Quantum simulators with ultracold polar molecules and Rydberg atoms

Michał Tomza

Faculty of Physics, University of Warsaw

25th European Conference on Few-Body Problems in Physics Mainz, August 1, 2023

Controlled chemical reactions

Controlled chemical reactions

Precision measurements

Controlled chemical reactions

Precision measurements

Quantum many-body physics

Controlled chemical reactions

Precision measurements

Quantum many-body physics

Quantum computing

Phys. Rev. X 10, 031050 (2020)

Accurate ab initio calculations

Accurate ab initio calculations

Collisions and chemical reactions

Accurate ab initio calculations

Formation and control of molecules

Collisions and chemical reactions

Accurate ab initio calculations

Formation and control of molecules

Collisions and chemical reactions

Few-body quantum dynamics

Accurate ab initio calculations

Formation and control of molecules

Collisions and chemical reactions

Few-body quantum dynamics

Atoms and molecules in **optical tweezers**

Atom-by-atom and molecule-by-molecule assembled defect-free arrays

Science 354, 1021 (2016) / Science 354, 1024 (2016)

Atom-by-atom and molecule-by-molecule assembled defect-free arrays

Science 354, 1021 (2016) / Science 354, 1024 (2016)

Science 360, 900 (2018) / Science 365, 1156 (2019)

Michał Tomza – University of Warsaw Quantum simulators with ultracold polar molecules and Rydberg atoms

Mixing Rydberg atoms and ground-state molecules

Recent theory proposals – Rydberg as a mediator for quantum comp.

C. Zhang, M.R. Tarbutt, PRX Quantum 3, 030340 (2022)

Previous: Phys. Chem. Chem. Phys., 13, 17115 (2011), Phys. Rev. A 94, 032325 (2016), Phys. Rev. A 98, 043609 (2018)

Recent theory proposals – Rydberg as a mediator for quantum comp.

C. Zhang, M.R. Tarbutt, PRX Quantum 3, 030340 (2022)

K. Wang, C. P. Williams, L. R.B. Picard, N. Y. Yao, K.-K. Ni, PRX Quantum 3, 030339 (2022)

Previous: Phys. Chem. Chem. Phys., 13, 17115 (2011), Phys. Rev. A 94, 032325 (2016), Phys. Rev. A 98, 043609 (2018)

Michał Tomza – University of Warsaw Quantum simulators with ultracold polar molecules and Rydberg atoms

Very recent Rydberg-molecule interaction observation!

A. Guttridge, D. K. Ruttley, A. C. Baldock, R. González-Férez, H. R. Sadeghpour, C. S. Adams, S. L. Cornish, Phys. Rev. Lett. 131, 013401 (2023)

Very recent Rydberg-molecule interaction observation!

A. Guttridge, D. K. Ruttley, A. C. Baldock, R. González-Férez, H. R. Sadeghpour, C. S. Adams, S. L. Cornish, Phys. Rev. Lett. 131, 013401 (2023)

Rydberg blockade due to the charge-dipole interaction

The central spin model with a **Rydberg atom** and **polar molecules** in optical tweezers

with Dr. Jacek Dobrzyniecki

What are central spin models?

• they describe a central spin, interacting with multiple environmental spins

What are central spin models?

- they describe a central spin, interacting with multiple environmental spins
- used to describe various realistic systems:
 - electrons in quantum dots (e.g. in GaAs) interacting with nuclear spins
 - nitrogen-vacancy centers in diamond, interacting with nearby electronic/nuclear spins

What are central spin models?

- they describe a central spin, interacting with multiple environmental spins
- used to describe various realistic systems:
 - electrons in quantum dots (e.g. in GaAs) interacting with nuclear spins
 - nitrogen-vacancy centers in diamond, interacting with nearby electronic/nuclear spins
- can be used to model various phenomena and processes:
 - decoherence of qubits due to environment
 - quantum sensing (e.g. detecting single nuclear spins on diamond surfaces)
 - quantum networks of connected qubits

• cold Rydberg atom and *N* polar molecules in desired geometry by optical tweezers

- cold Rydberg atom and *N* polar molecules in desired geometry by optical tweezers
- atom = "central 1/2-spin" molecules = "environmental 1/2-spins"

- cold Rydberg atom and *N* polar molecules in desired geometry by optical tweezers
- atom = "central 1/2-spin" molecules = "environmental 1/2-spins"
- "spin-spin" interactions by electric dipole-dipole interactions

- cold Rydberg atom and *N* polar molecules in desired geometry by optical tweezers
- atom = "central 1/2-spin" molecules = "environmental 1/2-spins"
- "spin-spin" interactions by electric dipole-dipole interactions
- external magnetic and/or electric field to tune transitions into resonance

The system Hamiltonian

$$\hat{H} = \hat{h}_{\rm Ryd} + \sum_{k=1}^{N} \hat{h}_{\rm mol}^{(k)} + \sum_{k=1}^{N} \hat{V}_{\rm atom-mol}^{(k)} + \sum_{k< k'} \hat{V}_{\rm mol-mol}^{(k,k')}, \tag{1}$$

$$\hat{H} = \hat{h}_{\rm Ryd} + \sum_{k=1}^{N} \hat{h}_{\rm mol}^{(k)} + \sum_{k=1}^{N} \hat{V}_{\rm atom-mol}^{(k)} + \sum_{k< k'} \hat{V}_{\rm mol-mol}^{(k,k')}, \tag{1}$$

where $\hat{h}_{\rm Ryd}$ – Rydberg atom single-particle Hamiltonian $\hat{h}_{\rm mol}^{(k)}$ – molecule single-particle Hamiltonian $\hat{V}_{\rm atom-mol}^{(k)}$ – atom-molecule dipolar interactions $\hat{V}_{\rm mol-mol}^{(k,k')}$ – molecule-molecule dipolar interactions

Defining the effective 1/2-pseudospin states

Defining the effective 1/2-pseudospin states

Rydberg atom ("central spin"):

- two internal atomic states $|n, l, j, m_j\rangle$ act as pseudospin states $| \Uparrow \rangle, | \Downarrow \rangle$
- $| \uparrow \rangle, | \downarrow \rangle$ can be coupled by electric dipole moment operators $(\hat{D}_0, \hat{D}_{+1}, \hat{D}_{-1})$

Polar molecules ("environmental spins"):

- two internal molecule states $|J, M_J\rangle$ act as pseudospin states $|\uparrow\rangle, |\downarrow\rangle$
- $|\uparrow\rangle, |\downarrow\rangle$ can be coupled by electric dipole moment operators $(\hat{d}_0, \hat{d}_{+1}, \hat{d}_{-1})$

Matching the transition frequencies

 We set the magnetic field B to a specific value (~100 gauss) to tune the atomic transition ↑ ↔
 ↓ into resonance with the molecular transition
 ↓ ↔ ↑, minimizing the mismatch Δ

 When Δ ≤ interaction strength, each molecule can resonantly exchange "spin" with the atom, through interaction of transition dipole moments

Example atom and molecule species

- <u>Alkali-metal atoms</u>: Easiest to cool and trap obtaining singly trapped alkali-metal atoms is almost routine.
 - Li, Na, K, Rb, Cs
- ²Σ. ³Σ molecules: Highly tunable with magnetic fields; already obtained experimentally in ground electronic and rovibrational states, as well as in desired hyperfine states. CaF, SrF, ...

Example: K+CaF

Michał Tomza – University of Warsaw Quantum simulators with ultracold polar molecules and Rydberg atoms

Obtaining the effective spin Hamiltonian

$$\hat{H} = \hat{h}_{atom} + \sum_{k=1}^{N} \hat{h}_{mol}^{(k)} + \hat{V}_{atom-mol} + \hat{V}_{mol} \text{ not}$$

$$in \ comparison \ with a tom-molecule interactions$$

Obtaining the effective spin Hamiltonian

....

$$\begin{split} \hat{H} &= \hat{h}_{\text{atom}} + \sum_{k=1}^{N} \hat{h}_{\text{mol}}^{(k)} + \hat{V}_{\text{atom-mol}} + \hat{V}_{\text{mol-mol}} \\ \hat{h}_{\text{atom}} &= \mathcal{E}_{\uparrow} \mid \uparrow \rangle \langle \uparrow \mid + \mathcal{E}_{\downarrow} \mid \downarrow \rangle \langle \downarrow \mid \\ \hat{h}_{\text{mol}}^{(k)} &= \mathcal{E}_{\uparrow} \mid \uparrow^{(k)} \rangle \left\langle \uparrow^{(k)} \mid + \mathcal{E}_{\downarrow} \mid \downarrow^{(k)} \right\rangle \left\langle \downarrow^{(k)} \mid \end{split}$$

Obtaining the effective spin Hamiltonian

$$\begin{split} \hat{H} &= \hat{h}_{\text{atom}} + \sum_{k=1}^{N} \hat{h}_{\text{mol}}^{(k)} + \hat{V}_{\text{atom-mol}} + \hat{V}_{\text{mol}} \\ \hat{h}_{\text{atom}} &= \mathcal{E}_{\uparrow} | \uparrow \rangle \langle \uparrow | + \mathcal{E}_{\downarrow} | \downarrow \rangle \langle \downarrow | \\ \hat{h}_{\text{mol}}^{(k)} &= \mathcal{E}_{\uparrow} | \uparrow^{(k)} \rangle \langle \uparrow^{(k)} | + \mathcal{E}_{\downarrow} | \downarrow^{(k)} \rangle \langle \downarrow^{(k)} | \\ \hat{h}_{\text{mol}}^{(k)} &= \mathcal{E}_{\uparrow} | \uparrow^{(k)} \rangle \langle \uparrow^{(k)} | + \mathcal{E}_{\downarrow} | \downarrow^{(k)} \rangle \langle \downarrow^{(k)} | \\ \hat{h}_{\text{mol}}^{(k)} &= \sum_{k=1}^{N} \frac{\hat{\vec{D}} \cdot \hat{\vec{d}}^{\dagger}(^{k)} - 3 \left[\hat{\vec{D}} \cdot \frac{\vec{R}_{k}}{|\vec{R}_{k}|} \right] \left[\hat{\vec{d}}^{\dagger}(^{k)} \cdot \frac{\vec{R}_{k}}{|\vec{R}_{k}|} \right]}{|\vec{R}_{k}|^{3}} \qquad \approx \sum_{k=1}^{N} C_{k} | \uparrow \downarrow^{(k)} \rangle \langle \downarrow \uparrow^{(k)} | + \text{H.c.} \\ (only including resonant exchange processes) \end{split}$$

 C_k depends on R_k (position of molecule k)

Defining the effective spin operators

$$\hat{S}_{z}^{(k)} = \frac{|\uparrow\rangle\langle\uparrow| - |\downarrow\rangle\langle\downarrow|}{2} \qquad \qquad \hat{S}_{z}^{(0)} = \frac{|\Uparrow\rangle\langle\Uparrow| - |\downarrow\rangle\langle\downarrow|}{2} \qquad \qquad \hat{S}_{+}^{(k)} = |\uparrow\rangle\langle\downarrow| = \left(\hat{S}_{-}^{(k)}\right)^{\dagger} \qquad \qquad \hat{S}_{+}^{(0)} = |\Uparrow\rangle\langle\downarrow| = \left(\hat{S}_{-}^{(0)}\right)^{\dagger}$$

... The following effective spin Hamiltonian is obtained (XX central spin model / "spin star"):

$$\hat{H}_{\text{eff}} = c_T \hat{S}_z^{(0)} + c_S \sum_{k=1}^N \hat{S}_z^{(k)} + \sum_{k=1}^N \left[C_k \hat{S}_+^{(0)} \hat{S}_-^{(k)} + \text{H.c.} \right]$$

Defining the effective spin operators

$$\hat{S}_{z}^{(k)} = \frac{|\uparrow\rangle\langle\uparrow| - |\downarrow\rangle\langle\downarrow|}{2} \qquad \qquad \hat{S}_{z}^{(0)} = \frac{|\uparrow\rangle\langle\uparrow| - |\downarrow\rangle\langle\downarrow|}{2} \qquad \qquad \hat{S}_{+}^{(k)} = |\uparrow\rangle\langle\downarrow| = \left(\hat{S}_{-}^{(k)}\right)^{\dagger} \qquad \qquad \hat{S}_{+}^{(0)} = |\uparrow\rangle\langle\downarrow| = \left(\hat{S}_{-}^{(0)}\right)^{\dagger}$$

... The following effective spin Hamiltonian is obtained (XX central spin model / "spin star"):

$$\hat{H}_{\text{eff}} = c_T \hat{S}_z^{(0)} + c_S \sum_{k=1}^N \hat{S}_z^{(k)} + \sum_{k=1}^N \left[C_k \hat{S}_+^{(0)} \hat{S}_-^{(k)} + \text{H.c.} \right]$$

For initial states with well-defined value of total spin $\hat{S}_{z}^{(0)} + \sum^{N} \hat{S}_{z}^{(k)}$,

we can subtract the constant part and obtain:

$$\hat{H}_{\text{eff}} = \Delta \hat{S}_z^{(0)} + \sum_{k=1}^{N} \left[C_k \hat{S}_+^{(0)} \hat{S}_-^{(k)} + \text{H.c.} \right]$$

Example applications and dynamics

A ring-shaped geometry

- molecules in a ring configuration
- the ring can be effectively "tilted", relative to the direction of induced dipole moments, by changing the direction of external field (which defines the Z axis)
- due to the anisotropy of dipolar interactions, the coupling constants C_k become non-uniform at tilt angles $\beta > 0$

Tuning the interaction non-uniformity

Effective spin interaction arising from the dipolar interactions: $C_k \sim 1-3\cos^2 \theta_k$

Interaction non-uniformity increases with β

Simulating the decoherence of a qubit,

caused by its interaction with a disordered environment

Example: an electron qubit in a quantum dot on a semiconductor surface, interacting with the spins of surrounding nuclei

Simulating the decoherence of a qubit,

caused by its interaction with a disordered environment

Example: an electron qubit in a quantum dot on a semiconductor surface, interacting with the spins of surrounding nuclei

Initial state: $|\downarrow\rangle\otimes|\uparrow\uparrow\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$

The central spin undergoes decay over time ("qubit decoherence")

Greater non-uniformity of couplings = faster decay

Timescale of the decay: $\tau \approx \left[\max(|C_k|) - \min(|C_k|)\right]^{-1}$

Quantum network communication

Propagating a state from one node to another in a quantum network

State transfer control

The initial state is $|S^{(0)}S^{(in)}\downarrow_2 \ldots \downarrow_8\rangle$, with $S^{(0)} = \uparrow$ or \Downarrow , $S^{(in)} = \uparrow$ or \downarrow . Here the input/output spins are chosen as $S^{(in)} = S^{(3)}$, $S^{(out)} = S^{(7)}$).

Quantum network communication

Simplified case: Transferring a classical bit between two specific environment spins

Quantum network communication

Simplified case: Transferring a classical bit between two specific environment spins

Environment spin dynamics - Initial state: N=6 molecules, $|\uparrow\rangle \otimes |\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$

Possible extensions

- other geometries
- other field-dressing schemes
- including trap states
- highly-polar molecules (e.g. AgCs) with direct intermolecular dipolar interactions

M. Smialkowski, M. Tomza, Phys. Rev. A 103, 022802 (2021)

Characteristics of dipolar molecules and their intermolecular interactions

M. Smialkowski, M. Tomza, Phys. Rev. A 103, 022802 (2021)

Table: Ground-state permanent electric dipole moment d_e , polarizing electric field $\mathcal{E}_{\text{pol}} = \frac{2B_e}{d_e}$, characteristic length of dipolar interaction $a_{\text{dd}} = \frac{d_v^2 m}{12\pi\varepsilon_0\hbar^2}$, and characteristic nearest-neighbor energy shift $V_{\text{dd}} = \frac{d_e^2}{4\pi\varepsilon_0}/(\lambda/2)^3$ for molecules in an optical lattice formed by $\lambda = 1064$ nm laser.

Molecule	$d_e(D)$	$\mathcal{E}_{ m pol}({\sf V}/{\sf cm})$	$a_{ m dd}(10^3a_0)$	$V_{ m dd}$ (kHz)
KAg	8.50	935	991	72.4
CsAg	9.75	329	2144	95.3
KRb	0.57	7832	4	0.3
NaRb	3.2	2594	106	10.3
LiCs	5.5	4071	398	30.3
RbSr	1.5	1467	37	2.3
CaF	3.1	13287	52	9.4

- The "XX" central spin model with a **Rydberg atom** and **polar molecules** in optical tweezers
- Example feasible implemenation in **K+CaF mixture** but applicable to other species including singlet-state alkali dimers
- The **ring-shaped** arrangement of environmental spins allows to easily tune the central-environment couplings
- Example **quantum-simulation** applications for qubit decoherence and quantum network communication

Acknowledgements

Postdocs: Dr. Marcin Gronowski, Dr. J. Dobrzyniecki, Dr. H. Ladjimi, Dr. M. Frye +open positions Ph.D. students: Sangami G. S., J. Gębala, A. Koza, A. Wojciechowska, M. Suchorowski, M. Walewski M.Sc. students: M. Osada, J. Korsak B.Sc. students: K. Cybinski, A. Grabowski, M. Welter, S. Czuba, K. Kurylek, J. Tuszyński

More details: J. Dobrzyniecki, M. Tomza, arXiv:2302.14774 (2023)

Thank you!

Workshop on Ultracold Molecules 05-08.09.2023, Warsaw, Poland http://ultracold-molecules-2023.fuw.edu.pl