaluated at the position of each
data point. This leads to the distortion in the line shape
seen in Fig. 3. From the line shape fit we obtain following
transition frequencies:

⌫(1)
exp

⌘ ⌫(2PF=2

3/2 � 2SF=1

1/2 ) = 347.2115(196)stat(2)sys THz

(2)

⌫(2)
exp

⌘ ⌫(2PF=1

3/2 � 2SF=0

1/2 ) = 312.8296(209)stat(2)sys THz

(3)

⌫(3)
exp

⌘ ⌫(2PF=1

1/2 � 2SF=1

1/2 ) = 310.8143(195)stat(2)sys THz.

(4)

The fit was done with a fixed linewidth of � = 318.7 GHz
at FWHM. A separate fit with a free width resulted in
widths that agreed with the theoretical one. Simply fit-
ting Lorentzians yields line centers in agreement with the
ones from the line shape model. The measured transition
frequencies yield the energy splittings

�E(1)

exp
= 1435.951(81)meV (5)

�E(2)

exp
= 1293.759(86)meV (6)

�E(3)

exp
= 1285.425(81)meV (7)

via the relation 1meV b=241.798935 GHz.

The uncertainty of about 20 GHz, corresponding to
about 6⇥ 10�2 �, is dominated by far by statistics. The
largest systematic uncertainty stems from an upper limit
to quantum interference e↵ects [25] (< 5 ⇥ 10�4 � =
0.16 GHz) [26]. The uncertainty on the laser frequency
is dominated by the chirp and the calibration of the
wavemeter and conservatively given by 0.1GHz. We cor-
rected for the Zeeman shift caused by the 5T field by
maximally 0.3 GHz (depending on the transition) so that
the uncertainty of this correction is negligibly small in our
context. Other systematic uncertainties (light shift, col-
lisional e↵ects, Stark shift etc.) are negligible compared
with the precision of the measurement due to the strong
binding, the small atomic size and the large separation
between energy levels.

EXPERIMENTAL RESULTS

From the three transition measurements between 2S
and 2P states with di↵erent fine and hyperfine sub-
levels, it is possible to determine three quantities: we
choose the Lamb shift ELS = �E(2P1/2 � 2S1/2), the
2S hyperfine splitting EHFS, and the 2P fine splitting
EFS = �E(2P3/2 � 2P1/2). The relations between the
measured transition energies and these quantities are
given by (see also Methods):

�E(1)

exp
= ELS � 1

4
EHFS + EFS � 9.23945(26) meV(8)

�E(2)

exp
= ELS +

3

4
EHFS + EFS + 15.05305(44) meV(9)

�E(3)

exp
= ELS � 1

4
EHFS � 14.80851(18) meV(10)
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FIG. 3. Measured 2S ! 2P transitions in µ3He+. The black data points show the number of laser-induced K↵ X-ray events
normalized to prompt K↵ events. The data are fitted with a line shape model detailed in the main text. This model applies
only at the measured points, and the colored lines only connect the fit points. The fitted center frequencies including their
uncertainties are indicated by the colored points with error bar above the resonances. The yellow bands indicate the average
±1� backgrounds obtained from events where the laser was not fired.

sure the average background yielding the yellow bands
in Fig. 3.

The transition (1) took about two weeks of continu-
ous measurement, the transitions (2) and (3) have been
measured at once, within about three weeks of continu-
ous data taking. For the first transition, on resonance we
observed a rate of 7-8 events/h including a background
rate of ⇠1.5 events/h.

The center frequency of the measured lines is obtained
by fitting the data with a line shape model. The model
is a Lorentzian corrected for saturation e↵ects and vari-
ations of the laser pulse energy measured for every shot.
It can therefore only be evaluated at the position of each
data point. This leads to the distortion in the line shape
seen in Fig. 3. From the line shape fit we obtain following
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ting Lorentzians yields line centers in agreement with the
ones from the line shape model. The measured transition
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The uncertainty of about 20 GHz, corresponding to
about 6⇥ 10�2 �, is dominated by far by statistics. The
largest systematic uncertainty stems from an upper limit
to quantum interference e↵ects [25] (< 5 ⇥ 10�4 � =
0.16 GHz) [26]. The uncertainty on the laser frequency
is dominated by the chirp and the calibration of the
wavemeter and conservatively given by 0.1GHz. We cor-
rected for the Zeeman shift caused by the 5T field by
maximally 0.3 GHz (depending on the transition) so that
the uncertainty of this correction is negligibly small in our
context. Other systematic uncertainties (light shift, col-
lisional e↵ects, Stark shift etc.) are negligible compared
with the precision of the measurement due to the strong
binding, the small atomic size and the large separation
between energy levels.

EXPERIMENTAL RESULTS

From the three transition measurements between 2S
and 2P states with di↵erent fine and hyperfine sub-
levels, it is possible to determine three quantities: we
choose the Lamb shift ELS = �E(2P1/2 � 2S1/2), the
2S hyperfine splitting EHFS, and the 2P fine splitting
EFS = �E(2P3/2 � 2P1/2). The relations between the
measured transition energies and these quantities are
given by (see also Methods):

�E(1)

exp
= ELS � 1

4
EHFS + EFS � 9.23945(26) meV(8)

�E(2)

exp
= ELS +
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4
EHFS + EFS + 15.05305(44) meV(9)

�E(3)

exp
= ELS � 1

4
EHFS � 14.80851(18) meV(10)

2

where n is the principal quantum number, l the angular
momentum, ↵ the fine structure constant, Z the atomic
number, mr the reduced mass, and r the nuclear charge
radius. The Kronecker �l0 indicates that only S-states
energy levels are a↵ected in leading approximation by
the finite size due to their overlap with the nucleus.

In this work, we present the measurement of three
2S ! 2P transitions of the muonic helium-3 ion µ3He+

(a two-body ion formed by a negative muon and a bare
3He nucleus) as shown in Fig. 1 from which we extracted
the 2S-2P Lamb shift, the 2S hyperfine splitting and the
2P fine splitting. From the Lamb shift we have then ex-
tracted the rms charge radius of the helion rh with an
unprecedented relative precision of 7 ⇥ 10�4, improving
the previous best value [8] from elastic electron scatter-
ing by a factor of 15. From the comparison between 2S-
HFS and theory, we extracted the two-photon-exchange
contribution which is the leading-order nuclear structure
dependent contribution for the HFS. Hence, these mea-
surements provide important benchmarks for nuclear the-
ories, and pave the way for advancing precision tests of
two- and three-body QED when combined with ongoing
e↵orts in regular He atoms [9–16] and He+ ions [17, 18].

The 2S-2P transition frequencies were measured by
pulsed laser spectroscopy at wavelengths around 850-
940 nm (frequencies of 310-350 THz) to an accuracy
of about 20 GHz corresponding to relative accuracies of
about 50 ppm. The resonances were exposed by detecting
the K↵ X-ray of 8 keV energy emitted from 2P ! 1S de-
excitation following a successful laser transition from the
2S to the 2P state. The 50 ppm measurement precision
has to be compared to the energy shift caused by the
finite-size e↵ect (see Eq. (1)) that contributes as much
as 25% to the 2S-2P energy splitting owing to its m3

rZ
4

dependence. The binding energy of this hydrogen-like
system, scaling as Z2mr, is strongly enhanced compared
to hydrogen, while the atomic size (Bohr radius) scaling
as 1/Zmr is strongly reduced making this atom immune
to external perturbation. Because of its mrZ4 depen-
dence, the decay rate from the 2P state is also vastly
increased resulting in a 2P-linewidth of 319 GHz. This
broad linewidth represents by far the main limitation to
our experimental precision. Having in mind these energy
scales, sensitivity to nuclear properties and immunity to
external perturbations helps framing the requirements for
the spectroscopy experiment and understanding of the
experimental setup.

PRINCIPLE AND EXPERIMENTAL SETUP

µ3He+ ions are formed in highly excited states by stop-
ping a keV-energy muon in a low-pressure (2 mbar) 3He
gas target at room temperature and placed in a 5 T
solenoid. The newly formed µ3He+ ions deexcite to the
1S state in a fast (ns-scale) and complex cascade process
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FIG. 1. Scheme (not to scale) of the n = 2 energy levels in
µ3He+ and the measured transitions. Due to the negative
magnetic moment of the helion, the ordering of the hyperfine
levels is reversed.

with a fraction of about 1% reaching the metastable 2S
state whose lifetime is approximately 1.7 µs at this tar-
get pressure. This lifetime is su�ciently long to enable
pulsed laser spectroscopy of the 2S-2P splitting. For this
purpose the muon entering the target is being detected to
trigger a laser system that delivers a pulse to excite the
2S into the 2P state after a delay of about 1 µs. The laser
pulse is injected into a multipass cell formed by two elon-
gated mirrors that fold the light back and forth to illumi-
nate the elongated muon stopping volume. A successful
laser excitation is established by detecting the 8 keV en-
ergy K↵ X-ray from the 2P de-excitation into the ground
state. This is accomplished using two rows of large area
avalanche photodiodes (LAAPDs) placed above and be-
low the muon stopping volume, respectively and covering
30% solid angle. The 2S-2P resonances are eventually ob-
tained by plotting the number of K↵ X-rays detected in
time coincidence with the laser light as a function of the
laser frequency.

A sketch of the setup is shown in Fig. 2. The exper-
iment has been performed at the ⇡E5 beamline of the
CHRISP facility at the Paul Scherrer Institute (PSI),
Switzerland. Here, 102MeV/c negative pions are in-
jected tangentially into a cyclotron trap (CT) formed by
two coils generating a B-field with a magnetic-bottle ge-
ometry [19]. A fraction of the muons from the pion de-
cays are trapped in the B-field of the CT. Passing multi-
ple times a thin foil placed in the trap mid-plane, these
muons are decelerated down to 20-40 keV energy. At this
low energy, the electric field which is applied along the
trap axis imparts su�cient longitudinal momentum to
the muons so that they can escape the magnetic confine-
ment of the CT in axial direction. The escaping muons
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FIG. 3. Measured 2S ! 2P transitions in µ3He+. The black data points show the number of laser-induced K↵ X-ray events
normalized to prompt K↵ events. The data are fitted with a line shape model detailed in the main text. This model applies
only at the measured points, and the colored lines only connect the fit points. The fitted center frequencies including their
uncertainties are indicated by the colored points with error bar above the resonances. The yellow bands indicate the average
±1� backgrounds obtained from events where the laser was not fired.

sure the average background yielding the yellow bands
in Fig. 3.

The transition (1) took about two weeks of continu-
ous measurement, the transitions (2) and (3) have been
measured at once, within about three weeks of continu-
ous data taking. For the first transition, on resonance we
observed a rate of 7-8 events/h including a background
rate of ⇠1.5 events/h.

The center frequency of the measured lines is obtained
by fitting the data with a line shape model. The model
is a Lorentzian corrected for saturation e↵ects and vari-
ations of the laser pulse energy measured for every shot.
It can therefore only be evaluated at the position of each
data point. This leads to the distortion in the line shape
seen in Fig. 3. From the line shape fit we obtain following
transition frequencies:

⌫(1)
exp

⌘ ⌫(2PF=2

3/2 � 2SF=1

1/2 ) = 347.2115(196)stat(2)sys THz

(2)

⌫(2)
exp

⌘ ⌫(2PF=1

3/2 � 2SF=0

1/2 ) = 312.8296(209)stat(2)sys THz

(3)

⌫(3)
exp

⌘ ⌫(2PF=1

1/2 � 2SF=1

1/2 ) = 310.8143(195)stat(2)sys THz.

(4)

The fit was done with a fixed linewidth of � = 318.7 GHz
at FWHM. A separate fit with a free width resulted in
widths that agreed with the theoretical one. Simply fit-
ting Lorentzians yields line centers in agreement with the
ones from the line shape model. The measured transition
frequencies yield the energy splittings

�E(1)

exp
= 1435.951(81)meV (5)

�E(2)

exp
= 1293.759(86)meV (6)

�E(3)

exp
= 1285.425(81)meV (7)

via the relation 1meV b=241.798935 GHz.

The uncertainty of about 20 GHz, corresponding to
about 6⇥ 10�2 �, is dominated by far by statistics. The
largest systematic uncertainty stems from an upper limit
to quantum interference e↵ects [25] (< 5 ⇥ 10�4 � =
0.16 GHz) [26]. The uncertainty on the laser frequency
is dominated by the chirp and the calibration of the
wavemeter and conservatively given by 0.1GHz. We cor-
rected for the Zeeman shift caused by the 5T field by
maximally 0.3 GHz (depending on the transition) so that
the uncertainty of this correction is negligibly small in our
context. Other systematic uncertainties (light shift, col-
lisional e↵ects, Stark shift etc.) are negligible compared
with the precision of the measurement due to the strong
binding, the small atomic size and the large separation
between energy levels.

EXPERIMENTAL RESULTS

From the three transition measurements between 2S
and 2P states with di↵erent fine and hyperfine sub-
levels, it is possible to determine three quantities: we
choose the Lamb shift ELS = �E(2P1/2 � 2S1/2), the
2S hyperfine splitting EHFS, and the 2P fine splitting
EFS = �E(2P3/2 � 2P1/2). The relations between the
measured transition energies and these quantities are
given by (see also Methods):

�E(1)

exp
= ELS � 1

4
EHFS + EFS � 9.23945(26) meV(8)

�E(2)

exp
= ELS +

3

4
EHFS + EFS + 15.05305(44) meV(9)

�E(3)
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= ELS � 1

4
EHFS � 14.80851(18) meV(10)
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where n is the principal quantum number, l the angular
momentum, ↵ the fine structure constant, Z the atomic
number, mr the reduced mass, and r the nuclear charge
radius. The Kronecker �l0 indicates that only S-states
energy levels are a↵ected in leading approximation by
the finite size due to their overlap with the nucleus.

In this work, we present the measurement of three
2S ! 2P transitions of the muonic helium-3 ion µ3He+

(a two-body ion formed by a negative muon and a bare
3He nucleus) as shown in Fig. 1 from which we extracted
the 2S-2P Lamb shift, the 2S hyperfine splitting and the
2P fine splitting. From the Lamb shift we have then ex-
tracted the rms charge radius of the helion rh with an
unprecedented relative precision of 7 ⇥ 10�4, improving
the previous best value [8] from elastic electron scatter-
ing by a factor of 15. From the comparison between 2S-
HFS and theory, we extracted the two-photon-exchange
contribution which is the leading-order nuclear structure
dependent contribution for the HFS. Hence, these mea-
surements provide important benchmarks for nuclear the-
ories, and pave the way for advancing precision tests of
two- and three-body QED when combined with ongoing
e↵orts in regular He atoms [9–16] and He+ ions [17, 18].

The 2S-2P transition frequencies were measured by
pulsed laser spectroscopy at wavelengths around 850-
940 nm (frequencies of 310-350 THz) to an accuracy
of about 20 GHz corresponding to relative accuracies of
about 50 ppm. The resonances were exposed by detecting
the K↵ X-ray of 8 keV energy emitted from 2P ! 1S de-
excitation following a successful laser transition from the
2S to the 2P state. The 50 ppm measurement precision
has to be compared to the energy shift caused by the
finite-size e↵ect (see Eq. (1)) that contributes as much
as 25% to the 2S-2P energy splitting owing to its m3

rZ
4

dependence. The binding energy of this hydrogen-like
system, scaling as Z2mr, is strongly enhanced compared
to hydrogen, while the atomic size (Bohr radius) scaling
as 1/Zmr is strongly reduced making this atom immune
to external perturbation. Because of its mrZ4 depen-
dence, the decay rate from the 2P state is also vastly
increased resulting in a 2P-linewidth of 319 GHz. This
broad linewidth represents by far the main limitation to
our experimental precision. Having in mind these energy
scales, sensitivity to nuclear properties and immunity to
external perturbations helps framing the requirements for
the spectroscopy experiment and understanding of the
experimental setup.

PRINCIPLE AND EXPERIMENTAL SETUP

µ3He+ ions are formed in highly excited states by stop-
ping a keV-energy muon in a low-pressure (2 mbar) 3He
gas target at room temperature and placed in a 5 T
solenoid. The newly formed µ3He+ ions deexcite to the
1S state in a fast (ns-scale) and complex cascade process
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FIG. 1. Scheme (not to scale) of the n = 2 energy levels in
µ3He+ and the measured transitions. Due to the negative
magnetic moment of the helion, the ordering of the hyperfine
levels is reversed.

with a fraction of about 1% reaching the metastable 2S
state whose lifetime is approximately 1.7 µs at this tar-
get pressure. This lifetime is su�ciently long to enable
pulsed laser spectroscopy of the 2S-2P splitting. For this
purpose the muon entering the target is being detected to
trigger a laser system that delivers a pulse to excite the
2S into the 2P state after a delay of about 1 µs. The laser
pulse is injected into a multipass cell formed by two elon-
gated mirrors that fold the light back and forth to illumi-
nate the elongated muon stopping volume. A successful
laser excitation is established by detecting the 8 keV en-
ergy K↵ X-ray from the 2P de-excitation into the ground
state. This is accomplished using two rows of large area
avalanche photodiodes (LAAPDs) placed above and be-
low the muon stopping volume, respectively and covering
30% solid angle. The 2S-2P resonances are eventually ob-
tained by plotting the number of K↵ X-rays detected in
time coincidence with the laser light as a function of the
laser frequency.

A sketch of the setup is shown in Fig. 2. The exper-
iment has been performed at the ⇡E5 beamline of the
CHRISP facility at the Paul Scherrer Institute (PSI),
Switzerland. Here, 102MeV/c negative pions are in-
jected tangentially into a cyclotron trap (CT) formed by
two coils generating a B-field with a magnetic-bottle ge-
ometry [19]. A fraction of the muons from the pion de-
cays are trapped in the B-field of the CT. Passing multi-
ple times a thin foil placed in the trap mid-plane, these
muons are decelerated down to 20-40 keV energy. At this
low energy, the electric field which is applied along the
trap axis imparts su�cient longitudinal momentum to
the muons so that they can escape the magnetic confine-
ment of the CT in axial direction. The escaping muons

Eth
FS = 144.979(5) meV

5

where EHFS < 0 and the numerical values of the last
terms in Eqs. (8-10) arise from the 2P fine and hyperfine
splittings, and include the contribution due to the mixing
of the F=1 levels. These contributions can be calculated
with great precision, because the 2P wave function of the
hydrogen-like muonic He ion has negligible overlap with
the nucleus, resulting in negligible contributions from nu-
clear size and structure corrections.

Note that the two most recent theory papers by
Karshenboim et al., [27] and Pachucki et al. [28] use
di↵erent conventions for the definition of the 2P1/2 and
2P3/2 centroids, which results in di↵ering definitions of
the Lamb shift. To obtain the constant terms in Eqs. (8-
10) we have used the 2P levels calculated by Karshenboim
et al., and modified them to account for the di↵erent
definitions, such that our final result for the Lamb shift
follows the convention of Pachucki et al. (see Methods).

We can solve the system of equations to obtain the
experimental values of the Lamb shift, the 2S HFS und
the 2P fine splitting:

Eexp

LS
= 1258.612( 86)meV (11)

Eexp

HFS
= �166.485(118)meV (12)

Eexp

FS
= 144.958(114)meV. (13)

The experimental value of the fine splitting Eexp

FS

is in excellent agreement with predictions Eth

FS
=

144.979(5)meV [27], demonstrating consistency between
our three muonic transitions measurements on the one
hand, and the correctness of the theory of the 2P levels
on the other. Owing to its much smaller uncertainty and
consistency with measurements, we can use the theory
value of the fine splitting to solve the system of equations
Eqs. (8)-(10) to obtain improved values of the Lamb shift
and 2S-HFS:

Eexp

LS
= 1258.598( 48)exp(3)theo meV (14)

Eexp

HFS
= �166.496(104)exp(3)theo meV . (15)

The theoretical uncertainties are from the ±0.005meV
estimated higher-order corrections to the fine structure
in Ref. [27].

THE HELION CHARGE RADIUS AND THE
ISOTOPIC SHIFT

The theory prediction of the Lamb shift has been re-
cently updated accounting for the contributions of vari-
ous groups. It reads [28]

Eth

LS
(r2h) =1644.348(8)meV � 103.383 r2h meV/ fm2

+ 15.499(378)meV (16)

where the first term accounts for all QED corrections in-
dependent of the nuclear structure, the term proportional
to rh2 accounts for the finite-size correction including
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FIG. 4. Recent determinations of the 3He nucleus (helion)
charge radius. The dark and light bands indicate the experi-
mental and total uncertainty in our measurement. The value
of Sick of 1.973(14) fm [8] is from the world data on elastic
electron scattering. The other values are recent predictions
from nuclear few-body theory: Piarulli 1.962(4) fm [4, 31],
Nevo Dinur 1.979(10) fm [32], and LENPIC collaboration
1.955(34) fm [33, 34] a

a We obtained this value using the point-proton structure radius
and procedure explained in Ref. [33].

radiative corrections to it, and the last term is a sum
of all higher-order nuclear structure dependent contribu-
tions [2, 29, 30] which are dominated by the nuclear two-
and three-photon exchange contributions (2PE and 3PE,
respectively). Comparing this theory prediction with the
measured Lamb shift Eexp

LS
we obtain the rms charge ra-

dius of the helion

rh = 1.97007(12)exp(93)theo fm = 1.97007(94) fm. (17)

This value is 15 times more precise than the previous best
value from elastic electron-3He scattering of 1.973(14) fm
[8], and in perfect agreement with it (see Fig. 4).
Our value could be further improved by almost an or-

der of magnitude by advancing the predictions for the
two-photon-exchange and three-photon-exchange contri-
butions both for the nucleus and the nucleons [1, 2, 28].
It is interesting to compare this value with the helion

charge radius as obtained from most recent nuclear the-
ories which uses chiral e↵ective field theory to describe
the nuclear interaction and ab-initio methods to solve the
quantum-mechanical few-body problem. Figure. 4 shows
some of the most recent results taken from Ref. [4, 31, 33–
35] depicting an overall satisfactory agreement between
the measured value and the various predictions, and high-
lighting the role of the helion charge radius as benchmark
for precision nuclear theory.
Spectroscopy of ”normal” helium atoms can not yet

provide precise values of the helion and alpha-particle
charge radii, given the present uncertainty of the three-
body atomic theory. Yet, in the isotopic shift, several
cancellations take place in the theory [36] of the energy
levels, so that values of r2h � r2↵ [9–14] can be obtained
where r↵ is the alpha particle (4He) charge radius. The
scattering of the values obtained so far shown in Fig. 5
however reveals some tensions that highlight the chal-
lenges faced by both theory and experiments.

Lamb shift and 2S-hyperfine splitting
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where EHFS < 0 and the numerical values of the last
terms in Eqs. (8-10) arise from the 2P fine and hyperfine
splittings, and include the contribution due to the mixing
of the F=1 levels. These contributions can be calculated
with great precision, because the 2P wave function of the
hydrogen-like muonic He ion has negligible overlap with
the nucleus, resulting in negligible contributions from nu-
clear size and structure corrections.

Note that the two most recent theory papers by
Karshenboim et al., [27] and Pachucki et al. [28] use
di↵erent conventions for the definition of the 2P1/2 and
2P3/2 centroids, which results in di↵ering definitions of
the Lamb shift. To obtain the constant terms in Eqs. (8-
10) we have used the 2P levels calculated by Karshenboim
et al., and modified them to account for the di↵erent
definitions, such that our final result for the Lamb shift
follows the convention of Pachucki et al. (see Methods).

We can solve the system of equations to obtain the
experimental values of the Lamb shift, the 2S HFS und
the 2P fine splitting:
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is in excellent agreement with predictions Eth
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=

144.979(5)meV [27], demonstrating consistency between
our three muonic transitions measurements on the one
hand, and the correctness of the theory of the 2P levels
on the other. Owing to its much smaller uncertainty and
consistency with measurements, we can use the theory
value of the fine splitting to solve the system of equations
Eqs. (8)-(10) to obtain improved values of the Lamb shift
and 2S-HFS:
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= 1258.598( 48)exp(3)theo meV (14)
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= �166.496(104)exp(3)theo meV . (15)

The theoretical uncertainties are from the ±0.005meV
estimated higher-order corrections to the fine structure
in Ref. [27].

THE HELION CHARGE RADIUS AND THE
ISOTOPIC SHIFT

The theory prediction of the Lamb shift has been re-
cently updated accounting for the contributions of vari-
ous groups. It reads [28]
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where the first term accounts for all QED corrections in-
dependent of the nuclear structure, the term proportional
to rh2 accounts for the finite-size correction including
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FIG. 4. Recent determinations of the 3He nucleus (helion)
charge radius. The dark and light bands indicate the experi-
mental and total uncertainty in our measurement. The value
of Sick of 1.973(14) fm [8] is from the world data on elastic
electron scattering. The other values are recent predictions
from nuclear few-body theory: Piarulli 1.962(4) fm [4, 31],
Nevo Dinur 1.979(10) fm [32], and LENPIC collaboration
1.955(34) fm [33, 34] a

a We obtained this value using the point-proton structure radius
and procedure explained in Ref. [33].

radiative corrections to it, and the last term is a sum
of all higher-order nuclear structure dependent contribu-
tions [2, 29, 30] which are dominated by the nuclear two-
and three-photon exchange contributions (2PE and 3PE,
respectively). Comparing this theory prediction with the
measured Lamb shift Eexp

LS
we obtain the rms charge ra-

dius of the helion

rh = 1.97007(12)exp(93)theo fm = 1.97007(94) fm. (17)

This value is 15 times more precise than the previous best
value from elastic electron-3He scattering of 1.973(14) fm
[8], and in perfect agreement with it (see Fig. 4).
Our value could be further improved by almost an or-

der of magnitude by advancing the predictions for the
two-photon-exchange and three-photon-exchange contri-
butions both for the nucleus and the nucleons [1, 2, 28].
It is interesting to compare this value with the helion

charge radius as obtained from most recent nuclear the-
ories which uses chiral e↵ective field theory to describe
the nuclear interaction and ab-initio methods to solve the
quantum-mechanical few-body problem. Figure. 4 shows
some of the most recent results taken from Ref. [4, 31, 33–
35] depicting an overall satisfactory agreement between
the measured value and the various predictions, and high-
lighting the role of the helion charge radius as benchmark
for precision nuclear theory.
Spectroscopy of ”normal” helium atoms can not yet

provide precise values of the helion and alpha-particle
charge radii, given the present uncertainty of the three-
body atomic theory. Yet, in the isotopic shift, several
cancellations take place in the theory [36] of the energy
levels, so that values of r2h � r2↵ [9–14] can be obtained
where r↵ is the alpha particle (4He) charge radius. The
scattering of the values obtained so far shown in Fig. 5
however reveals some tensions that highlight the chal-
lenges faced by both theory and experiments.
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where EHFS < 0 and the numerical values of the last
terms in Eqs. (8-10) arise from the 2P fine and hyperfine
splittings, and include the contribution due to the mixing
of the F=1 levels. These contributions can be calculated
with great precision, because the 2P wave function of the
hydrogen-like muonic He ion has negligible overlap with
the nucleus, resulting in negligible contributions from nu-
clear size and structure corrections.

Note that the two most recent theory papers by
Karshenboim et al., [27] and Pachucki et al. [28] use
di↵erent conventions for the definition of the 2P1/2 and
2P3/2 centroids, which results in di↵ering definitions of
the Lamb shift. To obtain the constant terms in Eqs. (8-
10) we have used the 2P levels calculated by Karshenboim
et al., and modified them to account for the di↵erent
definitions, such that our final result for the Lamb shift
follows the convention of Pachucki et al. (see Methods).

We can solve the system of equations to obtain the
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is in excellent agreement with predictions Eth
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=

144.979(5)meV [27], demonstrating consistency between
our three muonic transitions measurements on the one
hand, and the correctness of the theory of the 2P levels
on the other. Owing to its much smaller uncertainty and
consistency with measurements, we can use the theory
value of the fine splitting to solve the system of equations
Eqs. (8)-(10) to obtain improved values of the Lamb shift
and 2S-HFS:
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The theoretical uncertainties are from the ±0.005meV
estimated higher-order corrections to the fine structure
in Ref. [27].
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The theory prediction of the Lamb shift has been re-
cently updated accounting for the contributions of vari-
ous groups. It reads [28]

Eth

LS
(r2h) =1644.348(8)meV � 103.383 r2h meV/ fm2

+ 15.499(378)meV (16)
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charge radius. The dark and light bands indicate the experi-
mental and total uncertainty in our measurement. The value
of Sick of 1.973(14) fm [8] is from the world data on elastic
electron scattering. The other values are recent predictions
from nuclear few-body theory: Piarulli 1.962(4) fm [4, 31],
Nevo Dinur 1.979(10) fm [32], and LENPIC collaboration
1.955(34) fm [33, 34] a

a We obtained this value using the point-proton structure radius
and procedure explained in Ref. [33].

radiative corrections to it, and the last term is a sum
of all higher-order nuclear structure dependent contribu-
tions [2, 29, 30] which are dominated by the nuclear two-
and three-photon exchange contributions (2PE and 3PE,
respectively). Comparing this theory prediction with the
measured Lamb shift Eexp

LS
we obtain the rms charge ra-

dius of the helion

rh = 1.97007(12)exp(93)theo fm = 1.97007(94) fm. (17)

This value is 15 times more precise than the previous best
value from elastic electron-3He scattering of 1.973(14) fm
[8], and in perfect agreement with it (see Fig. 4).
Our value could be further improved by almost an or-

der of magnitude by advancing the predictions for the
two-photon-exchange and three-photon-exchange contri-
butions both for the nucleus and the nucleons [1, 2, 28].
It is interesting to compare this value with the helion

charge radius as obtained from most recent nuclear the-
ories which uses chiral e↵ective field theory to describe
the nuclear interaction and ab-initio methods to solve the
quantum-mechanical few-body problem. Figure. 4 shows
some of the most recent results taken from Ref. [4, 31, 33–
35] depicting an overall satisfactory agreement between
the measured value and the various predictions, and high-
lighting the role of the helion charge radius as benchmark
for precision nuclear theory.
Spectroscopy of ”normal” helium atoms can not yet

provide precise values of the helion and alpha-particle
charge radii, given the present uncertainty of the three-
body atomic theory. Yet, in the isotopic shift, several
cancellations take place in the theory [36] of the energy
levels, so that values of r2h � r2↵ [9–14] can be obtained
where r↵ is the alpha particle (4He) charge radius. The
scattering of the values obtained so far shown in Fig. 5
however reveals some tensions that highlight the chal-
lenges faced by both theory and experiments.

Pachucki et al., arXiv:2212.13782
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Uncertainty

with a total uncertainty of 2.7 kHz corresponding to �(R∞) = 8×10−13. Even though Eq. 50

accounts for several recent updates – hVP (66), two-loop and three-loop QED contribu-

tions (118) (e.g., the previously neglected light-by-light contribution B
LbL

61 (nS) at order

↵
2(Z↵)6m lnZ↵), and inelastic three-photon (3�) exchange (119) – (see Ref. 120 for a re-

cent review) the obtained value is in perfect agreement with Ref. (43, Eq. 22). Notice from

Eq. 52 that the R∞ accuracy is limited by the uncertainty of the H theory (2.4 kHz) while

the uncertainty from rp(µH) is only of 1.1 kHz.

R∞ fractional
accuracy:
�(R∞) = 8 × 10−13

A test of the H energy levels requires combining theory and measurement of three

transitions in H: two of them to determine R∞ and rp, the third to check for consistency.

This test is presently limited by the uncertainty of the third best measurement in H (the 1S

hfs excluded) and by the correlations of the various contributions to the energy splittings.

Hence, a more sensitive way to test the H energy levels is to use of the precise rp(µH) value
and to combine it with two most precise measurements in H: the H(1S-2S) and H(1S-3S)

transitions. Agreement between theory and experiment has been verified on the 1 × 10−12
level, limited by theory.

5.2. µ4He+ and He+: testing higher-order QED and nuclear models

An interesting test of bound-state QED can be obtained when the ongoing e↵orts to measure

the 1S-2S transition in the hydrogen-like He+ ion in LaserLaB, Amsterdam (35) and MPQ,

Garching (36) will be accomplished. To understand the interplay between measurements in

He+, µ4He+, H and µH we express the He+(1S-2S) with explicit Z-dependence:

f2S−1S(He+) ≈ 3Z2
cR∞
4

1

1 + me
M↵

+QED
He+ �Z3.7

, Z
5...7� − 7(Z↵)c4

24⇡ a3

B

�h3
r
2

↵, 53a.

(1kHz) (9kHz) (40kHz) (61kHz) 53b.

with M↵ being the alpha-particle mass. The Bohr structure scales only with Z
2, the fi-

nite size with Z
4, the one-loop QED contributions scale approximately as Z

3.7, while the

challenging higher-order contributions (e.g., the two-loop B60 term at order ↵2(Z↵)6m, the

three-loop C50 term at order ↵
3(Z↵)5m) scaling as Z

5..7 are strongly enhanced in He+.
Eq. 53b illustrates the uncertainties: 1 kHz uncertainty is expected from the LaserLaB ex-

periment in the first phase (35), while an analysis of typical systematic e↵ects of the MPQ

experiment promises uncertainties far below that level, on the order Hz level (36). The 9 kHz

is from the uncertainty of R∞(µH +H) (Eq. 52), the 40 kHz represents the present uncer-

tainty of the QED theory (120, 118), and the 61 kHz is the uncertainty resulting from the

alpha-particle charge radius, r↵ = 1.67824(13)exp(82)th fm, from µ
4He+(10) spectroscopy

limited by the uncertainty of the 2�-exchange contribution in µ
4He+ (121, 122).

By considering these uncertainties, it is clear that the 1S-2S transition in He+ can be

tested after completion of the measurement in He+ down to an accuracy of ∼ 60 kHz limited

by r↵ from µ
4He+. This correspond to a test at the 6×10−12 level. Even though the energy

levels in H are tested on the 1 × 10−12 level, He+ has a superior sensitivity to higher-order

QED contributions that scale with Z
5 = 32 and Z

6 = 64.
To push further the QED test in He+ requires reducing the uncertainty of r↵,

achievable by progressing the 2�- and 3�-exchange contributions in µ
4He+: E

�2��A+N
2P−2S =

9.34(20)N(11)AmeV (121), with A and N the nuclear and nucleon contributions, and

E
�3��
2P−2S = −0.150(150)meV (10). In order of importance, the 2�-exchange theory can be ad-

vanced by improving on the nucleon-polarizability contribution (primarily the neutron), on

www.annualreviews.org • Nucleon structure in and out of muonic hydrogen 23
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FIG. 3. Determinations of the squared charge radius di↵erence r2h � r2↵ through precision spectroscopy of helium and muonic-
helium ions. The sensitivity to the nuclear sizes comes from the change in electron orbital between the two states involved
in the measured transitions. a) Our work is based on the narrow 23S ! 21S transition, measured in trapped quantum gases,
which have distinctly di↵erent quantum statistical behaviour between the two isotopes. b) In muonic helium ions, a strong
enhancement of the finite size e↵ect is used to directly extract the nuclear charge radii from the 2S ! 2P Lamb shift. c) The
determinations based on the 23S ! 23P transition are performed in an atomic beam. A major challenge for this transition is
the natural linewidth of 1.6 MHz. d) Comparison of �r2 = r2h� r2↵ from the di↵erent experiments. An earlier large discrepancy
between the value based on 23S ! 21S [25] and the 23S ! 23P [27, 29] isotope shift measurements is now resolved (see the
main text and the re-evaluated measurement point). However, our new improved result (”This work”) deviates by 3.6� from
that obtained with µHe+ [1, 18]

Our new determination of �r2 enables an accurate com-
parison with the one obtained recently from µHe+ spec-
troscopy. With µHe+, the charge radius of both the al-
pha particle [18] and helion particle [1] have been deter-
mined independently with high accuracy, and they are in
agreement with the much less accurate electron scatter-
ing data [33]. The resulting �r2 from µHe+ spectroscopy
is �r2 = 1.0636(6)(30) fm2 [1], with a combined experi-
mental and theoretical uncertainty of 0.0031 fm2. When
we compare this to our determination of 1.0757(15) fm2

from normal helium, a deviation of 3.6� is observed. It
would require an adjustment of 1.9 kHz on our measured
3He�4He isotope shift to bring both determinations into
agreement within 1 �. This is much larger than our total
uncertainty of 263 Hz for the isotope shift measurement.
It should be noted that the errorbar of the muonic re-
sult is dominated by the theory used to determine the
finite-size contribution to the measurement. The com-
parison with normal helium primarily constitutes a test
of the di↵erent QED e↵ects in both experiments and es-
pecially polarization of the nucleus that dominates the
uncertainty for µHe+. Another possibility for the dis-
agreement could be that there is a di↵erence between
muons and electrons besides their mass.

V. CONCLUSION AND OUTLOOK

Our measurement in a 3He Fermi gas presents the most
accurate spectroscopy determination in helium and, to-
gether with the previous determination in 4He, results
in the most accurate determination of r2h � r2↵. The de-
termination of the magic wavelength in 3He provides an
overall QED benchmark. It is now possible to do a high-
precision comparison between the alpha and helion parti-
cle charge radii, based on spectroscopy of both electronic
and muonic atoms. The values for r2h � r2↵ based on He
and µHe+ spectroscopy di↵er by 3.6 �, for which there is
currently no explanation. The presented nuclear charge
radius comparison encompasses a wide range of physics,
including Bose and Fermi statistics, bound-state QED
theory of the electron and muon, and intricate QED ef-
fects like 2- and 3-photon-exchange and nuclear polariz-
ability for µHe+. Therefore it is an extensive test of our
current understanding of physics, including lepton uni-
versality, and it provides new input for developing more
accurate nuclear structure models.

VI. ACKNOWLEDGEMENTS
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FIG. 3. Determinations of the squared charge radius di↵erence r2h � r2↵ through precision spectroscopy of helium and muonic-
helium ions. The sensitivity to the nuclear sizes comes from the change in electron orbital between the two states involved
in the measured transitions. a) Our work is based on the narrow 23S ! 21S transition, measured in trapped quantum gases,
which have distinctly di↵erent quantum statistical behaviour between the two isotopes. b) In muonic helium ions, a strong
enhancement of the finite size e↵ect is used to directly extract the nuclear charge radii from the 2S ! 2P Lamb shift. c) The
determinations based on the 23S ! 23P transition are performed in an atomic beam. A major challenge for this transition is
the natural linewidth of 1.6 MHz. d) Comparison of �r2 = r2h� r2↵ from the di↵erent experiments. An earlier large discrepancy
between the value based on 23S ! 21S [25] and the 23S ! 23P [27, 29] isotope shift measurements is now resolved (see the
main text and the re-evaluated measurement point). However, our new improved result (”This work”) deviates by 3.6� from
that obtained with µHe+ [1, 18]

Our new determination of �r2 enables an accurate com-
parison with the one obtained recently from µHe+ spec-
troscopy. With µHe+, the charge radius of both the al-
pha particle [18] and helion particle [1] have been deter-
mined independently with high accuracy, and they are in
agreement with the much less accurate electron scatter-
ing data [33]. The resulting �r2 from µHe+ spectroscopy
is �r2 = 1.0636(6)(30) fm2 [1], with a combined experi-
mental and theoretical uncertainty of 0.0031 fm2. When
we compare this to our determination of 1.0757(15) fm2

from normal helium, a deviation of 3.6� is observed. It
would require an adjustment of 1.9 kHz on our measured
3He�4He isotope shift to bring both determinations into
agreement within 1 �. This is much larger than our total
uncertainty of 263 Hz for the isotope shift measurement.
It should be noted that the errorbar of the muonic re-
sult is dominated by the theory used to determine the
finite-size contribution to the measurement. The com-
parison with normal helium primarily constitutes a test
of the di↵erent QED e↵ects in both experiments and es-
pecially polarization of the nucleus that dominates the
uncertainty for µHe+. Another possibility for the dis-
agreement could be that there is a di↵erence between
muons and electrons besides their mass.

V. CONCLUSION AND OUTLOOK

Our measurement in a 3He Fermi gas presents the most
accurate spectroscopy determination in helium and, to-
gether with the previous determination in 4He, results
in the most accurate determination of r2h � r2↵. The de-
termination of the magic wavelength in 3He provides an
overall QED benchmark. It is now possible to do a high-
precision comparison between the alpha and helion parti-
cle charge radii, based on spectroscopy of both electronic
and muonic atoms. The values for r2h � r2↵ based on He
and µHe+ spectroscopy di↵er by 3.6 �, for which there is
currently no explanation. The presented nuclear charge
radius comparison encompasses a wide range of physics,
including Bose and Fermi statistics, bound-state QED
theory of the electron and muon, and intricate QED ef-
fects like 2- and 3-photon-exchange and nuclear polariz-
ability for µHe+. Therefore it is an extensive test of our
current understanding of physics, including lepton uni-
versality, and it provides new input for developing more
accurate nuclear structure models.
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FIG. 3. Determinations of the squared charge radius di↵erence r2h � r2↵ through precision spectroscopy of helium and muonic-
helium ions. The sensitivity to the nuclear sizes comes from the change in electron orbital between the two states involved
in the measured transitions. a) Our work is based on the narrow 23S ! 21S transition, measured in trapped quantum gases,
which have distinctly di↵erent quantum statistical behaviour between the two isotopes. b) In muonic helium ions, a strong
enhancement of the finite size e↵ect is used to directly extract the nuclear charge radii from the 2S ! 2P Lamb shift. c) The
determinations based on the 23S ! 23P transition are performed in an atomic beam. A major challenge for this transition is
the natural linewidth of 1.6 MHz. d) Comparison of �r2 = r2h� r2↵ from the di↵erent experiments. An earlier large discrepancy
between the value based on 23S ! 21S [25] and the 23S ! 23P [27, 29] isotope shift measurements is now resolved (see the
main text and the re-evaluated measurement point). However, our new improved result (”This work”) deviates by 3.6� from
that obtained with µHe+ [1, 18]

Our new determination of �r2 enables an accurate com-
parison with the one obtained recently from µHe+ spec-
troscopy. With µHe+, the charge radius of both the al-
pha particle [18] and helion particle [1] have been deter-
mined independently with high accuracy, and they are in
agreement with the much less accurate electron scatter-
ing data [33]. The resulting �r2 from µHe+ spectroscopy
is �r2 = 1.0636(6)(30) fm2 [1], with a combined experi-
mental and theoretical uncertainty of 0.0031 fm2. When
we compare this to our determination of 1.0757(15) fm2

from normal helium, a deviation of 3.6� is observed. It
would require an adjustment of 1.9 kHz on our measured
3He�4He isotope shift to bring both determinations into
agreement within 1 �. This is much larger than our total
uncertainty of 263 Hz for the isotope shift measurement.
It should be noted that the errorbar of the muonic re-
sult is dominated by the theory used to determine the
finite-size contribution to the measurement. The com-
parison with normal helium primarily constitutes a test
of the di↵erent QED e↵ects in both experiments and es-
pecially polarization of the nucleus that dominates the
uncertainty for µHe+. Another possibility for the dis-
agreement could be that there is a di↵erence between
muons and electrons besides their mass.

V. CONCLUSION AND OUTLOOK

Our measurement in a 3He Fermi gas presents the most
accurate spectroscopy determination in helium and, to-
gether with the previous determination in 4He, results
in the most accurate determination of r2h � r2↵. The de-
termination of the magic wavelength in 3He provides an
overall QED benchmark. It is now possible to do a high-
precision comparison between the alpha and helion parti-
cle charge radii, based on spectroscopy of both electronic
and muonic atoms. The values for r2h � r2↵ based on He
and µHe+ spectroscopy di↵er by 3.6 �, for which there is
currently no explanation. The presented nuclear charge
radius comparison encompasses a wide range of physics,
including Bose and Fermi statistics, bound-state QED
theory of the electron and muon, and intricate QED ef-
fects like 2- and 3-photon-exchange and nuclear polariz-
ability for µHe+. Therefore it is an extensive test of our
current understanding of physics, including lepton uni-
versality, and it provides new input for developing more
accurate nuclear structure models.
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where F = 0 or 1 is the total spin, N the anomalous magnetic moment of the nucleus;

GM(0) = 1+N is the value of the magnetic moment in units of Ze�2M . The corresponding

coordinate-space potential is directly proportional to the magnetization density ⇢M(r).
Details on the charge and magnetization densities, and the coordinate-space potentials are

given in Sec. 2 of the Supplement.

The 1st-order contribution, yields the following hfs interval of the nS-level:

E
�mFF�
nS-hfs

= �1 − 2Z↵mr�rM ��EF

n3
+O[(Z↵)6], 12.

where EF is the Fermi energy, and �rM � = 4⇡ ∫ ∞0 dr r3⇢M(r) is the linear magnetic radius.

At the 2nd order, the interference with the eFF potential of Eq. 1, gives:

E
�mFF��eFF�
nS-hfs

= Z↵mr��rM � − rZ�EF

n3
+O[(Z↵)6], 13.

thus cancelling the linear magnetic radius term from the 1st order, and installing instead

the Zemach radius:

rZ = − 4
⇡
� ∞

0

dQ

Q2
�GE(Q2)GM(Q2)

1 + N
− 1� . 14.

The Fermi-energy contribution is not a finite-size e↵ect, as it is already present for a pointlike

nucleus. The leading finite-size e↵ect in the hfs is therefore of order (Z↵)5,
E

f.s.
nS-hfs = −(2Z↵mr�n3)EF rZ. 15.

At this order, also the polarizability corrections begin to appear. We consider them next.

The Fermi energy:
EF =
8(Z↵)4m3

r(1+N )
3mM

2.2. Two-photon exchange and polarizability e↵ects

Figure 4

The 2� exchange (a), with the t-channel (b) and the s-channel (c) cuts. The cyan blobs represent
e↵ects from nuclear excitations.

Thus far, we considered e↵ects which stem from the one-photon exchange and its iter-

ations, such that the nucleus stays intact and in its ground state. There are also e↵ects

coming from nuclear excitations, which can only be assessed through a 2� exchange, see

Fig. 4(a). This description goes beyond the elastic form factors and involves instead the

polarizabilities and inelastic structure functions, as will be seen in what follows.

The 2� exchange in Fig. 4(a) introduces, in general, a correction V2�(p′ − p;p′, p) which
depends on the relative momenta of the initial and final state, p and p

′, as well as the

momentum transfer q = p′−p. These are four-momenta, but the energy e↵ects can safely be

neglected, since they are suppressed by (Z↵)2mr. The dependence on �p� = �p′� is suppressed
8 A. Antognini, F. Hagelstein and V. Pascalutsa

+ 3PE
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B. Proton Charge Radius

Analogously to the calculation of rd(µH & iso), we can use the isotope shift and rd(µD) to extract the proton charge
radius:

rp(µD & iso) = 0.8404(20) fm. (72)

While a previous extraction along these lines, rp(µD & iso) = 0.8356(20) fm [3], had been in tension with rp(µH), the
result presented here based on the state-of-the-art theory predictions agrees. This, again, nicely shows the consistency
between the spectroscopic analyses of ordinary and muonic hydrogen isotopes.

C. Proton-Deuteron Squared Charge Radii Di↵erence

Assuming me ⌧ Mp ⇠ Md, we can find an approximation for the nuclear-size correction to the H-D isotope shift,
Eq. (D22), which is related to the often quoted di↵erence of squared proton and deuteron charge radii. The best such
approximation turns out to be

�fiv ⇡ � 7

24⇡

↵
4
m

3
ec

4

~3(1 +me/Mp)

⇥
r
2
d � r

2
p

⇤
. (73)

We give here the charge radius di↵erence exactly, based on Eqs. (59) and (60), and use the relation in Eq. (73) only
to estimate the uncertainty, which is dominated by the theory of the isotope shift:

r
2
d � r

2
p = 3.820 61(31) fm2

. (74)

Using Eq. (73) instead, the central value would decrease by about 1.5�: 3.820 13
�
+78
�31

�
fm2. These results are in good

agreement with the di↵erence between charge radii extracted from the Lamb shift in muonic hydrogen isotopes:

r
2
d(µD)� r

2
p(µH) = 3.819 55(337) fm2

. (75)

From Eq. (74), we can see that the larger CODATA ’14 recommended value for the proton charge radius, rp =
0.8751(61) fm [10], would impose a larger value for the deuteron radius inconsistent with the µD Lamb shift.

VII. CONCLUSION AND OUTLOOK

In this work, we calculated the 2�-exchange corrections to the S-levels in ordinary and muonic deuterium in the

/⇡EFT framework. The calculation was performed at N3LO, with the only unknown LEC l
C0S
1 appearing at this

order extracted using the H-D isotope shift, where the correlation between that LEC and the 2�-exchange correction
is negligible. In addition, we evaluated the contribution of the nucleon structure, i.e., the e↵ect of the nucleon
polarisability and of the shape of the nucleon FFs, which are the most important single-nucleon e↵ects beyond N3LO.
We also included the accompanying electronic vacuum polarisation contributions.

Our predictions for the elastic contribution to the 2� exchange in µD from /⇡EFT and �ET appear to be several
standard deviations larger than the evaluations [24, 29] based on the deuteron charge FF parametrization of Ref. [28],
cf. Fig. 3 and Table II. This suggests that the latter parametrization does not adequately describe the behaviour of
the deuteron charge FF at low virtualities. The correlation between the Friar radius rFd and the deuteron charge
radius rd in /⇡EFT, cf. Fig. 2, through the LEC l

C0S
1 could serve as a diagnostic criterion for a realistic parametrisation

of the deuteron charge FF. We also point out that the /⇡EFT expression for the deuteron charge FF at N3LO [21,
Sec. IV] can be used for an analytic one-parameter fit to the electron-deuteron scattering data in the low-Q2 range
relevant to the planned DRad experiment [31].

Supplementing the µD theory [5] with a few missing electronic VP e↵ects [6] and the inelastic 3� exchange [7],

20

which is larger than the value accounted for in Ref. [5, Eq. (17)], but agrees with Ref. [6] within errors, cf. Table
VII. It is also in agreement with the empirical value, Eq. (66), but more than a factor 3 less precise. Our new theory
compilation will be used in Section VIA to extract rd(µD) from the experimental value for E2P�2S .

VI. CHARGE RADIUS EXTRACTIONS

FIG. 4. Comparison of deuteron charge radius determinations from fits to electron-deuteron scattering data, ordinary and
muonic-deuterium spectroscopy, and the 2S � 1S hydrogen-deuterium isotope shift combined with the proton radius from
muonic hydrogen.

A. Deuteron Charge Radius

This section compares three independent extractions of the deuteron charge radius: from the spectroscopy of the
µD Lamb shift, the 2S � 1S transition in D and the 2S � 1S H-D isotope shift, respectively. With the experimental
value for the µD Lamb shift in Eq. (63), the theoretical prediction in Eq. (65), and our result for the 2�-exchange
e↵ects, Eq. (68), we can extract the deuteron charge radius from µD spectroscopy:

rd(µD) = 2.12763(13)exp(77)theory = 2.12763(78) fm, (69)

where the uncertainty budget remained the same as in the original extraction from Ref. [3], see Eq. (1b). In addition,
we consider the extraction from the measured 2S � 1S transition in D [60]:

f
D
2S�1S = 2466 732 407 522.88(91) kHz, (70)

and the theory prediction in Eq. (F2), which leads to:

rd(D, 2S � 1S) = 2.12767(49) fm. (71)

Note that the entering Rydberg constant, R1 in Eq. (E4), is strongly driven by rp(µH). The third extraction from
the H-D isotope shift and rp(µH) has been presented in Section IVB:

rd(µH & iso) = 2.12788(16) fm.

All results are shown in Fig. 4, together will older extractions, results from electron-deuteron scattering and the
CODATA recommended values. We can see that the spectroscopy of ordinary and muonic hydrogen isotopes, after
the recent theory updates, cf. Ref. [6], gives consistent results for the deuteron charge radius.
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New measurements in H

Values have moved towards , 
yet, some deviations still exist. 

Deviations tends to decrease as n 
increases. 

rp(μH)

A Yukawa potential with a 

length scale of 
 

decreases the deviations

∼ 34a0

Status of the proton charge radius puzzle in 2 minutes
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Impact of precise nuclear radii?

32

A simplified story (neglecting least square adjustment ) 
Muonic-atom centric approach 
Just consider the proton
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𝛍H measurements 
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Muonic hydrogen

(δ = 1 × 10−5)
E2S−2P(μH) ≈ QED + κr2

p+NS
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Combining  𝛍H and H(1S-2S) measurements
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Muonic hydrogen

Extract 
proton radius

Input from 
proton structureE2S−2P(μH) ≈ QED + κr2

p + NS +3PE

δ = 4 × 10−4

Benchmark for hadron 
theories
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Combining  𝛍H and H(1S-2S) measurements

35

Hydrogen

Muonic hydrogen

Extract 
Rydberg constant

δ = 8 × 10−13

Input from 
proton structure

R∞ =
α2mec

2h

Fundamental constant 
needed for precision 
predictions in  atoms, 

molecules, ions.

(δ = 4 × 10−15)

+3PEE2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′ + k′ r2
p
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Adding for example the H(1S-3S)…..
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Hydrogen

Muonic hydrogen

The idea of the experiment

(δ = 2.5 × 10−13)

(δ = 4 × 10−15)

(δ = 1 × 10−5)

Grinin et al. Science 370(6520):1061–1066 (2020)  

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′ + k′ r2
p

E1S−3S(H) ≈
8
9

R∞ + QED′ ′ + k′ ′ r2
p
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Adding H(1S-3S)…..
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Hydrogen

Muonic hydrogen

δ ∼ 1 × 10−12

Test of H theory 
Test of bound-states QED 

Input from  
proton structure

p
e⁻

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′ + k′ r2
p

E1S−3S(H) ≈
8
9

R∞ + QED′ ′ + k′ ′ r2
p

BSM limits 
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Adding H(1S-3S)…..
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Hydrogen

Muonic hydrogen

Combine

Test  
proton structure

Theoretical tools 
dispersive 
sum rules 
chiral perturbation th. 
lattice QCD 
Nuclear structure 
contribution                      

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′ + k′ r2
p

E1S−3S(H) ≈
8
9

R∞ + QED′ ′ + k′ ′ r2
p

+3PE
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Adding HD+ measurements
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The radius extraction is facilitated in e-He scattering

Hydrogen

Muonic hydrogen

HD+

<latexit sha1_base64="bWN7qTNH5H8WHznxPa0jnI264RA="></latexit>

E(⌫ L ! ⌫0 L0) = R1QED3�body(↵,
me

mp
,
mp

md
, rp, rd)

δ = 𝒪(10−11 − 10−12)

(δ = 4 × 10−15)

(δ = 1 × 10−5)

p d

Karr et al., Springer Proc. Phys. 238:75–81 (2020)  
Alighanbari  et al., Nature 581(7807):152–158  (2020)  
Patra et al., Science 369(6508):1238–1241 (2020)

HD isotope 
shift

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′ + k′ r2
p
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Adding Penning traps measurements
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Hydrogen

Muonic hydrogen

HD+

<latexit sha1_base64="bWN7qTNH5H8WHznxPa0jnI264RA="></latexit>

E(⌫ L ! ⌫0 L0) = R1QED3�body(↵,
me

mp
,
mp

md
, rp, rd)

Penning traps

ωp

ω12C5+
⋯g-factors,

Electron g-2: the trap frequencies

A. Antognini, Low-energy particle physics, g-2, ETH Zurich – p. 40

δ = 𝒪(10−11 − 10−12)

(δ = 4 × 10−15)

(δ = 1 × 10−5)

δ ∼ 𝒪(10−11)

EMMI 201919.11.2019

Penning trap
Requirements: 
• Single, cold ion 

• Homogeneous magnetic field:  4 T 
• Cryogenic temperature:  ~ 4.2 K 

• Long storage times:  months 

• Extremely high vacuum: 10-17 mbar

~ 

~ 
~ 

B

UCE1

UCE1

UCE2

URE

UCE2

Heiße et al. Phys. Rev. A 100(2):022518 (2019)  
Sturm et al. Nature 506(7489):467–470 (2014) 

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′ + k′ r2
p HD isotope 

shift
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Combining  measurements in 𝛍p, H, HD+ and Penning-traps 
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The radius extraction is facilitated in e-He scattering

Hydrogen

Muonic hydrogen

δ ∼ 10−11

Test of HD+ theory
Test of 3-body QED

HD+

<latexit sha1_base64="bWN7qTNH5H8WHznxPa0jnI264RA="></latexit>

E(⌫ L ! ⌫0 L0) = R1QED3�body(↵,
me

mp
,
mp

md
, rp, rd)

Penning traps

ωp

ω12C5+
⋯g-factors,

p d

BSM limits 

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′ + k′ r2
p
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Hydrogen

Muonic hydrogen

HD+
<latexit sha1_base64="bWN7qTNH5H8WHznxPa0jnI264RA="></latexit>

E(⌫ L ! ⌫0 L0) = R1QED3�body(↵,
me

mp
,
mp

md
, rp, rd)

Extract 
me/mp ratio

δ = 2 × 10−11

Combining  measurements in 𝛍p, H, HD+ and Penning-traps 

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′ + k′ r2
p

Best determination of the 
electron mass
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Penning traps 
measurements
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Hydrogen

Muonic hydrogen

HD+
<latexit sha1_base64="bWN7qTNH5H8WHznxPa0jnI264RA="></latexit>

E(⌫ L ! ⌫0 L0) = R1QED3�body(↵,
me

mp
,
mp

md
, rp, rd)

 
me/mp 

δ = 2 × 10−11

Test of bound g-factors

Bound-electron g-factor

[W. Quint]

A. Antognini, Low-energy particle physics, g-2, ETH Zurich – p. 62

Combining  measurements in 𝛍p, H, HD+ and Penning-traps 

δ ∼ 4 × 10−11

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′ + k′ r2
p
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Muonic atom 
spectroscopy

Two-body QED 
tests in H-like 

systems

Nuclear 
structure

BSM 
searches

Fundamental 
constants 

High-precision 
laser 

spectroscopy 

Scattering 
experiments

Hadron 
structure

Radiative 
corrections

QED test in simple 
molecules

Three-body QED 
tests in He-like 

systems

Penning traps 
program



EFB25, Mainz           31.07.2023Aldo Antognini 

The CREMA collaboration

45

CREMA collaboration

A. Antognini, HyperMu ERC, Brussels 27.09.2016 11 / 11

CREMA collaboration

A. Antognini, HyperMu ERC, Brussels 27.09.2016 11 / 11

CREMA collaboration

A. Antognini, HyperMu ERC, Brussels 27.09.2016 11 / 11

CREMA collaboration

A. Antognini, HyperMu ERC, Brussels 27.09.2016 11 / 11

CREMA collaboration

A. Antognini, HyperMu ERC, Brussels 27.09.2016 11 / 11

CREMA collaboration

A. Antognini, HyperMu ERC, Brussels 27.09.2016 11 / 11

CREMA collaboration

A. Antognini, HyperMu ERC, Brussels 27.09.2016 11 / 11

CREMA collaboration

A. Antognini, HyperMu ERC, Brussels 27.09.2016 11 / 11

CREMA collaboration

A. Antognini, HyperMu ERC, Brussels 27.09.2016 11 / 11

CREMA collaboration

A. Antognini, HyperMu ERC, Brussels 27.09.2016 11 / 11
A A A

E-MAIL

PRESS

CONTACT

PL

The Henryk Niewodniczański

Institute of Nuclear Physics

Polish Academy of Sciences

Events

SEMINARS

CONFERENCES

PH.D. EXAMS

News

XXV Cracow EPIPHANY Conference on Advances in Heavy Ion Physics


