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lattice QCD: few baryons, small volumes

lattice EFT: larger volumes, many more particles

Harmonic oscillator calculations

infrared basis extrapolation

Busch formula: extraction of scattering phase shifts

 

Dedicated finite-volume few-body simulations
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Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Finite volume relations
 

physical system enclosed in finite volume (box)

typically used: periodic boundary conditions

leads to volume-dependent energies

 

 

 

 

 

 

Lüscher formalism

physical properties encoded in the volume-dependent energy levels

infinite-volume S-matrix governs discrete finite-volume spectrum

finite volume used as theoretical tool
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Leading-order outline
Two aspects of volume extrapolation...

Part I: Analytical formula

Part II: Numerical technique

            →               ≫L1 L2 L1

p. 5



Outline @ NLO
 (Introduction ✔)

Charged particles in a box

Finite-volume eigenvector continuation

(Summary and outlook)
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H. Yu, D. Lee, SK, arXiv:2212.14379 [nucl-th]

Part I

Volume dependence of charged-particle bound states
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Lüscher, Commun. Math. Phys. 104 177 (1986); ...

talk by D. Blume on Monday

SK et al., PRL 107 112001 (2011); A. Phys. 327, 1450 (2012)

SK + Lee, PLB 779 9 (2018)

u

~ Wulf et al., PRC 58 517 (1998)

deBoer et al., RMP 89 035007 (2017), ...

SK et al., JPG 40 045106 (2013)

Bound-state volume dependence
finite volume affects the binding energy of states: 

,  = ANC

 

volume dependence determined by universal wavefunction tail

general prefactor is a polynomial in 

relation has been extented to arbitrary two-cluster states

ANCs describe the bound-state wavefunction at large distances

 

Low-energy capture reactions

→ (L)EB EB

Δ (L) ∼ −| exp(− κL)/L+⋯EB A∞|
2

A∞

binding momentum , asymptotic normalization constant (ANC) ► κ A∞

1/κL

talks by Ch. Hebborn (yesterday), B. Acharya (Tuesday)

important input quantity for reaction calculations (  S-factors)► →

p+ Be → B+ γ9 10

α+ C → + γ12 16O∗

⋯
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Charged-particle systems
Most nuclear systems involve multiple charged particles!
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Charged-particle systems
Most nuclear systems involve multiple charged particles!
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Yu, Lee, SK, arXiv:2212.14379 [nucl-th]        

Charged-particle systems
Most nuclear systems involve multiple charged particles!

nonrelativistic description with short-range interaction + long-range Coulomb force

charged bound-state wavefunctions have Whittaker tails:

details worked out by graduate student Hang Yu

  

H + + V +  ,   (r) = =H0 VC VC
γ

r

2μαZ1Z2

r

(r) ∼ (2κr)/r ∼ψ∞ W− ,η̄
1

2

e−κr

(κr)η̄

these govern the asymptotic volume dependence► 

additional suppression at large distances► 

depends on Coulomb strength: ► = γ/(2κ)η̄

for  system: ► α− α γ ≈ 0.55 fm−1
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Coulomb = exp  Whittaker function?
Yes, but not quite so simple...

→
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Periodic Coulomb potential
short-range interaction easy to extend periodically: (r) = V (r+ nL)VL ∑

n

trivial for finite-range potental ► V

converging sum, negligible corrections for  falling faster than power law► V
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Periodic short-range potentials
implement periodic boundary condition via shifted potentials copies:

necessary condition for this: 

(r) = V (r+ nL)VL ∑
n∈Z3

R = range(V ) ≪ L
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Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

Exact result in one dimension
exact form in one spatial dimension can be found from boundary condition

derivative of wavefunction needs to vanish at boundary: 

for fixed  this determines the binding momentum 

 

 

 

 

 

 

 

seemingly complex phase cancels against Whittaker functions ✓

reduces to simple exponential for  (no Coulomb) ✓

(L/2) = 0ψ′
κ

L κ = κ(L)

linear combination of Jost functions► 

Fäldt+Wilkin, Phys. Scr. 56 566 (1997)

ANC from S-matrix residue► 

► ΔE(L) = 2κΔκ(L)

ΔE(L) = − +O [ ] (1D, even parity)
κ

μ
A2

∞eiπη̄

(κL)W ′
− ,η̄

1

2

(−κL)W ′
,η̄

1

2

e−2κL

γ → 0

p. 16



Charged-particle volume dependence in 3D
three-dimensional derivation is more involved due to nontrival boundary condition

can be done with two-step procedure based on formal perturbation theory
Yu, Lee, SK, arXiv:2212.14379 [nucl-th]consider periodicity first only for Coulomb potential► 

formally define eigenstates for this scenario► 

then construct ansatz based on these states to derive volume dependence► 

ΔE(L) = +Δ (L) + Δ (L) +O [ ] (3D,  )−
3A2

∞

μL
[ (κL)]W ′

− ,η̄ 1

2

2

  
≡Δ (L)E0

E
~

E
~′

e− κL2√ A+
1
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Charged-particle volume dependence in 3D
three-dimensional derivation is more involved due to nontrival boundary condition

can be done with two-step procedure based on formal perturbation theory

Correction terms

in addition to exponentially suppressed corrections, there are two other terms

these arise from the Coulomb potential and vanish for 

the perturbative approach makes it possible to bound their behavior

Yu, Lee, SK, arXiv:2212.14379 [nucl-th]consider periodicity first only for Coulomb potential► 

formally define eigenstates for this scenario► 

then construct ansatz based on these states to derive volume dependence► 
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∞

μL
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− ,η̄ 1

2

2

  
≡Δ (L)E0

E
~

E
~′

e− κL2√ A+
1

γ → 0

Δ (L),Δ (L) = O( )×Δ (L)E
~

E
~′ η̄

(κL)2
E0
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Numerical checks
the relations can be checked with explicit numerical calculations

simple lattice discretization with attrative Gaussian potentials

the Coulomb singularity at the origin is also regularized: (r) ∼VC,Gauss
1 − e− /r2 R

2
C

r
this is equivalent to a redefinition of the short-range potential► 

p. 18
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Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

Numerical checks
the relations can be checked with explicit numerical calculations

simple lattice discretization with attrative Gaussian potentials

the Coulomb singularity at the origin is also regularized: 

excellent agreement with direct continuum calculations

(r) ∼VC,Gauss
1 − e− /r2 R

2
C

r
this is equivalent to a redefinition of the short-range potential► 

obtained by solving the radial Schrödinger equation► 
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N. Yapa, SK, PRC 106 014309 (2022)

Part II

Volume extrapolation via eigenvector continuation
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Lüscher, NPB 354 531 (1991); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

talk by A. Saentz on Monday   

Motivation
Lüscher formalism and resonances

finite volume  discrete energy levels   phase shift

resonance contribution  avoided level crossing
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Lüscher, NPB 354 531 (1991); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

talk by A. Saentz on Monday   

Klos, SK et al., PRC 98 034004 (2018)

Motivation
Lüscher formalism and resonances

finite volume  discrete energy levels   phase shift

resonance contribution  avoided level crossing

 

 

 

 

 

 

 

 

direct correspondence between phase-shift jump and avoided crossing only for two-

body systems, but the spectrum signature carries over to few-body systems

→ → p cot (p) = S(E(L))δ0
1
πL

→

↔
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Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)  

D. Lee, TRIUMF Ab Initio Workshop 2018; Frame et al., PRL 121 032501 (2018)

KDE Oxygen Theme

 

Bonila et al., arXiv:2203.05282; Melendez et al., arXiv:2203.05528

novel numerical technique, broadly applicable

amazingly simple in practice

special case of "reduced basis method" (RBM)

Eigenvector continuation
Many physics problems are tremendously difficult...

huge matrices, possibly too large to store

most exact methods suffer from exponential scaling

interest only in a few (lowest) eigenvalues

 

Introducing eigenvector continuation
 

ever more so given the evolution of typical HPC clusters► 

Duguet, Ekström, Furnstahl, SK, Lee, review in preparation

emulators, perturbation theory, ...► 
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Frame et al., PRL 121 032501 (2018)

General idea
Scenario

consider physical state (eigenvector) in a large space

parametric dependence of Hamiltonian  traces only small subspace

Procedure

calculate ,  in "training" regime

solve generalized eigenvalue problem  with

Prerequisite

smooth dependence of  on 

Result

construction of highly efficient, tailored variational basis

enables analytic continuation of  from  to 

H(c)

|ψ( )⟩ci i = 1,…NEC

H|ψ⟩ = λN |ψ⟩

► = ⟨ |H( )| ⟩Hij ψi ctarget ψj

► = ⟨ | ⟩Nij ψi ψj

H(c) c

|ψ(c)⟩ { }ci ctarget

p. 22



Finite-volume eigenvector continuation
Naive setup

consider states  at volume 

want to use these to extrapolate via EC to target volume 

to that end, we'd consider Hamiltonian and norm matrices like this:

| ⟩ψLi Li

L∗

Hij

Nij

= ⟨ | | ⟩ψLi HL∗ ψLj

= ⟨ | ⟩ψLi ψLj

p. 23



Finite-volume eigenvector continuation
Naive setup

consider states  at volume 

want to use these to extrapolate via EC to target volume 

to that end, we'd consider Hamiltonian and norm matrices like this:

However...
 

All the are de�ned in di�erent Hilbert spaces!

parametric dependence now not only in the Hamiltonian...

...but inherent in the basis

need to generalize EC to deal with this scenario

work together with graduate student Nuwan Yapa

| ⟩ψLi Li

L∗

Hij

Nij

= ⟨ | | ⟩ψLi HL∗ ψLj

= ⟨ | ⟩ψLi ψLj

| ⟩ψLi
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Dilatations
consider a function  with period , 

this can be mapped onto a function with period  by means of a dilatation:

this provides a bijection between the Hilbert spaces  and 

Example: periodic bound-state wavefunction

f L f ∈ HL

L′

( f)(x) = f( x)DL,L′

L

L′

−−−
√ L

L′

HL H
′
L

p. 25



Periodic matching
consider the union of all periodic Hilbert spaces: 

define a new operation for , , :

similarly, define inner products between different periodicities:

together, these make  a vector space with inner product

H = ⋃L>0HL

not a Hilbert space with normal pointwise addition► 

f ∈ HL g ∈ HL′ > LL′

(f g)(x) = ( f)(x) + g(x)+
max

DL,L′

⟨f, g = ⟨ f, g = g(x) dx⟩max DL,L′ ⟩HL′
∫

/2L′

− /2L′
( f)(x)DL,L′

∗

H

p. 26



Periodic matching
consider the union of all periodic Hilbert spaces: 

define a new operation for , , :

similarly, define inner products between different periodicities:

together, these make  a vector space with inner product

Truncated periodic bases

let  be a truncated basis of plane-wave states

then for  and , the  inner product of coefficient vectors

is the same as 

H = ⋃L>0HL

not a Hilbert space with normal pointwise addition► 

f ∈ HL g ∈ HL′ > LL′

(f g)(x) = ( f)(x) + g(x)+
max

DL,L′

⟨f, g = ⟨ f, g = g(x) dx⟩max DL,L′ ⟩HL′
∫

/2L′

− /2L′
( f)(x)DL,L′

∗

H

SL,N

ψ ∈ SL,N ∈ψ′ S ,NL′ R
N

⟨⋅, ⋅⟩max

p. 27



well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

basis functions localized at grid points

potential energy matrix diagonal

kinetic energy matrix very sparse

Discrete variable representation
Efficient calculation of several few-body energy levels

use a Discrete Variable Representation (DVR)

related via unitary transformation to truncated plane-wave basis!

precalculate only 1D matrix elements► 
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well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

basis functions localized at grid points

potential energy matrix diagonal

kinetic energy matrix very sparse

Discrete variable representation
Efficient calculation of several few-body energy levels

use a Discrete Variable Representation (DVR)

related via unitary transformation to truncated plane-wave basis!

efficient implementation for large-scale calculations

precalculate only 1D matrix elements► 

handle arbitrary number of particles (and spatial dimensions)► 

SK et al., PRC 98 034004 (2018)numerical framework scales from laptop to HPC clusters► 

Dietz, SK et al., PRC 105 064002 (2022); SK, J. Phys. Conf. Ser. 2453 012025 (2023)

recent extensions: GPU acceleration, separable interactions► 

p. 28



Two-body proof of concept
consider a simple two-body system as first example

note: cubic finite volume breaks spherical symmetry

attractive Gaussian interaction: , , ► V (r) = exp(−( )V0
r

R
)2 R = 2 = −4V0

angular momentum no longer good quantum number► 

instead: cubic irreducible representations ► Γ ∈ , ,E, ,A1 A2 T1 T2

to good approximation, S-wave states  irrep. (positive parity)► ∼ A
+
1

p. 29



Three-boson resonance
three bosons with mass  = 939.0 MeV, potential = sum of two Gaussians

three-body resonance at

avoided crossing well reproduced by FVEC calculation

m

 MeV (Blandon et al., PRA 75 042508 (2007))► −5.31 − i0.12

 MeV (Fedorov et al., FB Syst. 33 153 (2003))   (potential S-wave projected!)► −5.96 − i0.40

p. 30



Dietz, SK et al., PRC 105 064002 (2022)

Three neutrons
now consider three neutrons with Pionless EFT leading-order interaction

separable super-Gaussian form with  and  MeV

efficiently implemented within DVR framework

total number of training data:  (partly covering cubic group multiplets)

V (q, ) = C g(q)g( )   ,    g(q) = exp(− / )q ′ q ′ q2n Λ2n

n = 2 Λ = 250

3 × 8 = 24

p. 31



Uncertainty quanti�cation
FVEC uncertainty depends on choice of training data

use this dependence to estimate uncertainty

Application to two-body system

domain to choose from (note also: extrapolation vs. interpolation)► 

number  of training space (controls dimension of FVEC subspace)► NEC

calculate initial pool of training data► 

from that pool, consider combinations with fixed ► NEC

p. 32
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Summary and outlook
Volume dependence of charged-particle bound states

wave function at large distances determines finite-volume energy shift

possible to extract asymptotic normalization coefficients

long-range Coulomb force complicates derivation

leading volume dependence derived for 1D and 3D S-wave systems

asymptotic bounds for additional correction terms

planned work: ANC calculations based on lattice EFT
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Summary and outlook
Volume dependence of charged-particle bound states

wave function at large distances determines finite-volume energy shift

possible to extract asymptotic normalization coefficients

long-range Coulomb force complicates derivation

leading volume dependence derived for 1D and 3D S-wave systems

asymptotic bounds for additional correction terms

planned work: ANC calculations based on lattice EFT

Volume extrapolation via eigenvector continuation

extension of EC to handle parametric dependence direcly in basis

justified by periodic matching construction

makes it possible to extrapolate reliably over large volume ranges

DVR method can handle few-nucleon EFT calculations in large boxes

in progress: application to four-neutron system

p. 34



Finite-volume research program
simulations of quantum systems in Finite Volume (FV) can be used to elegantly

extract physical properties

Effective Field Theory (EFT) provides a model-independent descriptions of

nuclear interactions

the combination of these two concepts can be used to study a number of questions

EFTFV

matching

nucleons → clusters

form factors

response functions

I II III

resonances

perturbation theory

p. 35
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