'From Few to Many' **Recent** advances in *ab* initio nuclear structure calculations

Alexander Tichai

Technische Universität Darmstadt

Scope of the talk

Scope of the talk

A. Tichai | EFB25 - European conference on few-body problems in physics

A. Tichai | EFB25 - European conference on few-body problems in physics

A. Tichai | EFB25 - European conference on few-body problems in physics

Ab initio in the early 2000's ...

A. Tichai EFB25 - European conference on few-body problems in physics

... and ab initio today!

A. Tichai | EFB25 - European conference on few-body problems in physics

... and ab initio today!

A. Tichai | EFB25 - European conference on few-body problems in physics

• This talk: **basis-expansion approaches** (alternative: lattice EFT calculation)

 $H_{\rm nucl.} = T + V_{2\rm N} + V_{3\rm N} + \dots$

• This talk: **basis-expansion approaches** (alternative: lattice EFT calculation)

 $H_{\rm nucl.} = T + V_{2\rm N} + V_{3\rm N} + \dots$

• Basis: harmonic oscillator (HO) eigenstates

 $|p\rangle = |nlm_l\rangle \otimes |sm_s\rangle \otimes |tm_t\rangle$

• This talk: **basis-expansion approaches** (alternative: lattice EFT calculation)

 $H_{\rm nucl.} = T + V_{2\rm N} + V_{3\rm N} + \dots$

• Basis: harmonic oscillator (HO) eigenstates

 $|p\rangle = |nlm_l\rangle \otimes |sm_s\rangle \otimes |tm_t\rangle$

• Challenge: excessive size of 3B operators

$$V_{3N} = \frac{1}{36} \sum_{pqrstu} w_{pqrstu} c_p^{\dagger} c_q^{\dagger} c_r^{\dagger} c_u c_t c_s$$

adapted from Roth et al., PRC (2014)

• This talk: **basis-expansion approaches** (alternative: lattice EFT calculation)

 $H_{\rm nucl.} = T + V_{2\rm N} + V_{3\rm N} + \dots$

• Basis: harmonic oscillator (HO) eigenstates

 $|p\rangle = |nlm_l\rangle \otimes |sm_s\rangle \otimes |tm_t\rangle$

• Challenge: excessive size of 3B operators

$$V_{3N} = \frac{1}{36} \sum_{pqrstu} w_{pqrstu} c_p^{\dagger} c_q^{\dagger} c_r^{\dagger} c_u c_t c_s$$

• Similar problem for the encoding of a wave-function parametrization

$$|\Psi\rangle = f(\{O_i\})$$

$$O_i \sim \sum_{\circ \cdots \circ} O_{\circ \cdots \circ} C_{\circ}^{\dagger} \cdots C_{\circ}^{\dagger} C_{\circ} \cdots C_{\circ}$$

adapted from Roth et al., PRC (2014)

• This talk: **basis-expansion approaches** (alternative: lattice EFT calculation)

 $H_{\rm nucl.} = T + V_{2\rm N} + V_{3\rm N} + \dots$

• Basis: harmonic oscillator (HO) eigenstates

 $|p\rangle = |nlm_l\rangle \otimes |sm_s\rangle \otimes |tm_t\rangle$

• This talk: **basis-expansion approaches** (alternative: lattice EFT calculation)

 $H_{\rm nucl.} = T + V_{2\rm N} + V_{3\rm N} + \dots$

Normal ordering: splitting of initial operator based on A-body reference state
 (typically Hartree-Fock: |Φ⟩)

$$V_{3N} = V_{3N}^{(0B)} + V_{3N}^{(1B)} + V_{3N}^{(2B)} + V_{3N}^{(3B)}$$

• Normal ordering: splitting of initial operator based on A-body reference state (typically Hartree-Fock: $|\Phi\rangle$)

$$V_{3N} = V_{3N}^{(0B)} + V_{3N}^{(1B)} + V_{3N}^{(2B)} + V_{3N}^{(3B)}$$

• Normal-ordered two-body approximation: discard residual three-body part

$$v_{pqrs} = \sum_{tu} w_{pqtrsu} \rho_{tu}$$

Density-dependent two-body force

• Normal ordering: splitting of initial operator based on A-body reference state (typically Hartree-Fock: $|\Phi\rangle$)

$$V_{3N} = V_{3N}^{(0B)} + V_{3N}^{(1B)} + V_{3N}^{(2B)} + V_{3N}^{(3B)}$$

• Normal-ordered two-body approximation: discard residual three-body part

$$v_{pqrs} = \sum_{tu} w_{pqtrsu} \rho_{tu}$$

Density-dependent two-body force

• Particle-rank reduction: three-body physics with two-body operators

Normal ordering: splitting of initial operator based on A-body reference state ${}^{\bullet}$ (typically Hartree-Fock: $|\Phi\rangle$)

$$V_{3N} = V_{3N}^{(0B)} + V_{3N}^{(1B)} + V_{3N}^{(2B)} + V_{3N}^{(3B)}$$

Normal-ordered two-body approximation: discard residual three-body part

$$v_{pqrs} = \sum_{tu} w_{pqtrsu} \rho_{tu}$$

Density-dependent two-body force
Particle-rank reduction: three-body
physics with two-body operators
Model-space convergence gauged from
truncation of three-body configurations

Pa

e = 2n + l $e_1 + e_2 + e_3 \le E_{3\max}$

Hebeler, Durant, Hoppe, Heinz, Schwenk, Simonis, Tichai, PRC (2023)

• Fully circumvents the storage of 3B matrix elements in bound-state basis

$$\langle \vec{k}_1 \vec{k}_2 | V_{3N}^{(2B)} | \vec{k}_3 \vec{k}_4 \rangle = \int d\vec{k}_5 d\vec{k}_6 \rho(\vec{k}_5, \vec{k}_6) \langle \vec{k}_1 \vec{k}_2 \vec{k}_5 | V_{3N} | \vec{k}_3 \vec{k}_4 \vec{k}_6 \rangle$$

Hebeler, Durant, Hoppe, Heinz, Schwenk, Simonis, Tichai, PRC (2023)

• Fully circumvents the storage of 3B matrix elements in bound-state basis

$$\langle \vec{k}_1 \vec{k}_2 | V_{3N}^{(2B)} | \vec{k}_3 \vec{k}_4 \rangle = \int d\vec{k}_5 d\vec{k}_6 \rho(\vec{k}_5, \vec{k}_6) \langle \vec{k}_1 \vec{k}_2 \vec{k}_5 | V_{3N} | \vec{k}_3 \vec{k}_4 \vec{k}_6 \rangle$$

• In practice: partial-wave-decomposed basis

$$|\vec{k}_1\vec{k}_2\rangle \longrightarrow |pP,[(LS)JL_{CM}]J_{tot}T\rangle$$

dependence on center-of-mass (CM)

Hebeler, Durant, Hoppe, Heinz, Schwenk, Simonis, Tichai, PRC (2023)

• Fully circumvents the storage of 3B matrix elements in bound-state basis

$$\langle \vec{k}_1 \vec{k}_2 | V_{3N}^{(2B)} | \vec{k}_3 \vec{k}_4 \rangle = \int d\vec{k}_5 d\vec{k}_6 \rho(\vec{k}_5, \vec{k}_6) \langle \vec{k}_1 \vec{k}_2 \vec{k}_5 | V_{3N} | \vec{k}_3 \vec{k}_4 \vec{k}_6 \rangle$$

• In practice: partial-wave-decomposed basis

Hebeler, Durant, Hoppe, Heinz, Schwenk, Simonis, Tichai, PRC (2023)

• Fully circumvents the storage of 3B matrix elements in bound-state basis

$$\langle \vec{k}_1 \vec{k}_2 | V_{3N}^{(2B)} | \vec{k}_3 \vec{k}_4 \rangle = \int d\vec{k}_5 d\vec{k}_6 \rho(\vec{k}_5, \vec{k}_6) \langle \vec{k}_1 \vec{k}_2 \vec{k}_5 | V_{3N} | \vec{k}_3 \vec{k}_4 \vec{k}_6 \rangle$$

• In practice: partial-wave-decomposed basis

²⁰⁸Pb from first principles

Hebeler,...,Tichai et al., PRC (2023)

 Excellent agreement between different normal-ordering frameworks

0

0

0

0

- 5-10 MeV difference on a 1680 MeV scale (~0.5%)!
- Monotonic convergence as function truncation parameters L_{CM} and J_{tot}
- Novel Jacobi framework provides alternative at low memory cost

Heavy-mass frontier

Ab initio theory can target heavy nuclei in a controlled way!

²⁰⁸Pb from first principles

0

Concepts of data compression

Complex object

Loss of detailed ... but lower resources required

Simpler object

Concepts of data compression

Concepts of data compression

see also Tichai et al., PRC (2018), EPJA (2018), PLB (2021), PRC (2021); Zhu et al. PRC (2022)

• Decomposition of matrix using singular value decomposition (SVD)

initial matrix

see also Tichai et al., PRC (2018), EPJA (2018), PLB (2021), PRC (2021); Zhu et al. PRC (2022)

• Decomposition of matrix using singular value decomposition (SVD)

initial matrix

• Important information from dominant singular values (in decreasing order)

$$\Sigma = \operatorname{diag}(s_i) \qquad s_i \geq 0$$

see also Tichai et al., PRC (2018), EPJA (2018), PLB (2021), PRC (2021); Zhu et al. PRC (2022)

• Decomposition of matrix using singular value decomposition (SVD)

initial matrix

• Important information from dominant singular values (in decreasing order)

$$\Sigma = \operatorname{diag}(s_i) \qquad s_i \geq 0$$

Low-rank approximation from truncated singular value decomposition

low-rank approximation

see also Tichai et al., PRC (2018), EPJA (2018), PLB (2021), PRC (2021); Zhu et al. PRC (2022)

• Decomposition of matrix using singular value decomposition (SVD)

initial matrix

low-rank approximation

• Important information from dominant singular values (in decreasing order)

$$\Sigma = \operatorname{diag}(s_i) \qquad s_i \geq 0$$

Low-rank approximation from truncated singular value decomposition

 $\tilde{M} = \tilde{L} \cdot \tilde{\Sigma} \cdot \tilde{R}^{\dagger}$

High-resolution details can be discarded while enabling data compression

see also Tichai et al., PRC (2018), EPJA (2018), PLB (2021), PRC (2021); Zhu et al. PRC (2022)

• Decomposition of matrix using singular value decomposition (SVD)

initial matrix

low-rank approximation

• Important information from dominant singular values (in decreasing order)

$$\Sigma = \operatorname{diag}(s_i) \qquad s_i \geq 0$$

Low-rank approximation from truncated singular value decomposition

 $\tilde{M} = \tilde{L} \cdot \tilde{\Sigma} \cdot \tilde{R}^{\dagger}$

- High-resolution details can be discarded while enabling data compression
- Validated in two-body sector: binding energies, NN phase shifts, nuclear matter, ...

Singular value decomposition see also Tichai et al., PRC (2018), EPJA • Decomposition of matrix using singular value decomposition initial matrix $M = L + \Sigma + R^{\dagger}$

• Important information from dominant singular values (in decreasing order)

$$\Sigma = \operatorname{diag}(s_i) \qquad s_i \geq 0$$

Low-rank approximation from truncated singular value decomposition

 $\tilde{M} = \tilde{L} \cdot \tilde{\Sigma} \cdot \tilde{R}^{\dagger}$

- High-resolution details can be discarded while enabling data compression
- Validated in two-body sector: binding energies, NN phase shifts, nuclear matter, ...

low-rank approximation

Low-rank interactions from chiral EFT

Few-body calculations

Tichai et al., arXiv:2307.15572

- Observables from momentum-space
 Fadeev solver with full 3N force
- Very low error on ground-state observables for different interactions
- 1% of singular values yield less than keV errors on ground-state energy
- Even better compression than in previous low-rank NN studies

Tichai et al., PLB (2021)

Few-body systems

99% of singular values can be discarded at zero loss in accuracy!

Medium-mass nuclei

Ground-state observables for closed-shell nuclei

- Matrix elements from transformation of low-rank 3N interactions
- Low error on observables from different many-body schemes
- Slight increase of decomposition error with mass number
- I% of singular values yield less than keV errors on ground-state energy

Many-body systems

99% of singular values can be discarded at zero loss in accuracy!

Medium-mass nuclei

- Modify decoupling to target valence space
- Construction of *ab-initio* inspired valencespace interactions rooted in QCD

- Modify decoupling to target valence space
- Construction of *ab-initio* inspired valencespace interactions rooted in QCD
- Non-perturbative resummation of phcorrelations into active-space Hamiltonian
- Final computational step requires largespace shell-model diagonalization

- Modify decoupling to target valence space
- Construction of *ab-initio* inspired valencespace interactions rooted in QCD
- Non-perturbative resummation of phcorrelations into active-space Hamiltonian
- Final computational step requires largespace shell-model diagonalization
- Versatility: access to diverse set of observables from shell-model codes

Wave-function representations

• Many-body state is inefficiently represented in configuration interaction

complexity d^N

(d: local dimension, e.g. d=2 for s=1/2 spin chain)

$$|\Psi\rangle = \sum_{p_1...p_N} \Psi_{p_1...p_N} |p_1\cdots p_N\rangle$$

Wave-function representations

• Many-body state is inefficiently represented in configuration interaction

• Exact rewriting of CI wave function using matrix product state (MPS) ansatz

Wave-function representations

• Many-body state is inefficiently represented in configuration interaction

• Exact rewriting of CI wave function using matrix product state (MPS) ansatz

• Approximate MPS representation obtained by limiting intermediate summation

bond dimension M

• DMRG provides a variational procedure for the calculation of expectation values

White, PRL (1991)

$$E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

• DMRG provides a variational procedure for the calculation of expectation values

White, PRL (1991)

 $E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$

• Rewriting expectation value in terms of MPS factors yields tensor network:

• DMRG provides a variational procedure for the calculation of expectation values

White, PRL (1991)

 $E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$

• Rewriting expectation value in terms of MPS factors yields tensor network:

• Stationarity condition yields variational update step for factor matrices

$$\frac{\partial^2}{\partial A_{p_{i-1}p_i}^{\alpha_i}\partial A_{p_ip_{i+1}}^{\alpha_{i+1}}} \left(\langle \Psi | H | \Psi \rangle - E \langle \Psi | \Psi \rangle \right) = 0$$

• DMRG provides a variational procedure for the calculation of expectation values

White, PRL (1991)

 $E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$

• Rewriting expectation value in terms of MPS factors yields tensor network:

• Stationarity condition yields variational update step for factor matrices

$$\frac{\partial^2}{\partial A_{p_{i-1}p_i}^{\alpha_i} \partial A_{p_ip_{i+1}}^{\alpha_{i+1}}} \left(\langle \Psi | H | \Psi \rangle - E \langle \Psi | \Psi \rangle \right) = 0$$

Computationally limited by the number of orbitals and required bond dimension

• DMRG provides a variational procedure for the calculation of expectation values

$$\frac{\partial^2}{\partial A^{\alpha_i}_{\rho_{i-1}\rho_i}\partial A^{\alpha_{i+1}}_{\rho_i\rho_{i+1}}} \left(\langle \Psi | H | \Psi \rangle - E \langle \Psi | \Psi \rangle \right) = 0$$

Computationally limited by the number of orbitals and required bond dimension

From active spaces to 'spin chains'

⁷⁸Ni: Why DMRG?

- DMRG: economic representation of the many-body wave function
- Very slow convergence of the 2⁺ excited state in CI calculations
- Robust convergence of DMRG energies at large bond dimension
- DMRG does extend CI capacities

Experimental input for neutron-rich nuclei needed!

Entanglement

see also Robin et al., PRC (2021)

• Entanglement measures offer better understanding of (nuclear) correlation effects

Entanglement

see also Robin et al., PRC (2021)

- Entanglement measures offer better understanding of (nuclear) correlation effects
- Partition orbital space: reduced density matrices from partial trace operations

 $\rho_A = \text{Tr}_B \rho_{AB}$

(A, B two subsystems)

Entanglement

- Entanglement measures offer better understanding of (nuclear) correlation effects
- Partition orbital space: reduced density matrices from partial trace operations

(A, B two subsystems)

 $\rho_A = \text{Tr}_B \rho_{AB}$

 $\rho_{i} = \begin{pmatrix} 1 - \gamma_{ii} & 0 \\ 0 & \gamma_{ii} \end{pmatrix}$ γ : reduced density matrix (NOT orbital-reduced matrix!)

- Entanglement measures offer better understanding of (nuclear) correlation effects
- Partition orbital space: reduced density matrices from partial trace operations

 $\rho_A = \text{Tr}_B \rho_{AB}$

$$\rho_{i} = \begin{pmatrix} 1 - \gamma_{ii} & 0 \\ 0 & \gamma_{ii} \end{pmatrix} \qquad \begin{array}{l} \gamma: \text{ reduced density matrix} \\ (\text{NOT orbital-reduced matrix!}) \end{array}$$

• Single-orbital entropy encodes nuclear correlation effects in a simple way

 $s_i = -\text{Tr}\,\rho_i \log \rho_i$

- Entanglement measures offer better understanding of (nuclear) correlation effects
- Partition orbital space: reduced density matrices from partial trace operations

 $\rho_A = \text{Tr}_B \rho_{AB}$

$$\rho_{i} = \begin{pmatrix} 1 - \gamma_{ii} & 0 \\ 0 & \gamma_{ii} \end{pmatrix} \qquad \begin{array}{l} \gamma: \text{ reduced density matrix} \\ (\text{NOT orbital-reduced matrix!}) \end{array}$$

• Single-orbital entropy encodes nuclear correlation effects in a simple way

 $s_i = -\text{Tr}\,\rho_i \log \rho_i$

• Total correlation obtained from sum of single-orbital entropies

$$S_{\text{total}} = \sum_{i} s_{i}$$

Naive expectations

Naive picture from CI expansion

Entropies and shell structure

Total entropy in even-mass nickel isotopes

see also Taniuchi et al., Nature (2019)

- Pronounced kink at 78 Ni hints at neutron shell closure (~ dominated by HF)
- Larger bond dimensions required to converge ⁷⁸Ni excited state
- Agreement with conventional prediction based on 2⁺ excitation energies
- **Deviation from experiment attributed** to missing triples corrections: IMSRG(3)

Total entropy is a good proxy for shell closures!

(... but non-observable and basis dependent!)

• Better understanding of orbital correlation effects between two states

$$\rho_{AB} = \operatorname{Tr}_{C} \rho_{ABC}$$

 $A = \{\text{orbit } i\}$ $B = \{\text{orbit } j\}$ $C = \{\text{rest of basis}\}$

• Better understanding of orbital correlation effects between two states

$$\rho_{AB} = \text{Tr}_{C} \rho_{ABC} \qquad A = \{\text{orbit } i\} \\ B = \{\text{orbit } j\} \\ C = \{\text{rest of basis}\}$$

• Two-orbital-reduced density matrix encodes pairwise entanglement

$$\rho_{ij} = \begin{pmatrix} 1 - \gamma_{ii} - \gamma_{jj} + \gamma_{ijij} & 0 & 0 & 0 \\ 0 & \gamma_{jj} - \gamma_{ijij} & \gamma_{ij} & 0 \\ 0 & \gamma_{ij} & \gamma_{ii} - \gamma_{ijij} & 0 \\ 0 & 0 & 0 & \gamma_{ijij} \end{pmatrix}$$

two-body density required!

• Better understanding of orbital correlation effects between two states

$$\rho_{AB} = \text{Tr}_{C} \rho_{ABC} \qquad A = \{\text{orbit } i\} \\ B = \{\text{orbit } j\} \\ C = \{\text{rest of basis}\}$$

• Two-orbital-reduced density matrix encodes pairwise entanglement

$$\rho_{ij} = \begin{pmatrix}
1 - \gamma_{ii} - \gamma_{jj} + \gamma_{ijij} & 0 & 0 & 0 \\
0 & \gamma_{jj} - \gamma_{ijij} & \gamma_{ij} & 0 \\
0 & \gamma_{ij} & \gamma_{ii} - \gamma_{ijij} & 0 \\
0 & 0 & 0 & \gamma_{ijij}
\end{pmatrix}$$

two-body density required!

• Two-orbital entropy again obtained from two-orbital-reduced density matrix

$$s_{ij} = -\text{Tr}\,\rho_{ij}\log\rho_{ij}$$

• Better understanding of orbital correlation effects between two states

$$\rho_{AB} = \text{Tr}_{C} \rho_{ABC} \qquad A = \{\text{orbit } i\} \\ B = \{\text{orbit } j\} \\ C = \{\text{rest of basis}\}$$

• Two-orbital-reduced density matrix encodes pairwise entanglement

$$\rho_{ij} = \begin{pmatrix} 1 - \gamma_{ii} - \gamma_{jj} + \gamma_{ijij} & 0 & 0 & 0 \\ 0 & \gamma_{jj} - \gamma_{ijij} & \gamma_{ij} & 0 \\ 0 & \gamma_{ij} & \gamma_{ii} - \gamma_{ijij} & 0 \\ 0 & 0 & 0 & \gamma_{ijij} \end{pmatrix}$$

two-body density required!

• Two-orbital entropy again obtained from two-orbital-reduced density matrix

$$s_{ij} = -\text{Tr}\,
ho_{ij}\,\log
ho_{ij}$$

Mutual information combines one- and two-particle entanglement

$$I_{ij} = S_i + S_j - S_{ij}$$

Mutual information in sd-shell nuclei

MI for N=16 isotones using ¹⁶O core

- Vanishing MI from proton contributions in oxygen isotopes due to sd-shell
- Indications of BCS-type nn- and pp-pairing within the same shell (J=0, M=0, T=1)
- Proton-neutron correlations suppressed but off-diagonal coupling present

Conclusions

Approximations for three-nucleon forces

- Normal-ordering: complicated 3N as density dependent NN
- Singular value decomposition: complicated 3N as sum of operators
- Converged *ab initio* calculations from ³H up to ²⁰⁸Pb

Next steps: normal ordering for open-shell nuclei/leverage factorization

Compression of wave function from DMRG

- Superior scaling properties of DMRG over diagonalization approaches
- Understanding entanglement using information-theory tools

Next steps: electromagnetic observables/large-scale DMRG runs

Conclusions

Approximations for three-nucleon forces

- Normal-ordering: complicated 3N as density dependent NN
- Singular value decomposition: complicated 3N as sum of operators
- Converged *ab initio* calculations from ³H up to ²⁰⁸Pb

Compression of wave function from DMRG

- Superior scaling properties of DMRG over diagonalization approaches
- Understanding entanglement using information-theory tools

Next steps: electromagnetic observables/large-scale DMRG runs