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Relevance of finite-volume relations

Lattice simulations

D. Lee

. talk by H. Wittig yesterday
* lattice QCD: few baryons, small volumes Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...

e lattice EFT: larger volumes, many more particles Epelbaum et al., PRL 104 142501 (2010), .
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. | | talk by H. Wittig yesterday
* lattice QCD: few baryons, small volumes Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...

e lattice EFT: larger volumes, many more particles Epelbaum et al, PRL 104 142501 (2010), ...

Harmonic oscillator calculations

® infrared basis extrapolation
® Busch formula: extraction of scattering phase shifts
Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020) talk by B. Bazak yesterday

More et al, PRC 87 044326 (2013); ...



Relevance of finite-volume relations

Lattice simulations

D. Lee

talk by H. Wittig yesterday

o Iatt'ce QCD feW baryons, Sma” volumes Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...

e lattice EFT: larger volumes, many more particles Epelbaum et al, PRL 104 142501 (2010), ...

Harmonic oscillator calculations

® infrared basis extrapolation More et al, PRC 87 044326 (2013); ...

® Busch formula: extraction of scattering phase shifts
Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020) talk by B. Bazak yesterday

Dedicated finite-volume few-body simulations
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Finite volume relations

Luscher formalism

® physical system enclosed in finite volume (box)
® typically used: periodic boundary conditions

® |eads to volume-dependent energies

® physical properties encoded in the volume-dependent energy levels

® infinite-volume S-matrix governs discrete finite-volume spectrum

e finite volume used as theoretical tool

Lischer, Commun. Math. Phys. 104 177 (1986); ...



Leading-order outline

Two aspects of volume extrapolation...

L1 — L2 > L1

Part |: Analytical formula

Part Il: Numerical technique

P.



Outline @ NLO

(Introduction v)
Charged particles in a box
Finite-volume eigenvector continuation

(Summary and outlook)
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Volume dependence of charged-particle bound states

H. Yu, D. Lee, SK, arXiv:2212.14379 [nucl-th]



Bound-state volume dependence

e finite volume affects the binding energy of states: Ep — Ep(L)

AEg(L) ~ —|A|?exp(— kL) /L + -+, A, = ANC

Lischer, Commun. Math. Phys. 104 177 (1986); ...

® volume dependence determined by universal wavefunction tail talk by D. Blume on Monday
> binding momentum k, asymptotic normalization constant (ANC) A

® general prefactor is a polynomial in 1/kL ¢, al., PRL 107 112001 (2011); A. Phys. 327, 1450 (2012)

® relation has been extented to arbitrary two-cluster states SK + Lee, PLB 779 9 (2018)

® ANCs describe the bound-state wavefunction at large distances

» important input quantity for reaction calculations (— S-factors)
talks by Ch. Hebborn (yesterday), B. Acharya (Tuesday)

u(r) -
0.6} \ Low-energy capture reactions
0.5
0.4 ~A e—/{r ° p+9Be%10B+7
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Wulf et al., PRC 58 517 (1998)
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N o a+12C = 10* ++

° ... deBoer et al., RMP 89 035007 (2017), ...
01 SK et al., JPG 40 045106 (2013)
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Charged-particle systems

Most nuclear systems involve multiple charged particles!



Bound-state volume dependence

e finite volume affects the binding energy of states: Ep — Ep(L)

AEg(L) ~ —|A|?exp(— kL) /L + -+, A, = ANC

Lischer, Commun. Math. Phys. 104 177 (1986); ...

® volume dependence determined by universal wavefunction tail talk by D. Blume on Monday
> binding momentum k, asymptotic normalization constant (ANC) A

® general prefactor is a polynomial in 1/kL o al., PRL 107 112001 (2011); A. Phys. 327, 1450 (2012)

® relation has been extented to arbitrary two-cluster states SK + Lee, PLB 779 9 (2018)

® ANCs describe the bound-state wavefunction at large distances
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Charged-particle systems

Most nuclear systems involve multiple charged particles!



Charged-particle systems

Most nuclear systems involve multiple charged particles!

® nonrelativistic description with short-range interaction + long-range Coulomb force

H+Hy+V+Ve, Ve(r)=

v 2uaZiZs
r
® charged bound-state wavefunctions have Whittaker tails:

e—l‘&’f’

Unolr) ~ W51 () e

» these govern the asymptotic volume dependence
» additional suppression at large distances

» depends on Coulomb strength: 7 = v/(2k)

> for & — o system: v &~ 0.55 fm !

® details worked out by graduate student Hang Yu
Yu, Lee, SK, arXiv:2212.14379 [nucl-th]




Coulomb = exp — Whittaker function?



Coulomb = exp — Whittaker function?

Yes, but not quite so simple...



Periodic Coulomb potential

¢ short-range interaction easy to extend periodically: Vi(r) =) V(r +nL)
» trivial for finite-range potental V'

» converging sum, negligible corrections for V falling faster than power law



Periodic short-range potentials

® implement periodic boundary condition via shifted potentials copies:

Vi(r) = Z V(r+nlL)

neZz?

® necessary condition for this: R = range(V) < L

ﬂ
3L

o |
N B ol |
(O8]

-

p. 14



Periodic short-range potentials

® implement periodic boundary condition via shifted potentials copies:

Vi(r) = Z V(r+nlL)

neZz?

® necessary condition for this: R = range(V) < L
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Periodic short-range potentials

® implement periodic boundary condition via shifted potentials copies:

Vi(r) = Z V(r+nlL)

neZz?

® necessary condition for this: R = range(V) < L

2
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Periodic Coulomb potential

short-range interaction easy to extend periodically: Vi(r) =) V(r +nL)
» trivial for finite-range potental V'

» converging sum, negligible corrections for V falling faster than power law
not possible for Coulomb potential with infinite range!

.15
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short-range interaction easy to extend periodically: Vi(r) =) V(r +nL)
» trivial for finite-range potental V'

» converging sum, negligible corrections for V falling faster than power law

® not possible for Coulomb potential with infinite range!

Solution

e cut off at box boundary, grow Coulomb tail with L

® nicely matches practical implementation (e.g. in Lattice EFT)

V(z)
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Periodic Coulomb potential

short-range interaction easy to extend periodically: Vi(r) =) V(r +nL)
» trivial for finite-range potental V'

» converging sum, negligible corrections for V falling faster than power law

® not possible for Coulomb potential with infinite range!

Solution

e cut off at box boundary, grow Coulomb tail with L

® nicely matches practical implementation (e.g. in Lattice EFT)

V()

.15



Exact result in one dimension

® exact form in one spatial dimension can be found from boundary condition

® derivative of wavefunction needs to vanish at boundary: ¥},(L/2) = 0
e for fixed L this determines the binding momentum x = (L)
> linear combination of Jost functions

» ANC from S-matrix residue
Faldt+Wilkin, Phys. Scr. 56 566 (1997)

» AE(L) = 26Ak(L)

_L/2 L/2
W' _ (kL)
Kk imn iy —2K :
AE(L) = —ﬁAgoe K T L +0 [e 2 L] (1D, even parity)
Ty

® seemingly complex phase cancels against Whittaker functions v
® reduces to simple exponential for ¥ — 0 (no Coulomb) v

Yu, Lee, SK, arXiv:2212.14379 [nucl-th]




Charged-particle volume dependence in 3D

® three-dimensional derivation is more involved due to nontrival boundary condition

® can be done with two-step procedure based on formal perturbation theory
» consider periodicity first only for Coulomb potential Yu, Lee, SK, arXiv:2212.14379 [nuck-th]

» formally define eigenstates for this scenario
» then construct ansatz based on these states to derive volume dependence

AE(L) = — 345 [W’ .y (RL)] 2 +AE(L)+AE (L) + 0 [e_ﬁ”L} (3D, A])

.17



Charged-particle volume dependence in 3D

® three-dimensional derivation is more involved due to nontrival boundary condition

® can be done with two-step procedure based on formal perturbation theory
» consider periodicity first only for Coulomb potential Yu, Lee, SK, arXiv:2212.14379 [nuck-th]

» formally define eigenstates for this scenario

» then construct ansatz based on these states to derive volume dependence

3A2, 2 - -
AB(L) =~ [Wiﬁ’i (mL)} +AE(L)+ AE (L) + 0O [e—\/M} (3D, A})
) —AFy(L) ’

Correction terms

® in addition to exponentially suppressed corrections, there are two other terms
® these arise from the Coulomb potential and vanish for v — 0

e the perturbative approach makes it possible to bound their behavior

AE(L), AE (L) = 0(#) « AEy(L)

p. 17



Numerical checks

® the relations can be checked with explicit numerical calculations

® simple lattice discretization with attrative Gaussian potentials

2
1—e"/Re
® the Coulomb singularity at the origin is also regularized: Vi gauss (1) ~

. . - 0 r
» this is equivalent to a redefinition of the short-range potential

d=1
_25‘ X N ,y —_ 10
—5.01 > o =20
A v
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Numerical checks

® the relations can be checked with explicit numerical calculations

® simple lattice discretization with attrative Gaussian potentials

2
1—e /R
® the Coulomb singularity at the origin is also regularized: Vi gauss (1) ~

. . - 0 r
» this is equivalent to a redefinition of the short-range potential
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Numerical checks

® the relations can be checked with explicit numerical calculations

® simple lattice discretization with attrative Gaussian potentials 2P
1—e /B

® the Coulomb singularity at the origin is also regularized: Vi gauss (1) ~
- - - - T
» this is equivalent to a redefinition of the short-range potential

Finite-volume fit Continuum result

v Koo Aso L range Koo Aso
d=1
1.0] 0.861110(3) 2.1286(1) 12~24 0.860 2.1284
2.0] 0.861125(9) 4.4740(9) 12 ~ 23 0.860  4.4782
3.0] 0.86108(6) 10.386(2) 12~ 20 0.858 10.435
d=3

1.0] 0.8610(3) 5.039(2) 17~28 | 0.861  5.049
2.0| 0.8607(3) 11.71(4) 15~26 | 0.860  11.79
3.0| 0.8605(7) 29.95(20) 14 ~24 | 0.859  30.31
4.0| 0.8604(1) 83.14(10) 14~22 | 0.858  84.76
50| 0.8604(2) 247.9(5) 14~18 | 0.857 255.4




Numerical checks

® the relations can be checked with explicit numerical calculations

® simple lattice discretization with attrative Gaussian potentials
® the Coulomb singularity at the origin is also regularized: Vi gauss (1) ~

1—e"/Re

T

» this is equivalent to a redefinition of the short-range potential

Finite-volume fit

Continuum result

v Koo Aso L range Koo Ao
dEe1

1.0] 0.861110(3)| 2.1286(1) | 12 ~ 24 0.860 2.1284

2.0| 0.861125(9)| 4.4740(9) | 12 ~ 23 | 0.860| 4.4782

3.0] 0.86108(6)| 10.386(2) | 12 ~ 20 0.858 10.435
dE 3

1.0/ 0.8610(3) | 5.039(2) | 17 ~ 28 0.861 5.049

2.0/ 0.8607(3) | 11.71(4) | 15~26 | 0.860| 11.79

3.0/ 0.8605(7) | 29.95(20) | 14 ~ 24 | 0.859| 30.31

40| 0.8604(1) | 83.14(10)| 14 ~22 | 0.858| 84.76

50| 0.8604(2) | 247.9(5) | 14~ 18 | 0.857| 255.4

e excellent agreement with direct continuum calculations

> obtained by solving the radial Schrodinger equation

Yu, Lee, SK, arXiv:2212.14379 [nucl-th]
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Volume extrapolation via eigenvector continuation

N. Yapa, SK, PRC 106 014309 (2022)



Motivation

Luischer formalism and resonances

e finite volume — discrete energy levels — pcot dy(p) = %S(E(L)) — phase shift

® resonance contribution <> avoided level crossing

talk by A. Saentz on Monday

VE
12 \
ol no interaction, j(p) =0
8t 27\?
E = <n X —)
6k \\\ L
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Lischer, NPB 354 531 (1991); ..
Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...
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Motivation

Luischer formalism and resonances

e finite volume — discrete energy levels — pcot dy(p) = %

® resonance contribution <> avoided level crossing

VE
12

10

o(p}

S(E(L)) — phase shift

Lischer, NPB 354 531 (1991); ..
Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

talk by A. Saentz on Monday




Motivation

Luischer formalism and resonances

e finite volume — discrete energy levels — pcot dy(p) = %S(E(L)) — phase shift
Lisscher, NPB 354 531 (1991); ..

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...
talk by A. Saentz on Monday

® resonance contribution <> avoided level crossing
VE 5(p)
12 i

10

® direct correspondence between phase-shift jump and avoided crossing only for two-

body systems, but the spectrum signature carries over to few-body systems
Klos, SK et al., PRC 98 034004 (2018)



Eigenvector continuation

Many physics problems are tremendously difficult...

® huge matrices, possibly too large to store N

» ever more so given the evolution of typical HPC clusters -
® most exact methods suffer from exponential scaling <
® interest only in a few (lowest) eigenvalues

Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)

Introducing eigenvector continuation

D. Lee, TRIUMF Ab Initio Workshop 2018; Frame et al., PRL 121 032501 (2018)

¢ novel numerical technique, broadly applicable
» emulators, perturbation theory, ...
Duguet, Ekstrém, Furnstahl, SK, Lee, review in preparation
¢ amazingly simple in practice

® special case of "reduced basis method" (RBM)
Bonila et al., arXiv:2203.05282; Melendez et al., arXiv:2203.05528
KDE Oxygen Theme

.21



General idea

Scenario Frame et al., PRL 121 032501 (2018)

® consider physical state (eigenvector) in a large space

e parametric dependence of Hamiltonian H(c) traces only small subspace

Procedure

e calculate |9(c;)), i = 1,... Ngc in "training" regime

® solve generalized eigenvalue problem H|y) = AN|¢) with
> Hij = (i H(ctarget ) [5)
> Nij = ($i[4))

Prerequisite

® smooth dependence of H(c) on ¢

Result

® construction of highly efficient, tailored variational basis

® enables analytic continuation of |¢(c)) from {c;} to Ciarget

.22



Finite-volume eigenvector continuation

Naive setup

® consider states |tr,) at volume L;
® want to use these to extrapolate via EC to target volume L,

® to that end, we'd consider Hamiltonian and norm matrices like this:

H;; = (yr,|Hr, [Yr,;)
N;; = (YL, [¥r;)



Finite-volume eigenvector continuation

Naive setup

® consider states |tr,) at volume L;
® want to use these to extrapolate via EC to target volume L,

® to that end, we'd consider Hamiltonian and norm matrices like this:

H;; = (yr,|Hr, [Yr,;)

However... ! B

All the |4y, ) are defined in different Hilbert spaces!

parametric dependence now not only in the Hamiltonian...

[ ]

® __but inherent in the basis

¢ need to generalize EC to deal with this scenario
[ J

work together with graduate student Nuwan Yapa




Dilatations

® consider a function f with period L, f € Hy,
® this can be mapped onto a function with period L' by means of a dilatation:

L L
(Do) =/ 7 1 7o)
® this provides a bijection between the Hilbert spaces # and H}

Example: periodic bound-state wavefunction

()

.25



Periodic matching

consider the union of all periodic Hilbert spaces: H = UL>O Hr
» not a Hilbert space with normal pointwise addition
define a new operation for f € Hr, g€ Hy, L' > L:

(f F 9)(@) = (Dp.pH)(z) + ()

similarly, define inner products between different periodicities:

r'/2
<f7 g>max - <DL,L'f7 g>'HL/ — /_ (DL,L' f) (w)*g(m) dz

L'/2

together, these make H a vector space with inner product



Periodic matching

® consider the union of all periodic Hilbert spaces: H = UL>O Hr
» not a Hilbert space with normal pointwise addition
e define a new operation for f € Hyp, g€ Hy, L' > L:

(f F 9)(@) = (Dp.pH)(z) + ()

® similarly, define inner products between different periodicities:

r'/2
<f7 g>max - <DL,L'f7 g>'HL/ — /_ (DL,L' f) (m)*g(m) dz

L'/2
® together, these make H a vector space with inner product

Truncated periodic bases

® let Sy v be a truncated basis of plane-wave states

® then for ¢y € Sy and ¢/ € SL/,N, the RY inner product of coefficient vectors

is the same as (-, *)max

.27



Discrete variable representation

Efficient calculation of several few-body energy levels

use a Discrete Variable Representation (DVR)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

basis functions localized at grid points ;Z

potential energy matrix diagonal o

kinetic energy matrix very sparse o

» precalculate only 1D matrix elements 0
o o o

-0.2

2 \/1/\\/6

related via unitary transformation to truncated plane-wave basis!



Discrete variable representation

Efficient calculation of several few-body energy levels

e use a Discrete Variable Representation (DVR)
well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

1.0
® basis functions localized at grid points 0
® potential energy matrix diagonal o
® kinetic energy matrix very sparse o
» precalculate only 1D matrix elements 0
L TN /\

-6 -4 ) 2 \/1 6

-0.2

® related via unitary transformation to truncated plane-wave basis!

e efficient implementation for large-scale calculations
» handle arbitrary number of particles (and spatial dimensions)
» numerical framework scales from laptop to HPC clusters SK et al., PRC 98 034004 (2018)

» recent extensions: GPU acceleration, separable interactions
Dietz, SK et al., PRC 105 064002 (2022); SK, J. Phys. Conf. Ser. 2453 012025 (2023)



Two-body proof of concept

® consider a simple two-body system as first example

2
> attractive Gaussian interaction: V(r) = V} exp(—(E) ) R=2V,=-4

® note: cubic finite volume breaks spherical symmetry
» angular momentum no longer good quantum number
> instead: cubic irreducible representations I' € Ay, Ao, E, T1,Th
> to good approximation, S-wave states ~ AIF irrep. (positive parity)

T T : | | | |
0.5 f_ . e e :
0.0 .

| exact
Lﬂ _05 :_ N AT E+ ......... FVEC
o ; e  training _f
_1.5 _;' ....................................
» [ I N B R | | e | |
6 8 10 12 14 T T ”



Three-boson resonance

three bosons with mass m = 939.0 MeV, potential = sum of two Gaussians
¢ three-body resonance at

» —5.31 — 30.12 MeV (Blandon et al.,, PRA 75 042508 (2007))
> —5.96 — 10.40 MeV (Fedorov et al., FB Syst. 33 153 (2003))  (potential S-wave projected!)

<3 S A B B

exact
FVEC

training

- | ground state at —37.3 MeV
L | | | | I | | | | I | | | | I | | | | I | | | | I | | | | I | | | | I | | | | 1
200 225 250 275 30.0 325 350 375 40.0
L (fm)

¢ avoided crossing well reproduced by FVEC calculation

p. 30



Three neutrons

® now consider three neutrons with Pionless EFT leading-order interaction

V(g,d') =Cg(q)g(d) , g(q) =exp(—¢""/A*")

® separable super-Gaussian form with n = 2 and A = 250 MeV

o efficiently implemented within DVR framework Dietz, SK et al., PRC 105 064002 (2022)

9¢ L I L B B L BRI
? — 17 — T exact :

§6 o NG e e FVEC

o VE .

= 5E training

K
31
2
1 C I I
18 20 22 24 20 28 30 32

L (fm)

® total number of training data: 3 x 8 = 24 (partly covering cubic group multiplets)

p. 31



Uncertainty quantification

¢ FVEC uncertainty depends on choice of training data

» domain to choose from (note also: extrapolation vs. interpolation)

» number Ngc of training space (controls dimension of FVEC subspace)

® use this dependence to estimate uncertainty

» calculate initial pool of training data

» from that pool, consider combinations with fixed Ngc

Application to two-body system

0.5F
0.0

o —05F
~1.0F
~1.5}

:_/lr‘—"|‘H|H‘|H‘|H‘|H‘|H‘
6

exact
FVEC (NEC = 4)

e training region

20

p. 32



Uncertainty quantification

¢ FVEC uncertainty depends on choice of training data

» domain to choose from (note also: extrapolation vs. interpolation)

» number Ngc of training space (controls dimension of FVEC subspace)

® use this dependence to estimate uncertainty

» calculate initial pool of training data

» from that pool, consider combinations with fixed Ngc

Application to two-body system

0.5F
0.0

o —05F
~1.0F
~1.5}

:_/lr‘—"|‘H|H‘|H‘|H‘|H‘|H‘
6

exact
FVEC (NEC = 5)

e training region

20

p.- 33



Summary and outlook

Volume dependence of charged-particle bound states

® wave function at large distances determines finite-volume energy shift
® possible to extract asymptotic normalization coefficients

® |ong-range Coulomb force complicates derivation

® |eading volume dependence derived for 1D and 3D S-wave systems

® asymptotic bounds for additional correction terms

® planned work: ANC calculations based on lattice EFT

p. 34



Summary and outlook

Volume dependence of charged-particle bound states

® wave function at large distances determines finite-volume energy shift
® possible to extract asymptotic normalization coefficients

® |ong-range Coulomb force complicates derivation

® |eading volume dependence derived for 1D and 3D S-wave systems

® asymptotic bounds for additional correction terms

® planned work: ANC calculations based on lattice EFT

Volume extrapolation via eigenvector continuation

® extension of EC to handle parametric dependence direcly in basis

justified by periodic matching construction

makes it possible to extrapolate reliably over large volume ranges

DVR method can handle few-nucleon EFT calculations in large boxes

® in progress: application to four-neutron system

p. 34



Finite-volume research program

simulations of quantum systems in Finite Volume (FV) can be used to elegantly
extract physical properties

Effective Field Theory (EFT) provides a model-independent descriptions of
nuclear interactions

the combination of these two concepts can be used to study a number of questions

p. 35



Thanks...

...to my students and collaborators...

e H. Yu, N. Yapa (NCSU)
D. Lee (FRIB/MSU)
S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)

...for support, funding, and computing time...
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® Jilich Supercomputing Center

p. 36
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...and to you, for your attention!
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