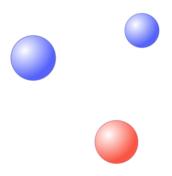
Few-Body Physics in Finite Volume

Sebastian König

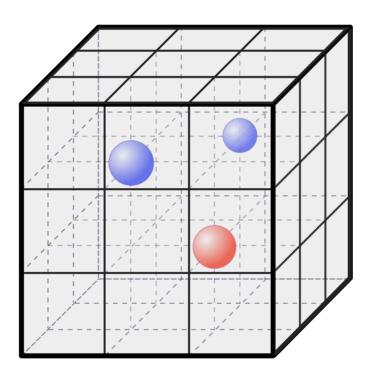
25th European Few-Body Conference

Mainz, August 3, 2023

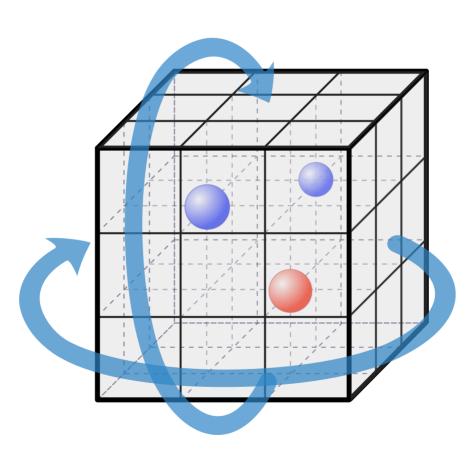
Few-body physics in finite volume



Few-body physics in finite volume

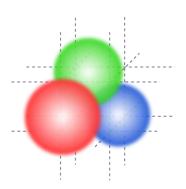


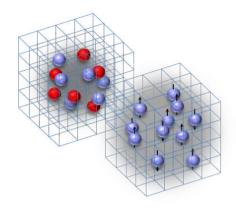
Few-body physics in finite volume



Relevance of finite-volume relations

Lattice simulations





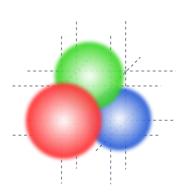
D. Lee

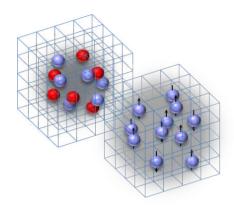
- lattice QCD: few baryons, small volumes
- talk by H. Wittig yesterday
 Beane et al., Prog. Part. Nucl. Phys. **66** 1 (2011); ...
- lattice EFT: larger volumes, many more particles

Epelbaum et al., PRL 104 142501 (2010), ...

Relevance of finite-volume relations

Lattice simulations





D. Lee

- lattice QCD: few baryons, small volumes
- talk by H. Wittig yesterday
 Beane et al., Prog. Part. Nucl. Phys. **66** 1 (2011); ...
- **lattice EFT:** larger volumes, many more particles

Epelbaum et al., PRL 104 142501 (2010), ...

Harmonic oscillator calculations

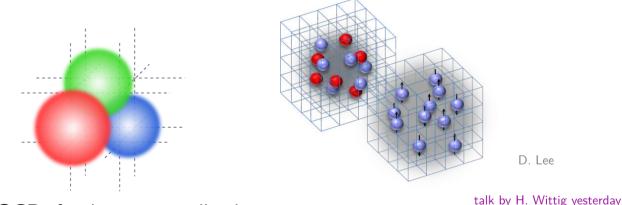
infrared basis extrapolation

- More et al, PRC **87** 044326 (2013); ...
- Busch formula: extraction of scattering phase shifts

Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020) talk by B. Bazak yesterday

Relevance of finite-volume relations

Lattice simulations



- lattice QCD: few baryons, small volumes
- Beane et al., Prog. Part. Nucl. Phys. **66** 1 (2011); ...
- lattice EFT: larger volumes, many more particles

Epelbaum et al., PRL 104 142501 (2010), ...

Harmonic oscillator calculations

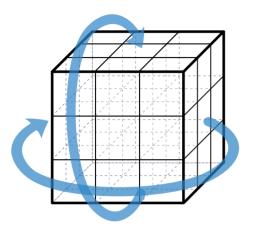
infrared basis extrapolation

- More et al, PRC 87 044326 (2013); ...
- Busch formula: extraction of scattering phase shifts

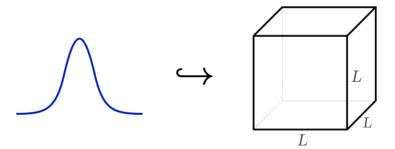
Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020) talk by B. Bazak yesterday

Dedicated finite-volume few-body simulations

Finite volume relations



- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- leads to volume-dependent energies



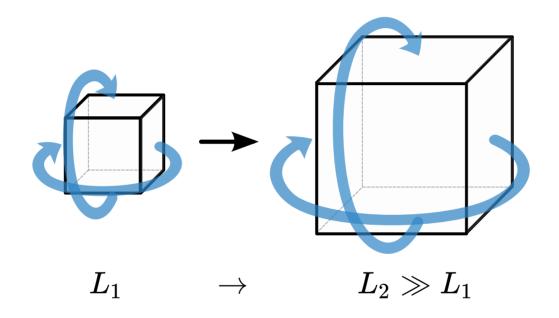
Lüscher formalism

- physical properties encoded in the volume-dependent energy levels
- infinite-volume S-matrix governs discrete finite-volume spectrum
- finite volume used as theoretical tool

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Leading-order outline

Two aspects of volume extrapolation...



Part I: Analytical formula

Part II: Numerical technique

Outline @ NLO

(Introduction ✓)

Charged particles in a box

Finite-volume eigenvector continuation

(Summary and outlook)

Part I

Volume dependence of charged-particle bound states

H. Yu, D. Lee, SK, arXiv:2212.14379 [nucl-th]

Bound-state volume dependence

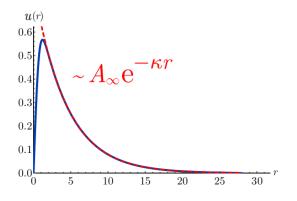
ullet finite volume affects the binding energy of states: $E_B o E_B(L)$

$$\Delta E_B(L) \sim -|A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
 , $oldsymbol{A}_\infty = ext{ANC}$

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- volume dependence determined by universal wavefunction tail talk by D. Blume on Monday
 - **b** binding momentum κ , asymptotic normalization constant (ANC) A_{∞}
- ullet general prefactor is a polynomial in $1/\kappa L$ SK et al., PRL 107 112001 (2011); A. Phys. 327, 1450 (2012)
- relation has been extented to arbitrary two-cluster states SK + Lee, PLB 779 9 (2018)
- ANCs describe the bound-state wavefunction at large distances
 - important input quantity for reaction calculations (\rightarrow S-factors)

talks by Ch. Hebborn (yesterday), B. Acharya (Tuesday)



Low-energy capture reactions

$$ullet \ p+{}^9{
m Be}
ightarrow{}^{10}{
m B}+\gamma$$

Wulf et al., PRC 58 517 (1998)

•
$$\alpha + {}^{12}\text{C} \rightarrow {}^{16}\text{O}^* + \gamma$$

deBoer et al., RMP 89 035007 (2017), ...
 SK et al., JPG 40 045106 (2013)

Charged-particle systems

Most nuclear systems involve multiple charged particles!

Bound-state volume dependence

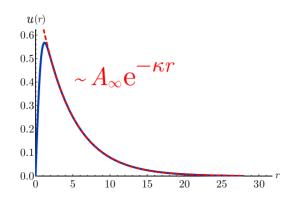
finite volume affects the binding energy of states: $E_B o E_B(L)$

$$\Delta E_B(L) \sim -|A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
 , $oldsymbol{A}_\infty = ext{ANC}$

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- volume dependence determined by universal wavefunction tail talk by D. Blume on Monday
 - ightharpoonup binding momentum κ , asymptotic normalization constant (ANC) A_{∞}
- ullet general prefactor is a polynomial in $1/\kappa L$ SK et al., PRL 107 112001 (2011); A. Phys. 327, 1450 (2012)
- relation has been extented to arbitrary two-cluster states SK + Lee, PLB **779** 9 (2018)
- ANCs describe the bound-state wavefunction at large distances
 - important input quantity for reaction calculations (\rightarrow S-factors)

talks by Ch. Hebborn (yesterday), B. Acharya (Tuesday)



Low-energy capture reactions

 $\begin{array}{ll} \bullet & p+{}^9{\rm Be} \to {}^{10}{\rm B}+\gamma \\ & \qquad \qquad {}^{\rm Wulf\ et\ al.,\ PRC\ \bf 58\ 517\ (1998)} \\ \bullet & \alpha+{}^{12}{\rm C} \to {}^{16}{\rm O}^*+\gamma \end{array}$

deBoer et al., RMP **89** 035007 (2017), ... SK et al., JPG 40 045106 (2013)

Charged-particle systems

Most nuclear systems involve multiple charged particles!

Charged-particle systems

Most nuclear systems involve multiple charged particles!

nonrelativistic description with short-range interaction + long-range Coulomb force

$$H+H_0+V+rac{V_C}{r}\ ,\ V_C(r)=rac{\gamma}{r}=rac{2\mulpha Z_1Z_2}{r}$$

charged bound-state wavefunctions have Whittaker tails:

$$\psi_{\infty}(r) \sim W_{-ar{\eta},rac{1}{2}}(2\kappa r)/r \sim rac{\mathrm{e}^{-\kappa r}}{(\kappa r)^{ar{\eta}}}$$

- ▶ these govern the asymptotic volume dependence
- additional suppression at large distances
- ullet depends on Coulomb strength: $ar{\eta}=\gamma/(2\kappa)$
- for lpha-lpha system: $\gammapprox 0.55~{
 m fm}^{-1}$
- details worked out by graduate student Hang Yu

Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

Coulomb = $exp \rightarrow Whittaker function$?

Coulomb = exp → Whittaker function?

Yes, but not quite so simple...

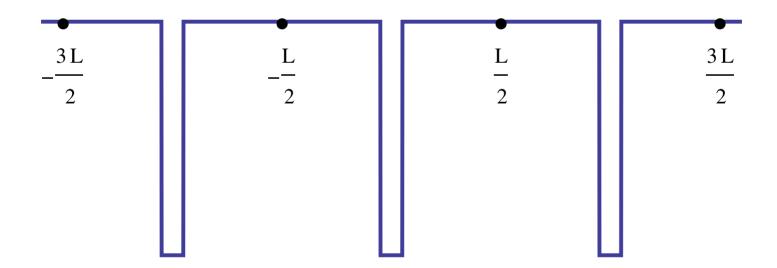
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r} + {f n} L)$
 - ullet trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law

Periodic short-range potentials

• implement periodic boundary condition via shifted potentials copies:

$$V_L(\mathbf{r}) = \sum_{\mathbf{n} \in \mathbb{Z}^3} V(\mathbf{r} + \mathbf{n}L)$$

ullet necessary condition for this: $R=\mathrm{range}(V)\ll L$

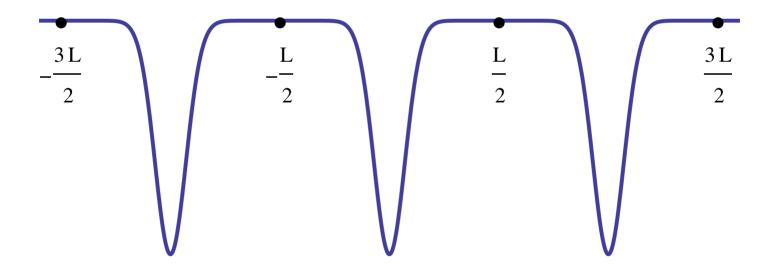


Periodic short-range potentials

• implement periodic boundary condition via shifted potentials copies:

$$V_L(\mathbf{r}) = \sum_{\mathbf{n} \in \mathbb{Z}^3} V(\mathbf{r} + \mathbf{n}L)$$

ullet necessary condition for this: $R=\mathrm{range}(V)\ll L$

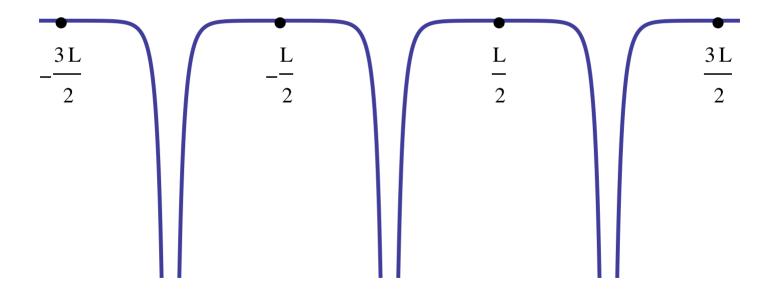


Periodic short-range potentials

• implement periodic boundary condition via shifted potentials copies:

$$V_L(\mathbf{r}) = \sum_{\mathbf{n} \in \mathbb{Z}^3} V(\mathbf{r} + \mathbf{n}L)$$

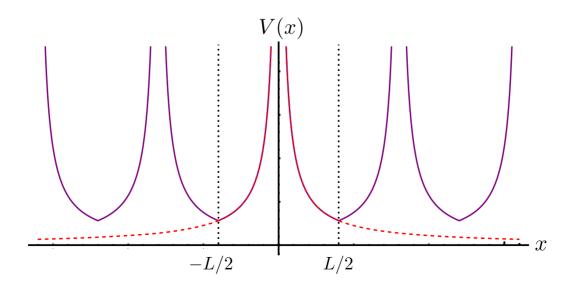
ullet necessary condition for this: $R=\mathrm{range}(V)\ll L$



- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r} + {f n} L)$
 - ullet trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

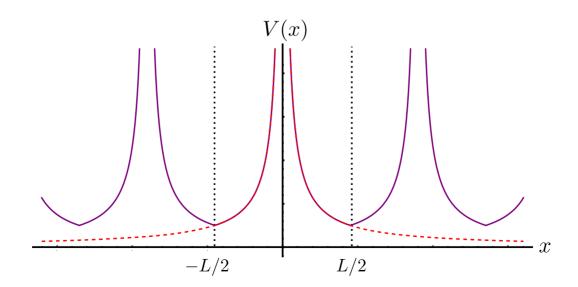
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r} + {f n} L)$
 - ullet trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)



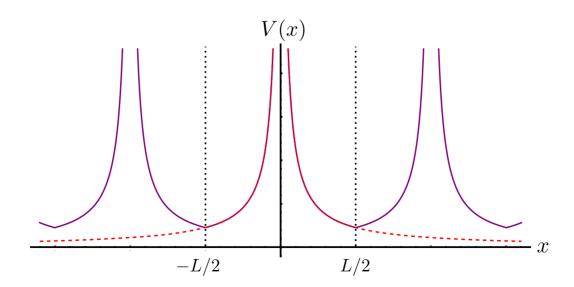
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - ullet trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)



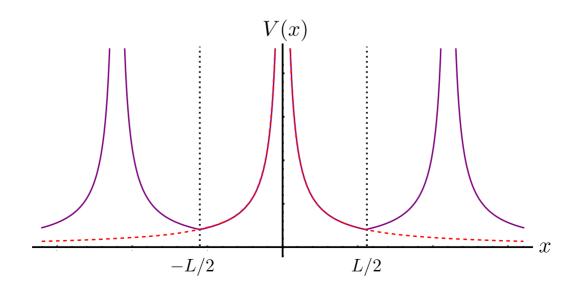
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - ullet trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)



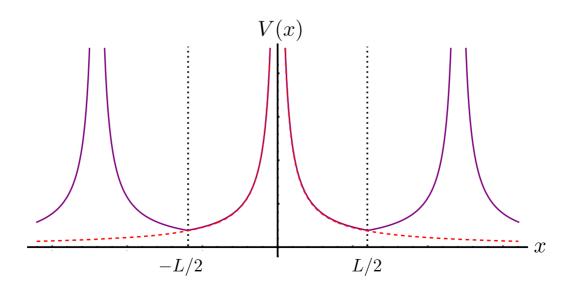
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - ightharpoonup trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)



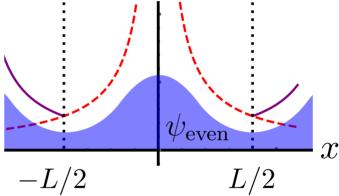
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - ullet trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)



Exact result in one dimension

- exact form in one spatial dimension can be found from boundary condition
- ullet derivative of wavefunction needs to vanish at boundary: $\psi_\kappa'(L/2)=0$
- ullet for fixed L this determines the binding momentum $\kappa=\kappa(L)$
 - ▶ linear combination of Jost functions
 - ► ANC from S-matrix residue
 Fäldt+Wilkin, Phys. Scr. **56** 566 (1997)
 - $\Delta E(L) = 2\kappa \Delta \kappa(L)$



$$\Delta E(L) = -rac{\kappa}{\mu}A_{\infty}^2\mathrm{e}^{\mathrm{i}\piar{\eta}}rac{W'_{-ar{\eta},rac{1}{2}}(\kappa L)}{W'_{ar{\eta},rac{1}{\kappa}}(-\kappa L)} + \mathcal{O}\left[\mathrm{e}^{-2\kappa L}
ight] \qquad \qquad (\mathrm{1D,\,even\,\,parity})$$

- seemingly complex phase cancels against Whittaker functions ✓
- ullet reduces to simple exponential for $\gamma o 0$ (no Coulomb) \checkmark

Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

Charged-particle volume dependence in 3D

- three-dimensional derivation is more involved due to nontrival boundary condition
- can be done with two-step procedure based on formal perturbation theory
 - consider periodicity first only for Coulomb potential

Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

- ► formally define eigenstates for this scenario
- ▶ then construct ansatz based on these states to derive volume dependence

$$\Delta E(L) = \underbrace{-rac{3A_{\infty}^2}{\mu L}igg[W_{-ar{\eta},rac{1}{2}}'(\kappa L)igg]^2}_{\equiv \Delta E_0(L)} + \Delta ilde{E}(L) + \Delta ilde{E}'(L) + \mathcal{O}\left[\mathrm{e}^{-\sqrt{2}\kappa L}
ight] \qquad \qquad (3\mathrm{D},A_1^+)$$

Charged-particle volume dependence in 3D

- three-dimensional derivation is more involved due to nontrival boundary condition
- can be done with two-step procedure based on formal perturbation theory
 - consider periodicity first only for Coulomb potential

Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

- ► formally define eigenstates for this scenario
- ▶ then construct ansatz based on these states to derive volume dependence

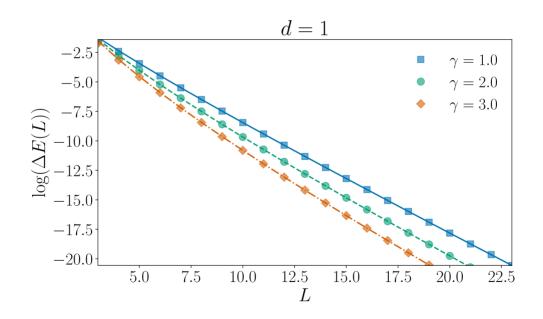
$$\Delta E(L) = \underbrace{-rac{3A_{\infty}^2}{\mu L}igg[W_{-ar{\eta},rac{1}{2}}'(\kappa L)igg]^2}_{\equiv \Delta E_0(L)} + \Delta ilde{E}(L) + \Delta ilde{E}'(L) + \mathcal{O}\left[\mathrm{e}^{-\sqrt{2}\kappa L}
ight] \qquad \qquad (3\mathrm{D},A_1^+)$$

Correction terms

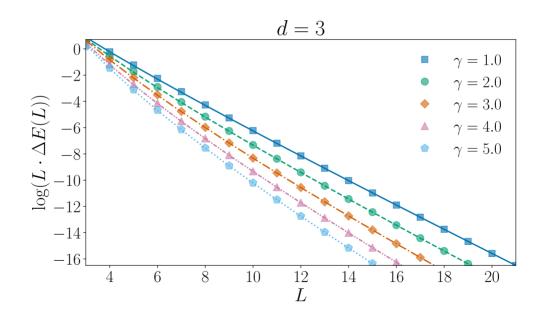
- in addition to exponentially suppressed corrections, there are two other terms
- ullet these arise from the Coulomb potential and vanish for $\gamma o 0$
- the perturbative approach makes it possible to bound their behavior

$$\Delta ilde{E}(L), \Delta ilde{E}'(L) = \mathcal{O}igg(rac{ar{\eta}}{(\kappa L)^2}igg) imes \Delta E_0(L)$$

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- the Coulomb singularity at the origin is also regularized: $V_{C,
 m Gauss}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{r^2}$
 - ▶ this is equivalent to a redefinition of the short-range potential



- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- the Coulomb singularity at the origin is also regularized: $V_{C,
 m Gauss}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{r^2}$
 - ▶ this is equivalent to a redefinition of the short-range potential



- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- ullet the Coulomb singularity at the origin is also regularized: $V_{C,
 m Gauss}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{r}$
 - ▶ this is equivalent to a redefinition of the short-range potential

	Finite-volume fit			Continuum result					
γ	κ_{∞}	A_{∞}	L range	κ_{∞}	A_{∞}				
d = 1									
1.0	0.861110(3)	2.1286(1)	$12 \sim 24$	0.860	2.1284				
2.0	0.861125(9)	4.4740(9)	$12 \sim 23$	0.860	4.4782				
3.0	0.86108(6)	10.386(2)	$12 \sim 20$	0.858	10.435				
d=3									
1.0	0.8610(3)	5.039(2)	$17 \sim 28$	0.861	5.049				
2.0	0.8607(3)	11.71(4)	$15 \sim 26$	0.860	11.79				
3.0	0.8605(7)	29.95(20)	$14 \sim 24$	0.859	30.31				
4.0	0.8604(1)	83.14(10)	$14 \sim 22$	0.858	84.76				
5.0	0.8604(2)	247.9(5)	$14 \sim 18$	0.857	255.4				

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- ullet the Coulomb singularity at the origin is also regularized: $V_{C,
 m Gauss}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{2}$
 - ▶ this is equivalent to a redefinition of the short-range potential

	Finite-volume fit			Continuum result	
γ	κ_{∞}	A_{∞}	L range	κ_{∞}	A_{∞}
d=1					
1.0	0.861110(3)	2.1286(1)	$12 \sim 24$	0.860	2.1284
2.0	0.861125(9)	4.4740(9)	$12 \sim 23$	0.860	4.4782
3.0	0.86108(6)	10.386(2)	$12 \sim 20$	0.858	10.435
1.0	0.8610(3)	5.039(2)	$17 \sim 28$	0.861	5.049
2.0	0.8607(3)	11.71(4)	$15 \sim 26$	0.860	11.79
3.0	0.8605(7)	29.95(20)	$14 \sim 24$	0.859	30.31
4.0	0.8604(1)	83.14(10)	$14 \sim 22$	0.858	84.76
5.0	0.8604(2)	247.9(5)	$14 \sim 18$	0.857	255.4

- excellent agreement with direct continuum calculations
 - ▶ obtained by solving the radial Schrödinger equation

Yu, Lee, SK, arXiv:2212.14379 [nucl-th]

Part II

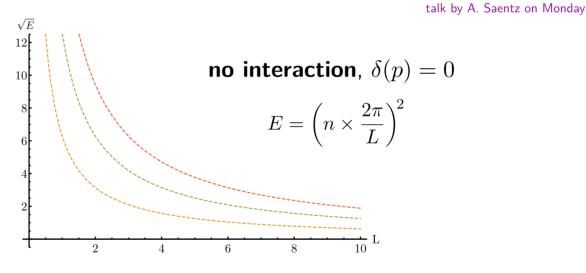
Volume extrapolation via eigenvector continuation

N. Yapa, SK, PRC 106 014309 (2022)

Lüscher formalism and resonances

- ullet finite volume o discrete energy levels o $p\cot\delta_0(p)=rac{1}{\pi L}S(E(L))$ o phase shift
- resonance contribution ↔ avoided level crossing

Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...



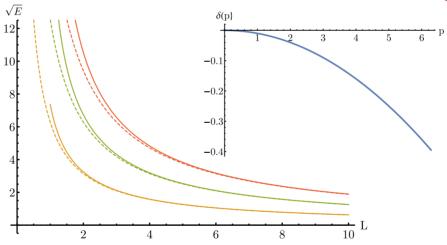
Lüscher formalism and resonances

- ullet finite volume o discrete energy levels o $p\cot\delta_0(p)=rac{1}{\pi L}S(E(L))$ o phase shift
- resonance contribution ↔ avoided level crossing

Lüscher, NPB **354** 531 (1991); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

talk by A. Saentz on Monday



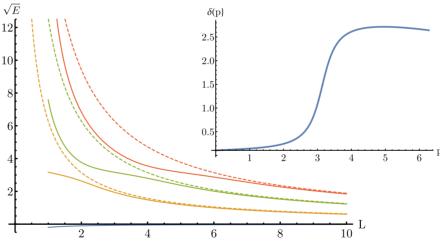
Lüscher formalism and resonances

- ullet finite volume o discrete energy levels o $p\cot\delta_0(p)=rac{1}{\pi L}S(E(L))$ o phase shift
- ullet resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB **354** 531 (1991); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

talk by A. Saentz on Monday



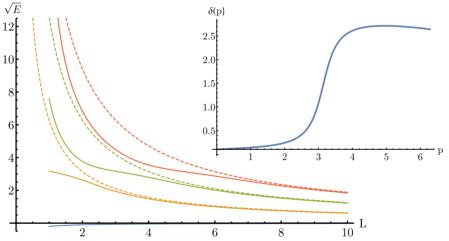
Lüscher formalism and resonances

- ullet finite volume o discrete energy levels o $p\cot\delta_0(p)=rac{1}{\pi L}S(E(L))$ o phase shift
- ullet resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB **354** 531 (1991); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

talk by A. Saentz on Monday



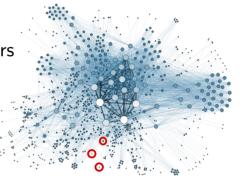
• direct correspondence between phase-shift jump and avoided crossing only for two-body systems, but the **spectrum signature carries over to few-body systems**

Klos, SK et al., PRC 98 034004 (2018)

Eigenvector continuation

Many physics problems are tremendously difficult...

- huge matrices, possibly too large to store
 - ever more so given the evolution of typical HPC clusters
- most exact methods suffer from exponential scaling
- interest only in a few (lowest) eigenvalues



Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)

Introducing eigenvector continuation

D. Lee, TRIUMF Ab Initio Workshop 2018; Frame et al., PRL 121 032501 (2018)

KDE Oxygen Theme

- novel numerical technique, broadly applicable
 - ▶ emulators, perturbation theory, ...

Duguet, Ekström, Furnstahl, SK, Lee, review in preparation

- amazingly simple in practice
- special case of "reduced basis method" (RBM)

Bonila et al., arXiv:2203.05282; Melendez et al., arXiv:2203.05528

General idea

Scenario

Frame et al., PRL **121** 032501 (2018)

- consider physical state (eigenvector) in a large space
- ullet parametric dependence of Hamiltonian H(c) traces only small subspace

Procedure

- ullet calculate $|\psi(c_i)
 angle$, $i=1,\dots N_{\mathrm{EC}}$ in "training" regime
- ullet solve generalized eigenvalue problem $H|\psi
 angle=\lambda N|\psi
 angle$ with
 - ullet $H_{ij} = \langle \psi_i | H(c_{
 m target}) | \psi_j
 angle$
 - ullet $N_{ij}=\langle \psi_i | \psi_j
 angle$

Prerequisite

ullet smooth dependence of H(c) on c

Result

- construction of highly efficient, tailored variational basis
- ullet enables analytic continuation of $|\psi(c)
 angle$ from $\{c_i\}$ to c_{target}

Finite-volume eigenvector continuation

Naive setup

- ullet consider states $|\psi_{L_i}
 angle$ at volume L_i
- ullet want to use these to extrapolate via EC to target volume L_*
- to that end, we'd consider Hamiltonian and norm matrices like this:

$$egin{aligned} H_{ij} &= \langle \psi_{L_i} | rac{m{H_{L_*}}}{m{H_{L_*}}} | \psi_{L_j}
angle \ N_{ij} &= \langle \psi_{L_i} | \psi_{L_j}
angle \end{aligned}$$

Finite-volume eigenvector continuation

Naive setup

- ullet consider states $|\psi_{L_i}
 angle$ at volume L_i
- ullet want to use these to extrapolate via EC to target volume L_*
- to that end, we'd consider Hamiltonian and norm matrices like this:

$$egin{aligned} H_{ij} &= \langle \psi_{L_i} | rac{H_{L_*}}{H_{L_*}} | \psi_{L_j}
angle \ N_{ij} &= \langle \psi_{L_i} | \psi_{L_j}
angle \end{aligned}$$

However...

All the $|\psi_{L_i} angle$ are defined in different Hilbert spaces!

- parametric dependence now not only in the Hamiltonian...
- ...but inherent in the basis
- need to generalize EC to deal with this scenario
- work together with graduate student Nuwan Yapa

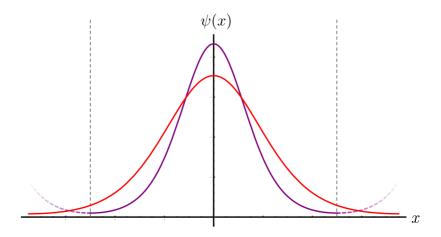
Dilatations

- ullet consider a function f with period L, $f\in \mathcal{H}_L$
- this can be mapped onto a function with period L' by means of a dilatation:

$$({\color{red}D_{L,L'}}f)(x)=\sqrt{rac{L}{L'}}\,figg(rac{L}{L'}xigg)$$

ullet this provides a bijection between the Hilbert spaces \mathcal{H}_L and \mathcal{H}_L'

Example: periodic bound-state wavefunction



Periodic matching

- ullet consider the union of all periodic Hilbert spaces: $\mathcal{H} = igcup_{L>0} \mathcal{H}_L$
 - ▶ not a Hilbert space with normal pointwise addition
- ullet define a new operation for $f\in \mathcal{H}_L$, $g\in \mathcal{H}_{L'}$, L'>L:

$$(f\stackrel{\max}{+}g)(x)=(D_{L.L'}f)(x)+g(x)$$

• similarly, define inner products between different periodicities:

$$\langle f,g
angle_{ ext{max}} = \langle D_{L,L'}f,g
angle_{\mathcal{H}_{L'}} = \int_{-L'/2}^{L'/2} \left(D_{L,L'}f
ight)\!\left(x
ight)^*\!g\!\left(x
ight)\mathrm{d}x$$

ullet together, these make ${\cal H}$ a vector space with inner product

Periodic matching

- ullet consider the union of all periodic Hilbert spaces: $\mathcal{H} = igcup_{L>0} \mathcal{H}_L$
 - ▶ not a Hilbert space with normal pointwise addition
- ullet define a new operation for $f\in \mathcal{H}_L$, $g\in \mathcal{H}_{L'}$, L'>L:

$$(f\stackrel{\max}{+}g)(x)=(D_{L,L'}f)(x)+g(x)$$

similarly, define inner products between different periodicities:

$$\langle f,g
angle_{ ext{max}} = \langle D_{L,L'}f,g
angle_{\mathcal{H}_{L'}} = \int_{-L'/2}^{L'/2} \left(D_{L,L'}f
ight)\!\left(x
ight)^*\!g\!\left(x
ight)\mathrm{d}x$$

ullet together, these make ${\cal H}$ a vector space with inner product

Truncated periodic bases

- ullet let $S_{L,N}$ be a truncated basis of plane-wave states
- ullet then for $\psi \in S_{L,N}$ and $\psi' \in S_{L',N}$, the \mathbb{R}^N inner product of coefficient vectors is the same as $\langle \cdot, \cdot
 angle_{ ext{max}}$

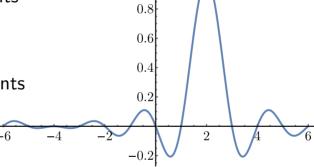
Discrete variable representation

Efficient calculation of several few-body energy levels

use a Discrete Variable Representation (DVR)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix very sparse
 - ▶ precalculate only 1D matrix elements



1.0

related via unitary transformation to truncated plane-wave basis!

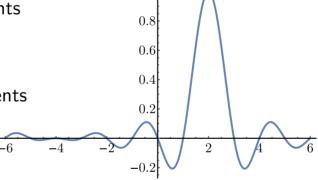
Discrete variable representation

Efficient calculation of several few-body energy levels

use a Discrete Variable Representation (DVR)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix very sparse
 - ▶ precalculate only 1D matrix elements



1.0

- related via unitary transformation to truncated plane-wave basis!
- efficient implementation for large-scale calculations
 - ► handle arbitrary number of particles (and spatial dimensions)
 - numerical framework scales from laptop to HPC clusters

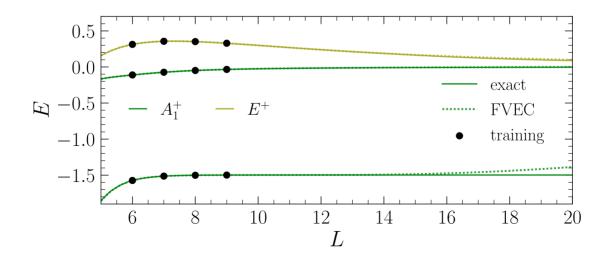
► recent extensions: GPU acceleration, separable interactions

Dietz, SK et al., PRC 105 064002 (2022); SK, J. Phys. Conf. Ser. 2453 012025 (2023)

SK et al., PRC 98 034004 (2018)

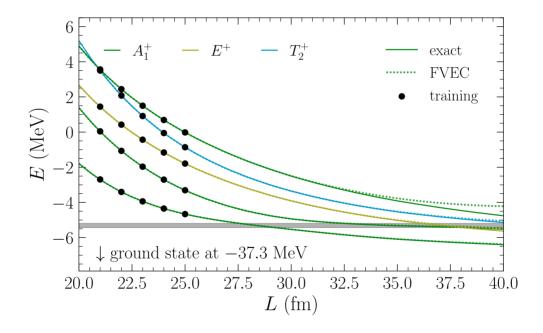
Two-body proof of concept

- consider a simple two-body system as first example
 - ullet attractive Gaussian interaction: $V(r)=V_0\exp\left(-\left(rac{r}{R}
 ight)^2
 ight)$, R=2 , $V_0=-4$
- note: cubic finite volume breaks spherical symmetry
 - ► angular momentum no longer good quantum number
 - instead: cubic irreducible representations $\Gamma \in A_1, A_2, E, T_1, T_2$
 - ullet to good approximation, S-wave states $\sim A_1^+$ irrep. (positive parity)



Three-boson resonance

- ullet three bosons with mass m=939.0 MeV, potential = sum of two Gaussians
- three-body resonance at
 - $ightharpoonup -5.31 i0.12 \; {\sf MeV} \; ext{(Blandon et al., PRA 75 042508 (2007))}$
 - -5.96-i0.40 MeV (Fedorov et al., FB Syst. 33 153 (2003)) (potential S-wave projected!)



avoided crossing well reproduced by FVEC calculation

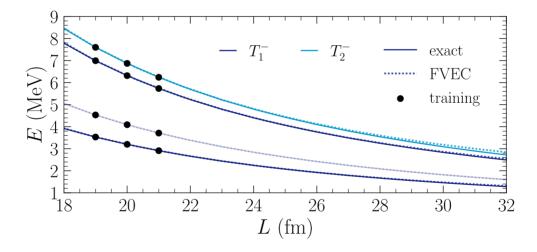
Three neutrons

• now consider three neutrons with Pionless EFT leading-order interaction

$$V(q,q')=C\,g(q)g(q')$$
 , $g(q)=\exp(-q^{2n}/\Lambda^{2n})$

- ullet separable super-Gaussian form with n=2 and $\Lambda=250$ MeV
- efficiently implemented within DVR framework

 Dietz, SK et al., PRC 105 064002 (2022)

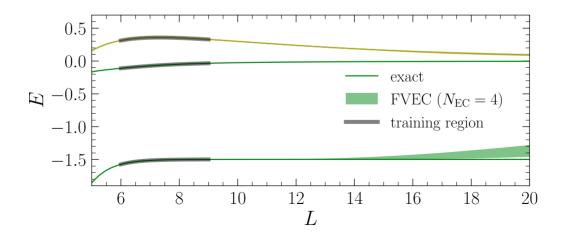


• total number of training data: $3 \times 8 = 24$ (partly covering cubic group multiplets)

Uncertainty quantification

- FVEC uncertainty depends on choice of training data
 - ► domain to choose from (note also: extrapolation vs. interpolation)
 - ▶ number $N_{\rm EC}$ of training space (controls dimension of FVEC subspace)
- use this dependence to estimate uncertainty
 - calculate initial pool of training data
 - ullet from that pool, consider combinations with fixed $N_{
 m EC}$

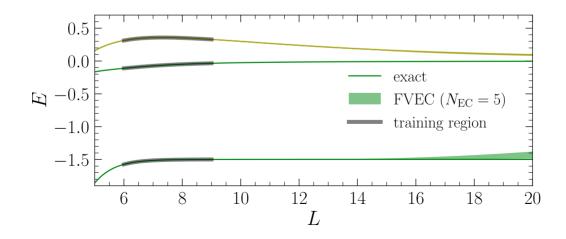
Application to two-body system



Uncertainty quantification

- FVEC uncertainty depends on choice of training data
 - ► domain to choose from (note also: extrapolation vs. interpolation)
 - ▶ number $N_{\rm EC}$ of training space (controls dimension of FVEC subspace)
- use this dependence to estimate uncertainty
 - ► calculate initial pool of training data
 - ullet from that pool, consider combinations with fixed $N_{
 m EC}$

Application to two-body system



Summary and outlook

Volume dependence of charged-particle bound states

- wave function at large distances determines finite-volume energy shift
- possible to extract asymptotic normalization coefficients
- long-range Coulomb force complicates derivation
- leading volume dependence derived for 1D and 3D S-wave systems
- asymptotic bounds for additional correction terms
- planned work: ANC calculations based on lattice EFT

Summary and outlook

Volume dependence of charged-particle bound states

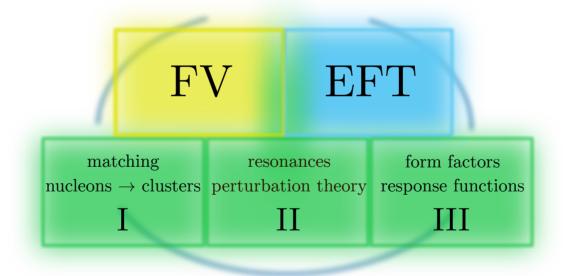
- wave function at large distances determines finite-volume energy shift
- possible to extract asymptotic normalization coefficients
- long-range Coulomb force complicates derivation
- leading volume dependence derived for 1D and 3D S-wave systems
- asymptotic bounds for additional correction terms
- planned work: ANC calculations based on lattice EFT

Volume extrapolation via eigenvector continuation

- extension of EC to handle parametric dependence directy in basis
- justified by periodic matching construction
- makes it possible to extrapolate reliably over large volume ranges
- DVR method can handle few-nucleon EFT calculations in large boxes
- in progress: application to four-neutron system

Finite-volume research program

- simulations of quantum systems in **Finite Volume (FV)** can be used to elegantly extract physical properties
- **Effective Field Theory (EFT)** provides a model-independent descriptions of nuclear interactions
- the combination of these two concepts can be used to study a number of questions



Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa (NCSU)
- D. Lee (FRIB/MSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- ...

...for support, funding, and computing time...

• Jülich Supercomputing Center

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa (NCSU)
- D. Lee (FRIB/MSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- ...

...for support, funding, and computing time...

• Jülich Supercomputing Center

...and to you, for your attention!