Constraining Nuclear Currents for Electroweak Processes **25th European Conference on Few-Body Problems in Physics** Mainz, Germany, July 31, 2023

Alex Gnech (agnech@ectstar.eu)

Trento Institute for **Fundamental Physics** and Applications

Motivation

The predictive power of χ EFT electroweak currents

- We need nuclear currents reliable in a region of momentum transfer of few GeVs (DUNE, HyperKamiokande,...)
- Obtain predictions in an overlap region with higher energy theories
- Which is the limit of χ EFT reliability? **Compute errors!**

Test of the EM Currents on elastic scattering of electrons on nuclei **Magnetic form factors (MFF)**

Phys. Rev. C 106, 044001 (2022)

The theory (up to N2LO)

- Chiral expansion of the EM currents
- Two nuclear interactions: Norfolk [1] and EMN [2]
- Currents from [PRC 80, 034004 (2009) and PRC 99, 034005 (2019)]
- Up to N2LO consistent with [H. Krebs, EPJA 56, 234 (2020)]

[1-M. Piarulli, et al., PRC 94, 054007 (2016)] [2-D.R. Entem, et al. PRC 96, 024004 (2017)]

The theory (N3LO)

Some notes on N3LO:

- Unconsistency with Bochum group currents
- Is chiral symmetry violated?
- Current is not fully conserved

Red: isoscalar Blue: isovector

How to fix the LECs I Using the magnetic moments

 Δ saturation (fix $d_2^V d_3^V$)

[R. Schiavilla et al., PRC 99, 034005 (2019)]

Diffraction generated by tensor forces

How to fix the LECs II This work

- Magnetic moments of d, ³He,
 ³H (fix normalization)
- deuteron-threshold electrodisintegration at backward angles (fix dynamics)

Prediction of A=3 Magnetic Form Factors

Prediction of A=3 Magnetic Form Factor

Prediction of A=3 Magnetic Form Factor

Prediction of A=3 Magnetic Form Factor

Naive truncation error estimate

Truncation errors (as [EPJA 51, 53 (2015)])

$$\alpha = \max\left\{\frac{q}{\Lambda_b}, \frac{m_{\pi}}{\Lambda_b}\right\} \ \Lambda_b = 1 \ \text{GeV}$$

- Nuclear interaction + currents
- Bayesian analysis (slowly) in progress

Reliability of the predictions Is χ EFT able to describe such large Q?

- The "diffraction" is in the χ EFT validity region (suggested by error estimate)
- The "diffraction" is generated by the S and D wave interference
- There should be a mechanism that explain the absence of the "diffraction"

Correlated np pairs

Universal 2-body Universal 2-body transition densities wave functions

Beyond few-body Parameter free prediction of ⁷Li MFF

- No free parameters (we reproduce also the magnetic moment)
- Fitted terms plays a role for Q>0.3 GeV for larger systems
- Data for more nuclei would permit more constraining test
- Prediction up to A<12 with VMC and GFMC in progress

Summary

- New fitting procedure for EM currents LECs
- The isovector currents (OPE+CT @N3LO) seems to be crucial for reproducing the magnetic form factors
- Mechanism can be explained by np dominance in nuclei. Universality of the EM transitions (play a role for heavier nuclei)
- A lot to do for the currents!!

Collaborator: R. Schiavilla

- On going work:
- MFF of p-shell nuclei with QMC@WASHU
- Bayesian fit + $np \rightarrow d\gamma$ (B. Acharaya, S. Bacca, M.Viviani, L.E. Marcucci)

National Energy Research Scientific Computing Center

Reliability of the predictions 5.8 Is χ EFT able to describe large Q?

• Truncation errors (as EPJA 51, 53 (2015))

$$\alpha = \max\left\{\frac{q}{\Lambda_b}, \frac{m_{\pi}}{\Lambda_b}\right\} \ \Lambda_b = 1 \ \text{GeV}$$

- Nuclear interaction + currents
- Bayesian analysis (slowly) in progress

³He EMN500

Results of the fit

χ^2/ndf	$\chi^2/{\rm ndf}$
	(no Rand)
9.9	2.0
10.2	2.3
11.6	2.5
11.6	2.6
11.3	2.8
14.7	4.7
17.7	7.9
	χ ² /ndf 9.9 10.2 11.6 11.3 14.7 17.7

- ndf~40
- Removing Rand *et al.* data, χ^2 improves

d-threshold

