Proton Structure In and Out Of Muonic Hydrogen

Franziska Hagelstein (JGU Mainz \& PSI Villigen)
in collaboration with
Volodymyr Biloshytskyi, Vadim Lensky and Vladimir Pascalutsa (JGU)

PROTON CHARGE RADIUS

- Muonic atoms allow for PRECISE extractions of nuclear charge and Zemach radii
- CODATA since 2018 included the $\mu \mathrm{H}$ result for r_{p}
- Still open issues: $\mathrm{H}(2 \mathrm{~S}-8 \mathrm{D})$ and H(IS-3S)
- Question:

PRECIGIIN VS ACCURACY

\checkmark Precision
Precision
\mathbf{X} Accuracy

LAMB SHIFT IN MUONIC ATOMS

THEORY
EXPERIMENT

	$\Delta E_{T P E} \pm \delta_{\text {theo }}\left(\Delta E_{T P E}\right)$	Ref.	$\delta_{\text {exp }}\left(\Delta_{L S}\right)$	Ref.
$\mu \mathrm{H}$	$33 \mu \mathrm{eV} \pm 2 \mu \mathrm{eV}$	Antognini et al. (2013)	$2.3 \mu \mathrm{eV}$	Antognini et al. (2013)
$\mu \mathrm{D}$	$1710 \mu \mathrm{eV} \pm 15 \mu \mathrm{eV}$	Krauth et al. (2015)	$3.4 \mu \mathrm{eV}$	Pohl et al. (2016)
$\mu^{3} \mathrm{He}^{+}$	$15.30 \mathrm{meV} \pm 0.52 \mathrm{meV}$	Franke et al. (2017)	0.05 meV	
$\mu^{4} \mathrm{He}^{+}$	$9.34 \mathrm{meV} \pm 0.25 \mathrm{meV}$ $-0.15 \mathrm{meV} \pm 0.15 \mathrm{meV}(3 \mathrm{PE})$	Diepold et al. (2018) Pachucki et al. (2018)	0.05 meV	Krauth et al. (2020)

see presentations by
C. Ji, S. Li Muli, V. Lensky, T. Richardson
$\mu \mathrm{H}$: present accuracy comparable with experimental precision
$\mu \mathrm{D}, \mu^{3} \mathrm{He}^{+}, \mu^{4} \mathrm{He}^{+}:$present accuracy factor 5-I0 worse than experimental precision

$$
\begin{aligned}
& r_{p}=0.84087(12)_{\mathrm{sys}}(23)_{\mathrm{stat}}(29)_{\text {theory }} \mathrm{fm} \quad{ }^{\text {(25) 2PE (maily subtraction term) }} \\
& r_{d}=2.12562(5)_{\text {sys }}(12)_{\text {stat }}(77)_{\text {theory }} \mathrm{fm} \text { basically only nuclear 2PE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) QED }
\end{aligned}
$$

FROM PUZZLE TO PRECISION

- Several experimental activities ongoing and proposed:
- IS hyperfine splitting in $\mu \mathrm{H}$ and $\mu \mathrm{He}$ (CREMA, FAMU, J-PARC)
- Improved measurement of Lamb shift in $\mu \mathrm{H}, \mu \mathrm{D}$ and $\mu \mathrm{He}^{+}$possible ($\times 5$)
- Medium- and high-Z muonic atoms
- Theory support is needed!

Muonic Atom Spectroscopy Theory Initiative

- Initials objectives:
- Accurate theory predictions for light muonic atoms to test fundamental interactions by comparing to electronic atoms
- Community consensus on SM predictions
- First emphasis on the hyperfine splitting in $\mu \mathrm{H}$

Homepage and mailing list \rightarrow https://asti.uni-mainz.de

Atomic Spectroscopy Theory Initiative
HOME AIMS AND SCOPE MAILING LIST WORKING GROUPS PAST AND FUTURE WORKSHOPS PUBLICATIONS NEWS

Home

Aims and Scope
Mailing List
Working Groups
Past and Future Workshops
Publications
News

Muonic Atom Spectroscopy Theory Initiative

Inspired by the success of the Muon g-2 Theory Initiative we are launching the Muonic Atom Spectroscopy Theory Initiative (μ ASTI).

The initiative aims to support the experimental effort on the spectroscopy of light muonic atoms by improving the Standard Model theory predictions for the Lamb shift and hyperfine splitting in muonic hydrogen, deuterium, and helium, in order to match the anticipated accuracy of future measurements. An initial focus will be on the ground state hyperfine splitting in muonic hydrogen.

The upcoming kick-off event for the Theory Initiative is organized as a joint meeting with the Proton Radius European Network (PREN) at the Johannes Gutenberg University Mainz (June 26-30, 2023).

Comprehensive theory of the Lamb shift in light muonic atoms

K. Pachucki, ${ }^{1}$ V. Lensky, ${ }^{2}$ F. Hagelstein, ${ }^{2,3}$ S. S. Li Muli, ${ }^{2}$ S. Bacca, ${ }^{2,4}$ and R. Pohl ${ }^{5}$
${ }^{1}$ Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
${ }^{2}$ Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
${ }^{3}$ Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
${ }^{4}$ Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
${ }^{5}$ Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

(Dated: May 19, 2023)

We present a comprehensive theory of the Lamb shift in light muonic atoms, such as $\mu \mathrm{H}$, $\mu \mathrm{D}, \mu^{3} \mathrm{He}^{+}$, and $\mu^{4} \mathrm{He}^{+}$, with all quantum electrodynamic corrections included at the precision level constrained by the uncertainty of nuclear structure effects. This analysis can be used in the global adjustment of fundamental constants and in the determination of nuclear charge radii. Further improvements in the understanding of electromagnetic interactions of light nuclei will allow for a promising test of fundamental interactions by comparison with "normal" atomic spectroscopy, in particular, with $\mathrm{H}-\mathrm{D}$ and ${ }^{3} \mathrm{He}-{ }^{4} \mathrm{He}$ isotope shifts.

E_{QED}	point nucleus	$206.0344(3)$	$228.7740(3)$	$1644.348(8)$	$1668.491(7)$
$\mathcal{C} r_{C}^{2}$	finite size	$-5.2259 r_{p}^{2}$	$-6.1074 r_{d}^{2}$	$-103.383 r_{h}^{2}$	$-106.209 r_{\alpha}^{2}$
E_{NS}	nuclear structure	$0.0289(25)$	$1.7503(200)$	$15.499(378)$	$9.276(433)$
$E_{L}(\exp)$	experiment $^{\mathrm{a}}$				
r_{C}	this work				
r_{C}	previous $^{\mathrm{a}}$	$0.82 .3706(23)$	$202.8785(34)$	$1258.598(48)$	$1378.521(48)$

NUCLEAR STRUCTURE EFFECTS

Why muonic atoms?

- Lamb shift:
wave function at the origin

$$
\Delta E_{n l}(\mathrm{LO}+\mathrm{NLO})=\delta_{l 0} \frac{2 \pi Z \alpha}{3} \frac{1}{\pi(a n)^{3}}\left[R_{E}^{2}-\frac{Z \alpha m_{r}}{2} R_{E(2)}^{3}\right]
$$

NLO becomes appreciable in $\mu \mathrm{H}$

- HFS:

$\Delta E_{n S}(\mathrm{LO}+\mathrm{NLO})=E_{F}(n S)\left[1-2 Z \alpha m_{r} R_{Z}\right]$

$$
\begin{aligned}
& \text { Fermi energy: } \\
& E_{F}(n S)=\frac{8}{3} \frac{Z \alpha}{a^{3}} \frac{1+\kappa}{m M} \frac{1}{n^{3}} \\
& \text { with Bohr radius } a=1 /\left(Z \alpha m_{r}\right)
\end{aligned}
$$

STRUCTURE EFFECTS THROUGH 2γ

- Proton-structure effects at subleading orders arise through multi-photon processes
forward
two-photon exchange (2 γ)

polarizability contribution
(non-Born VVCS)

- "Blob" corresponds to doubly-virtual Compton scattering (VVCS):

$$
\begin{aligned}
T^{\mu \nu}(q, p)= & \left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) T_{1}\left(\nu, Q^{2}\right)+\frac{1}{M^{2}}\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{\nu}\right) T_{2}\left(\nu, Q^{2}\right) \\
& -\frac{1}{M} \gamma^{\mu \nu \alpha} q_{\alpha} \underline{S_{1}\left(\nu, Q^{2}\right)}-\frac{1}{M^{2}}\left(\gamma^{\mu \nu} q^{2}+q^{\mu} \gamma^{\nu \alpha} q_{\alpha}-q^{\nu} \gamma^{\mu \alpha} q_{\alpha}\right) S_{2}\left(\nu, Q^{2}\right)
\end{aligned}
$$

- Proton structure functions: $\frac{f_{1}\left(x, Q^{2}\right), f_{2}\left(x, Q^{2}\right),}{\text { Lamb shift }}, \frac{g_{1}\left(x, Q^{2}\right), g_{2}\left(x, Q^{2}\right)}{\text { Hyperfine splitting }}$ (HFS)

2γ EFFECT IN THE LAMB SHIFT

wave function

 at the origin$$
\Delta E(n S)=8 \pi \alpha m \phi_{n}^{2} \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d} \nu}{2 \pi} \int \frac{\mathrm{~d} \mathbf{q}}{(2 \pi)^{3}} \frac{\left(Q^{2}-2 \nu^{2}\right) T_{1}\left(\nu, Q^{2}\right)-\left(Q^{2}+\nu^{2}\right) T_{2}\left(\nu, Q^{2}\right)}{Q^{4}\left(Q^{4}-4 m^{2} \nu^{2}\right)}
$$

dispersion relation \& optical theorem:

$$
\begin{aligned}
& T_{1}\left(\nu, Q^{2}\right)=T_{1}\left(0, Q^{2}\right)+\frac{32 \pi Z^{2} \alpha M \nu^{2}}{Q^{4}} \int_{0}^{1} \mathrm{~d} x \frac{x f_{1}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}} \\
& T_{2}\left(\nu, Q^{2}\right)=\frac{16 \pi Z^{2} \alpha M}{Q^{2}} \int_{0}^{1} \mathrm{~d} x \frac{f_{2}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}}
\end{aligned}
$$

- Caution: in the data-driven dispersive approach the $T_{1}\left(0, Q^{2}\right)$ subtraction function is modelled!

$$
\begin{aligned}
& \text { low-energy expansion: } \\
& \lim _{Q^{2} \rightarrow 0} \bar{T}_{1}\left(0, Q^{2}\right) / Q^{2}=4 \pi \beta_{M 1} \\
& \text { modelled } Q^{2} \text { behavior: } \\
& \bar{T}_{1}\left(0, Q^{2}\right)=4 \pi \beta_{M 1} Q^{2} /\left(1+Q^{2} / \Lambda^{2}\right)^{4}
\end{aligned}
$$

Assuming
CnPT is working, it should be best applicable to atomic systems, where the energies are very
small !

POLARIZABILITY EFFECT IN LAMB SHIFT

BChPT result is in good agreement with dispersive calculations !!!
Agreement also for the contribution of the $T_{\text {। }}$ subtraction function !!!

Table 1 Forward 2γ-exchange contributions to the $2 S$-shift in $\mu \mathrm{H}$, in units of $\mu \mathrm{eV}$.

Reference	$E_{2 S}^{\text {(subt) }}$	$E_{2 S}^{\text {(inel) }}$	$E_{2 S}^{\text {(pol) }}$	$E_{2 S}^{(\mathrm{el})}$	$E_{2 S}^{\langle 2 \gamma\rangle}$
Data-Driven					
(73) Pachucki '99	1.9	-13.9	-12(2)	-23.2(1.0)	-35.2(2.2)
(74) Martynenko '06	2.3	-16.1	-13.8(2.9)		
(75) Carlson et al. '11	5.3(1.9)	-12.7(5)	-7.4(2.0)		
(76) Birse and McGovern '12	4.2(1.0)	-12.7(5)	-8.5(1.1)	-24.7(1.6)	-33(2)
(77) Gorchtein et al. ${ }^{\prime} 13{ }^{\text {a }}$	-2.3(4.6)	-13.0(6)	-15.3(4.6)	-24.5(1.2)	-39.8(4.8)
(78) Hill and Paz '16					-30(13)
(79) Tomalak'18	2.3(1.3)		-10.3(1.4)	-18.6(1.6)	-29.0(2.1)
LEADING-ORDER B χ PT					
(80) Alarcòn et al. '14			$-9.6{ }_{-2.9}^{+1.4}$		
(81) Lensky et al. ' $17{ }^{\text {b }}$	$3.5_{-1.9}^{+0.5}$	-12.1(1.8)	$-8.6_{-5.2}^{+1.3}$		
Lattice QCD					
(82) Fu et al. '22					-37.4(4.9)

LO BChPT prediction with pion-nucleon loop diagrams:

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852

POLARIZABILITY EFFECT IN LAMB SHIFT

BChPT result is in good agreement with dispersive calculations !!!
Agreement also for the contribution of the $T_{\text {। }}$ subtraction function !!!

Table 1 Forward 2γ-exchange contributions to the $2 S$-shift in $\mu \mathrm{H}$, in units of $\mu \mathrm{eV}$.

Reference	$E_{2 S}^{\text {(subt) }}$	$E_{2 S}^{(\text {inel })}$	$E_{2 S}^{(\text {pol })}$	$E_{2 S}^{(\text {el) }}$	$E_{2 S}^{(2 \gamma\rangle}$
DATA-DRIVEN					
(73) Pachucki '99	1.9	-13.9	$-12(2)$	$-23.2(1.0)$	$-35.2(2.2)$
(74) Martynenko '06	2.3	-16.1	$-13.8(2.9)$		
(75) Carlson et al. '11	$5.3(1.9)$	$-12.7(5)$	$-7.4(2.0)$		
(76) Birse and McGovern '12	$4.2(1.0)$	$-12.7(5)$	$-8.5(1.1)$	$-24.7(1.6)$	$-33(2)$
(77) Gorchtein et al.'13 a	$-2.3(4.6)$	$-13.0(6)$	$-15.3(4.6)$	$-24.5(1.2)$	$-39.8(4.8)$
(78) Hill and Paz '16					$-30(13)$
(79) Tomalak'18	$2.3(1.3)$		$-10.3(1.4)$	$-18.6(1.6)$	$-29.0(2.1)$
LEADING-ORDER B $\chi \mathrm{PT}$		$-9.6_{-2.9}^{+1.4}$			
(80) Alarcòn et al. '14 (81) Lensky et al. '17 ${ }^{\text {b }}$	$3.5_{-1.9}^{+0.5}$	$-12.1(1.8)$	$-8.6_{-5.2}^{+1.3}$		
LATTICE QCD					
(82) Fu et al. ' 22					

Δ prediction from $\Delta($ I 232) exchange:

- Uses large- N_{c} relations for the Jones-Scadron N -to- Δ transition form factors
- Small due to the suppression of β_{MI} in the Lamb shift but important for

V. Lensky, FH, V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 97 (2018) 074012

SUBTRACTION FUNCTION

NLO BChPT δ-exp.

 total without gm dipole $\pi \mathrm{N}$ loops$\pi \Delta$ loops
Δ-exchange
J. Alarcon, FH, V. Lensky and V. Pascalutsa,
Phys. Rev. D 102 (2020) 114026; ibid. 102 (2020) 114006

SUBTRACTION FUNCTION

V. Lensky, FH, V. Pascalutsa and M. Vanderhaeghen Phys. Rev. D 97 (2018) 074012

NLO BChPT δ-exp.

 total without gm dipole $\pi \mathrm{N}$ loops $\pi \Delta$ loops Δ-exchangeJ. Alarcon, FH, V. Lensky and V. Pascalutsa,
Phys. Rev. D 102 (2020) 114026; ibid. 102 (2020) 114006

SUBTRACTION FUNCTION

NLO BChPT ס-exp.

 total without gm dipole $\pi \mathrm{N}$ loops $\pi \Delta$ loops Δ-exchangeJ. Alarcon, FH, V. Lensky and V. Pascalutsa,
Phys. Rev. D 102 (2020) 114026; ibid. 102 (2020) 114006

V. Lensky, FH, V. Pascalutsa and M. Vanderhaeghen Phys. Rev. D 97 (2018) 074012

First lattice results!

CSSM-QCDSF-UKQCD Collaboration, 2207.03040.

EUCLIDEAN SUBTRACTION FUNCTION

- Once-subtracted dispersion relation for $\bar{T}_{1}\left(\nu, Q^{2}\right)$ with subtraction at $\nu_{s}=i Q$
- Dominant part of polarizability contribution:

$$
\Delta E_{n S}^{\prime \text { (subt })}=\frac{2 \alpha m}{\pi} \phi_{n}^{2} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{3}} \frac{2+v_{l}}{\left(1+v_{l}\right)^{2}} \bar{T}_{1}\left(i Q, Q^{2}\right) \text { with } v_{l}=\sqrt{1+4 m^{2} / Q^{2}}
$$

- Inelastic contribution for $\nu_{s}=i Q$ is order of magnitude smaller than for $\nu_{s}=0$
- Prospects for future lattice QCD and EFT calculations

based on Bosted-Christy parametrization:

$$
\begin{aligned}
\Delta E_{2 S}^{(\text {inel })}\left(\nu_{s}=0\right) & \simeq-12.3 \mu \mathrm{eV} \\
\Delta E_{2 S}^{\prime(\text { inel })}\left(\nu_{s}=i Q\right) & \simeq 1.6 \mu \mathrm{eV}
\end{aligned}
$$

DATA-DRIVEN EVALUATION

- New integral equations for data-driven evaluation of subtraction functions
- High-quality parametrization of σ_{L} at $Q \rightarrow 0$ needed

$$
T_{1}\left(0, Q^{2}\right)=\frac{2 Q^{2}}{\pi} \int_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu}{\nu^{2}+Q^{2}}\left[\sigma_{T}-\frac{\nu^{2}}{Q^{2}} \sigma_{L}\right]\left(\nu, Q^{2}\right)
$$

$$
T_{L}\left(i Q, Q^{2}\right)=\frac{2}{\pi} \int_{\nu_{0}}^{\infty} \mathrm{d} \nu \nu^{2} \frac{\sigma_{L}\left(\nu, Q^{2}\right)}{\nu^{2}+Q^{2}}
$$

HYPERFINE SPLITTING IN $\mu \mathrm{H}$

$\Delta E_{\mathrm{HFS}}(n S)=\left[1+\Delta_{\mathrm{QED}}+\Delta_{\text {weak }}+\Delta_{\text {structure }}\right] E_{F}(n S)$

$$
\text { with } \quad \Delta_{\text {structure }}=\frac{\Delta_{Z}}{\downarrow}+\Delta_{\text {recoil }}+\Delta_{\text {pol }}
$$

Zemach radius:

$\Delta_{Z}=\frac{8 Z \alpha m_{r}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{2}}\left[\frac{G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{1+\kappa}-1\right] \equiv-2 Z \alpha m_{r} R_{\mathrm{Z}}$
experimental value: $\quad R_{Z}=1.082(37) \mathrm{fm}$
A. Antognini, et al., Science 339 (2013) 417-420

Measurements of the $\mu \mathrm{H}$ ground-state HFS planned by the CREMA, FAMU and J-PARC / Riken-RAL collaborations

- Very precise input for the 2γ effect needed to narrow down frequency search range for experiment
- Zemach radius can help to pin down the magnetic properties of the proton

HYPERFINE SPLITTING

Theory: QED, ChPT, data-driven dispersion relations,
ab-initio few-nucleon theories

Guiding the exp.

find narrow 1S HFS transitions with the help of full theory predictions: QED, weak, finite size, polarizability

Experiment: HFS in $\mu \mathrm{H}, \mu \mathrm{He}^{+}, \ldots$

Testing the theory

- discriminate between theory predictions for polarizability effect
- disentangle R_{Z} \& polarizability effect by combining HFS in $\mathrm{H} \& \mu \mathrm{H}$
- test HFS theory
- combining HFS in $\mathrm{H} \& \mu \mathrm{H}$ with theory prediction for polarizability effect
- test nuclear theories

Spectroscopy of
ordinary atoms $\left(\mathrm{H}, \mathrm{He}^{+}\right)$

Predictions for the IS HFS in $\mu \mathrm{H}$ are driven by the IS HFS in H
A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022)

LITTING

Experiment: HFS in $\mu \mathrm{H}, \mu \mathrm{He}^{+}$

```
esting the theory
```

inate between theory
prearctions for polarizability effect

- disentangle R_{Z} \& polarizability effect by combining HFS in $\mathrm{H} \& \mu \mathrm{H}$
- test HFS theory
- combining HFS in $\mathrm{H} \& \mu \mathrm{H}$ with theory prediction for polarizability effect
- test nuclear theories

Spectroscopy of

ordinary atoms $\left(\mathrm{H}, \mathrm{He}^{+}\right)$
Electron and
Compton Scattering

HYPERFINE SPLITTING

The hyperfine splitting of $\mu \mathrm{H}$ (theory update):

A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022)

PLITTING

Experiment: HFS in $\mu \mathrm{H}, \mu \mathrm{He}^{+}$

Guiding the exp.

find narrow 1S HFS transitions with the help of full theory predictions: QED, weak, finite size, polarizability

Testing the theory

- discriminate between theory predictions for polarizability effect
- disentangle R_{Z} \& polarizability effect by combining HFS in $\mathrm{H} \& \mu \mathrm{H}$
- test HFS theory
- combining HFS in $\mathrm{H} \& \mu \mathrm{H}$ with theory prediction for polarizability effect
- test nuclear theories

Spectroscopy of
ordinary atoms $\left(\mathrm{H}, \mathrm{He}^{+}\right)$

COMBINING $\mu \mathrm{H}, \mathrm{H}, \mathrm{HE}, \mathrm{HD}+, \ldots$

A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022) 389-418
A. Antognini, FH, et al., 2210.16929 (submitted as community input for the NuPECC Long Range Plan 2024)

$\| E_{2 S}^{2 \gamma}[\mathrm{meV}]$
Theory prediction

Theory prediction	
Krauth et al. '16 [5]	$-1.7096(200)$
Kalinowski '19 [6, Eq. (6) + (19)]	$-1.740(21)$
$\not \not$ EFT (this work)	$-1.752(20)$
Empirical $(\mu \mathrm{H}+\mathrm{iso})$	
Pohl et al. '16 [3]	$-1.7638(68)$
This work	$-1.7585(56)$

V. Lensky, A. Hiller Blin, FH, V. Pascalutsa, 2203.13030
V. Lensky, FH, V. Pascalutsa, 2206.14756, 2206.14066

- N3LO pionless EFT + higher-order single-nucleon effects:

$$
\begin{aligned}
E_{2 S}^{\text {elastic }} & =-0.446(8) \mathrm{meV} \\
E_{2 S}^{\text {inel }, L} & =-1.509(16) \mathrm{meV} \\
E_{2 S}^{\text {inel, }, T} & =-0.005 \mathrm{meV} \\
E_{2 S}^{\text {hadr }} & =-0.032(6) \mathrm{meV} \\
E_{2 S}^{\text {eVP }} & =-0.027 \mathrm{meV}
\end{aligned}
$$

- Elastic 2γ several standard deviations larger
- Inelastic 2γ consistent with other results
- Agreement with precise empirical value for the 2γ effect extracted with $r_{d}(\mu \mathrm{H}+\mathrm{iso})$

FNSTF

Thank you for your attention!

2γ EFFECT IN THE $\mu \mathrm{H}$ HFS

Table 1 Forward 2γ-exchange contribution to the HFS in $\mu \mathbf{H}$.

Reference	$\begin{gathered} \Delta_{\mathrm{Z}} \\ {[\mathrm{ppm}]} \end{gathered}$	$\begin{aligned} & \Delta_{\text {recoil }} \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{gathered} \Delta_{\mathrm{pol}} \\ {[\mathrm{ppm}]} \end{gathered}$	$\begin{gathered} \Delta_{1} \\ {[\mathrm{ppm}]} \end{gathered}$	$\begin{gathered} \Delta_{2} \\ {[\mathrm{ppm}]} \end{gathered}$	$\begin{gathered} E_{1 S-\mathrm{hfs}}^{\langle 2 \gamma\rangle} \\ {[\mathrm{meV}]} \end{gathered}$
DATA-DRIVEN						
Pachucki '96 (1)	-8025	1666	0(658)			-1.160
Faustov et al. '01 (9) ${ }^{\text {a }}$	-7180		410(80)	468	-58	
Faustov et al. '06 (10) ${ }^{\text {b }}$			470(104)	518	-48	
Carlson et al. '11 (11) ${ }^{\text {c }}$	-7703	931	$351(114)$	370(112)	-19(19)	-1.171(39)
Tomalak '18 (12) ${ }^{\text {d }}$	-7333(48)	846(6)	364(89)	429(84)	-65(20)	$-1.117(19)$
HEAVY-BARYON χ PT						
Peset et al. '17 (13)						-1.161(20)
LEADING-ORDER χ PT						
Hagelstein et al. '16 (14)			37(95)	29(90)	$9(29)$	
$+\Delta(1232)$ EXCIT.						
Hagelstein et al. '18 (15)			-13	84	-97	

${ }^{\text {a }}$ Adjusted values: $\Delta_{\text {pol }}$ and Δ_{1} corrected by -46 ppm as described in Ref. 16.
${ }^{\mathrm{b}}$ Different convention was used to calculate the Pauli form factor contribution to Δ_{1}, which is equivalent to the approximate formula in the limit of $m=0$ used for H in Ref. 11.
${ }^{c}$ Elastic form factors from Ref. 17 and updated error analysis from Ref. 16. Note that this result already includes radiative corrections for the Zemach-radius contribution, $\left(1+\delta_{\mathrm{Z}}^{\mathrm{rad}}\right) \Delta_{\mathrm{Z}}$ with $\delta_{\mathrm{Z}}^{\text {rad }} \sim 0.0153(18,19)$, as well as higher-order recoil corrections with the proton anomalous magnetic moment, cf. (11, Eq. 22) and (18).
${ }^{\mathrm{d}}$ Uses r_{p} from $\mu \mathrm{H}$ (20) as input.

POLARIZABILITY EFFECT IN THE HFS

- Polarizability effect on the HFS is completely constrained by empirical information

$$
\begin{aligned}
\Delta_{\text {pol. }} & =\Delta_{1}+\Delta_{2}=\frac{\alpha m}{2 \pi(1+\kappa) M}\left(\delta_{1}+\delta_{2}\right) \\
\delta_{1} & =2 \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q}\left\{\frac{5+4 v_{l}}{\left(v_{l}+1\right)^{2}}\left[4 I_{1}\left(Q^{2}\right)+F_{2}^{2}\left(Q^{2}\right)\right]-\frac{32 M^{4}}{Q^{4}} \int_{0}^{x_{0}} \mathrm{~d} x x^{2} g_{1}\left(x, Q^{2}\right) \frac{1}{\left(v_{l}+v_{x}\right)\left(1+v_{x}\right)\left(1+v_{l}\right)}\left(4+\frac{1}{1+v_{x}}+\frac{1}{v_{l}+1}\right)\right\} \\
\delta_{2} & =96 M^{2} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{3}} \int_{0}^{x_{0}} \mathrm{~d} x g_{2}\left(x, Q^{2}\right)\left(\frac{1}{v_{l}+v_{x}}-\frac{1}{v_{l}+1}\right) \quad \text { with } v_{l}=\sqrt{1+\frac{1}{\tau_{l}}}, v_{x}=\sqrt{1+x^{2} \tau^{-1}}, \tau_{l}=\frac{Q^{2}}{4 m^{2}} \text { and } \tau=\frac{Q^{2}}{4 M^{2}}
\end{aligned}
$$

- BChPT calculation puts the reliability of dispersive calculations (and BChPT) to the test

POLARIZABILITY EFFECT FROM BCHPT

- LO BChPT result is compatible with zero
- Contributions from $\sigma_{L T}$ and $\sigma_{T T}$ are sizeable and largely cancel each other

- Are the data-driven evaluations/uncertainties affected by cancelations?
- Scaling with lepton mass of the lepton-proton bound state

DATA-DRIVEN EVALUATION

- Empirical information on spin structure functions from JLab Spin Physics Programme

- Low-Q region is very important \rightarrow cancelation between $I_{1}\left(Q^{2}\right)$ and $F_{2}\left(Q^{2}\right)$

$$
\begin{aligned}
\delta_{1}(\mathrm{H}) & \sim(\underbrace{-\frac{3}{4} \kappa^{2} r_{\text {Pauli }}^{2}}_{\rightarrow-2.19}+\underbrace{18 M^{2} c_{1 B}}_{\rightarrow 3.54}) Q_{\text {max }}^{2}=1.35(90), \\
\delta_{1}(\mu \mathrm{H}) & \sim[\underbrace{-\frac{1}{3} \kappa^{2} r_{\text {Pauli }}^{2}}_{\rightarrow-1.45}+\underbrace{8 M^{2} c_{1}}_{\rightarrow 2.13}-\underbrace{-\frac{M^{2}}{3 \alpha} \gamma_{0}}_{\rightarrow 0.18}] \int_{0}^{Q_{\max }^{2}} \mathrm{~d} Q^{2} \beta_{1}\left(\tau_{\mu}\right)=0.86(69)
\end{aligned}
$$

PROTON ZEMACH RADIUS

- BChPT polarizability contribution implies smaller Zemach radius (smaller, just like r_{p})

TABLE I. Determinations of the proton Zemach radius R_{Z}, in units of fm .

$e p$ scattering		$\mu \mathrm{H} 2 S \mathrm{hfs}$		$\mathrm{H} 1 S$ hfs	
Lin et al. ' 21	Borah et al. ' 20	Antognini et al. ' 13	LO B $\chi \mathrm{PT}$	Volotka et al. '04	LO B $\chi \mathrm{PT}$
$1.054_{-0.002}^{+0.003}$	$1.0227(107)$	$1.082(37)$	$1.040(33)$	$1.045(16)$	$1.010(9)$

THEORY OF HYPERFINE SPLITTING

A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022) 389-418

The hyperfine splitting of $\mu \mathrm{H}$ (theory update):

$$
E_{1 S \text {-hfs }}=[\underbrace{182.443}_{E_{\mathrm{F}}} \underbrace{+1.350(7)}_{\text {QED }+ \text { weak }} \underbrace{+0.004}_{\mathrm{hVP}} \underbrace{-1.30653(17)\left(\frac{r_{\mathrm{Z} p}}{\mathrm{fm}}\right)+E_{\mathrm{F}}\left(1.01656(4) \Delta_{\text {recoil }}+1.00402 \Delta_{\mathrm{pol}}\right)}_{2 \gamma \text { incl. radiative corr. }}] \mathrm{meV}
$$

- $2 \gamma+$ radiative corrections \Longrightarrow differ for H vs. $\mu \mathrm{H}$ and IS vs. 2 S

The hyperfine splitting of H (theory update):

$$
\begin{aligned}
E_{1 S-\mathrm{hfs}}(\mathrm{H})= & {[\underbrace{1418840.082(9)}_{E_{\mathrm{F}}} \underbrace{+1612.673(3)}_{\mathrm{QED}+\text { weak }} \underbrace{+0.274}_{\mu \mathrm{VP}} \underbrace{+0.077}_{\mathrm{hVP}}} \\
& \underbrace{\left.-54.430(7)\left(\frac{r_{\mathrm{Z} p}}{\mathrm{fm}}\right)+E_{\mathrm{F}}\left(0.99807(13) \Delta_{\mathrm{recoil}}+1.00002 \Delta_{\mathrm{pol}}\right)\right] \mathrm{kHz}}_{2 \gamma \text { incl. radiative corr. }}
\end{aligned}
$$

IMPACT OF H IS HFS

- Leverage radiative corrections $E_{1 S-\mathrm{hfs}}^{\mathrm{Z}+\mathrm{pol}}(\mathrm{H})=E_{\mathrm{F}}(\mathrm{H})\left[b_{1 S}(\mathrm{H}) \Delta_{\mathrm{Z}}(\mathrm{H})+c_{1 S}(\mathrm{H}) \Delta_{\text {pol }}(\mathrm{H})\right]=-54.900(71) \mathrm{kHz}$ and assume the non-recoil $\mathcal{O}\left(\alpha^{5}\right)$ effects have simple scaling $\frac{\Delta_{i}(\mathrm{H})}{m_{r}(\mathrm{H})}=\frac{\Delta_{i}(\mu \mathrm{H})}{m_{r}(\mu \mathrm{H})}, \quad i=\mathrm{Z}$, pol
I. Prediction for $\mu \mathrm{H}$ HFS from empirical IS HFS in H

$$
E_{n S-\mathrm{hfs}}^{\mathrm{Z}+\mathrm{pol}}(\mu \mathrm{H})=\frac{E_{\mathrm{F}}(\mu \mathrm{H}) m_{r}(\mu \mathrm{H}) b_{n S}(\mu \mathrm{H})}{n^{3} E_{\mathrm{F}}(\mathrm{H}) m_{r}(\mathrm{H}) b_{1 S}(\mathrm{H})} E_{1 S-\mathrm{hfs}}^{\mathrm{Z}+\mathrm{pol}}(\mathrm{H})-\frac{E_{\mathrm{F}}(\mu \mathrm{H})}{n^{3}} \Delta_{\mathrm{pol}}(\mu \mathrm{H}) \underbrace{\left[c_{1 S}(\mathrm{H}) \frac{b_{n S}(\mu \mathrm{H})}{b_{1 S}(\mathrm{H})}-c_{n S}(\mu \mathrm{H})\right]}_{=-6 \times 10^{-5} \text { for } \mathrm{n}=1=-5 \times 10^{-5} \text { for } \mathrm{n}=2}
$$

2. Disentangle Zemach radius and polarizability contribution
3. Testing the theory
