25th European Conference of Few-Body Problems in Physics

Mainz (Germany), July 30th-August 4th, 2023

Constituent quark model.
What have we learned about exotic states?

Exotic states in the constituent quark model

The new, enhanced version of the search results page is avai
214 results

2,130 document results

ALL (constituent AND quark AND model AND exotics)
\because Edit \square Save \triangle Set alert

Exotic states in the constituent quark model

\equiv Google Académico
 constituent quark model exotic

Scopus

The new, enhanced version of the search results page is avai
214 results

2,130 document results

ALL (constituent AND quark AND model AND exotics)
© Edit $⿴ 囗$ Save Ω Setalert

Exotic states in the constituent quark model

\equiv Google Académico
 constituent quark model exotic
 The new, enhanced version of the search results page in

Exotic states in the constituent quark model

\equiv Google Académico

constituent quark model exotic

Scopus

This in not a thorough review of the field, so I probably not quote your favorite paper.

Exotic states in the constituent quark model

- And second, I will mostly focus this talk on what can we can learn from the constituent quark model approach for exotic states from the double heavy four-quark sector.
- Topics I will not cover
- QCD sum rules.
- Lattice QCD.
- Dinamically generated resonances.
- Phenomenological mass-based relations.
- etc...

25th European Conference of Few-Body Problems in Physics

Mainz (Germany), July 30th-August 4th, 2023

Constituent quark model.
What I have learned from exotic systems thanks to the study of double heavy tetraquarks

The basics

- The constituent quark model have (probably surprisingly) described rather well mesons and baryons as composite objects made of constituent valence quarks

$$
m_{c} \approx 1.3 \mathrm{GeV} \quad m_{b} \approx 5 \mathrm{GeV} \quad m_{u} \approx 0.3 \mathrm{GeV}
$$

interacting by means of a potential, normally pairwise, but not always.

The basics

- The constituent quark model have (probably surprisingly) described rather well mesons and baryons as composite objects made of constituent valence quarks

$$
m_{c} \approx 1.3 \mathrm{GeV} \quad m_{b} \approx 5 \mathrm{GeV} \quad m_{u} \approx 0.3 \mathrm{GeV}
$$

interacting by means of a potential, normally pairwise, but not always.

- A four-quark state is the simplest object with a non-trivial color structure.

The basics

But for charm equal $\pm 2 \rightarrow$

- The constituent quark model have (probably surprisingly) described rather well mesons and baryons as composite objects made of constituent valence quarks

$$
m_{c} \approx 1.3 \mathrm{GeV} \quad m_{b} \approx 5 \mathrm{GeV} \quad m_{u} \approx 0.3 \mathrm{GeV}
$$

interacting by means of a potential, normally pairwise, but not always.

We are in 2023 and...

There are many experimental results, but I will quote just one for now:

We are in 2023 and...

There are many experimental results, but I will quote just one for now: nature communications

```
    nature > nature communications > articles > article
    Article | Open Access | Published: 16 June 2022
```


Study of the doubly charmed tetraquark $\mathrm{T}_{\mathrm{cc}}^{+}$

LHCb collaboration

Nature Communications 13, Article number: 3351 (2022)

naturephysics

nature > nature physics > letters > article

Letter | Open Access | Published: 16 June 2022

Observation of an exotic narrow doubly charmed tetraquark

We are in 2023 and...

There are many experimental results, but I will quote just one for now:

naturephysics

```
nature > naturephysics > letters > article
Letter | Open Access | Published:16 June 2022
```


Observation of an exotic narrow doubly charmed tetraquark

LHCb Collaboration
Nature Physics 18, 751-754 (2022)

Abstract

Conventional, hadronic matter consists of baryons and mesons made of three quarks and a quark-antiquark pair, respectively 1,2 . Here, we report the observation of a hadronic state containing four quarks in the Large Hadron Collider beauty experiment. This so-called tetraquark contains two charm quarks, a \bar{u} and a d quark. This exotic state has a mass of approximately $3,875 \mathrm{MeV}$ and manifests as a narrow peak in the mass spectrum of $D^{0} D^{0} \pi^{+}$ mesons just below the $D^{*+} D^{0}$ mass threshold. The near-threshold mass together with the narrow width reveals the resonance nature of the state.

In the beginning. The year 1982

In the beginning. The year 1982

In the beginning. The year 1982

In the beginning. The year 1982

In the beginning. The year 1982

In the beginning. The year 1982

In the beginning. 40 years ago in the year 1982

In the beginning. 40 years ago in the year 1982

PHYSICAL REVIEW D VOLUME 25, NUMBER 9 1 MAY 1982
Do narrow heavy multiquark states exist?

J.-P. Ader J.-M. Richard P. Taxil

(Received 11 August 1981)

$C C \overline{C C}$
 $c u \bar{c} \bar{d}$

$c c \bar{u} \bar{d}$

We discuss the existence of states made of four heavy quarks in the context of potential models already used in the study of heavy mesons and baryons. [...]
the α particle lies below the threshold for the decay into two deuterons. In quark physics, one of the most important problems today, experimentally and theoretically, is whether or not narrow multiquark states do exist. In this paper we do not in-- . . \quad.

In the beginning. 40 years ago in the year 1982

PHYSICAL REVIEW D VOLUME 25, NUMBER 9 MAY 1982

Do narrow heavy multiquark states exist?

J.-P. Ader J.-M. Richard P. Taxil

(Received 11 August 1981)

We discuss the existence of states made of four heavy quarks in the context of potential models already used in the study of heavy mesons and baryons. [...]

The authors consider linear+coulomb and power-law potentials and a variational approach using a harmonic oscillator wave function .

More complex options are included for the all-heavy four-quark states (chromomagnetic interaction, bag model, negative parity states, etc...)

$C \overline{C C}$

$c u \bar{C} \bar{d}$ $c c \bar{u} \bar{d}$

$$
\begin{aligned}
V_{Q \bar{Q}}^{\mathrm{I}}(r) & =-\frac{16}{3} V_{8}^{\mathrm{I}}(r) \\
& =-\frac{4}{3} \frac{\alpha_{s}}{r}+\lambda r, \\
V_{Q \bar{Q}}^{\mathrm{II}}(r) & =-\frac{16}{3} V_{8}^{\mathrm{II}}(r)=A+B r^{\beta} .
\end{aligned}
$$

In the beginning. 40 years ago in the year 1982

PHYSICAL REVIEW D VOLUME 25, NUMBER 9 MAY 1982

Do narrow heavy multiquark states exist?

J.-P. Ader J.-M. Richard P. Taxil

(Received 11 August 1981)
We discuss the existence of states made of four heavy quarks in the context of poten-
$c c \bar{u} \bar{d}$ tial models already used in the study of heavy mesons and baryons. [...]
of the shape of the confining potential V_{8}. Using phenomenological interactions, we found for instance the first $c c \overline{c c}$ state around 300 MeV above the threshold made of two charmonia, and the spin-independent corrections do not appreciably reduce this gap.
first threshold is $\psi \chi$ instead of $\eta_{c} \eta_{c}$. Even so, we did not find any narrow $c c \overline{c c} P$ state emerging from our calculation.
our qualitative conclusions are certainly rather general. The cryptoexotic configuration $Q Q^{\prime} \bar{Q} \bar{Q}^{\prime}$, lies above its lowest dissociation threshold $Q \bar{Q}+Q^{\prime} \bar{Q}^{\prime}$. On the other hand, the genuine exotic $Q Q \bar{Q}$ ' \bar{Q} ' can be stable against dissociation if the ratio of the quark masses is large enough. Our predictions

Exploring numerical methods

Z. Phys. C - Particles and Fields 30, 457-468 (1986)	2 and Fields (C) Springer-Verlag 1986
Four-Quark Bound States	
S. Zouzou ${ }^{1}$, B. Silvestre-Brac ${ }^{2}$, C. Gignoux ${ }^{2}$, J.M. Richard ${ }^{3}{ }^{\star}$	
${ }^{1}$ Laboratoire de Physique Théorique des Particules Elémentaires, Université Pierre et Marie Curie, F-75230 Division de Physique Théorique, IPN, F-91406 Orsay, France ${ }^{2}$ Institut des Sciences Nucléaires, F-38026 Grenoble, France ${ }^{3}$ Institut Laue-Langevin, F-38042 Grenoble, France	Paris, France and
Received 29 October 1985	

The authors search bound states with central forces only, by comparing three methods: a gaussian parametrization of the wave-function, the harmonic oscillator expansion and the hyperspherical expansion. They include spin-spin terms and virtual meson-meson configurations.

Exploring numerical methods

Z. Phys. C - Particles and Fields 30, 457-468 (1986)
Four-Quark Bound States
S. Zouzou ${ }^{1}$, B. Silvestre-Brac ${ }^{2}$, C. Gignoux ${ }^{2}$, J.M. Richard ${ }^{3 \star}{ }^{\star}$
${ }^{1}$ Laboratoire de Physique Théorique des Particules Elémentaires, Université Pierre et Marie Curie, F-75230 Paris, France and
${ }^{2}$ Division de Physique Théróque, IPN, F-91406 Orsay, France
${ }^{3}$ Institut des Sciences Nucleaires, F-38026 Grenoble, France
Institut Laue-Langevin, F-38042 Grenoble, France
Received 29 October 1985
seems hardly "defeatable" in our model. On the other hand, the genuine exotic ($Q Q \bar{q} \bar{q}$) can take advantage of the asymmetry in the quark masses (with e.g. $r(Q Q) \ll r(Q \bar{q}) \simeq r(\bar{q} \bar{q})$) and benefit from the strong attraction between the two heavy quarks, whereas in its threshold, $(Q \bar{q})+(Q \bar{q})$, the heavy quarks do not interact together. This is why we consider systems combining various flavours in our search for stable multiquarks.

The authors search bound states with central forces only, by comparing three methods: a gaussian parametrization of the wave-function, the harmonic oscillator expansion and the hyperspherical expansion. They include spin-spin terms and virtual meson-meson configurations.

Exploring numerical methods

Z. Phys. C - Particles and Fields 30, 457-468 (1986)
Four-Quark Bound States
S. Zouzou ${ }^{1}$, B. Silvestre-Brac ${ }^{2}$, C. Gignoux ${ }^{2}$, J.M. Richard ${ }^{3 \star}$ *
${ }^{1}$ Laboratoire de Physique Théorique des Particules Elémentaires, Université Pierre et Marie Curie, F-75230 Paris, France and
Division de Physique Thérique, IPN, F-91406 Orsay, France $_{2}$ Institut des Sciences Nucléaires, F-38026 Grenoble, France
${ }^{3}$ Institut Laue-Langevin, F-38042 Grenoble, France
Received 29 October 1985

The authors search bound states with central forces only, by comparing three methods: a gaussian parametrization of the wave-function, the harmonic oscillator expansion and the hyperspherical expansion. They include spin-spin terms and virtual meson-meson configurations.

Exploring numerical methods

Z. Phys. C - Particles and Fields 30, 457-468 (1986)	2 and Fields (C) Springer-Verlag 1986
Four-Quark Bound States	
S. Zouzou ${ }^{1}$, B. Silvestre-Brac ${ }^{2}$, C. Gignoux ${ }^{2}$, J.M. Richard ${ }^{\text {3 }}$ *	
${ }^{1}$ Laboratoire de Physique Théorique des Particules Elémentaires, Université Pierre et Marie Curie, F-75230 Division de Physique Théorique, IPN, F-91406 Orsay, France ${ }^{2}$ Institut des Sciences Nucléaires, F-38026 Grenoble, France ${ }^{3}$ Institut Laue-Langevin, F-38042 Grenoble, France	Paris, France and
Received 29 October 1985	

The authors search bound states with central forces only, by comparing three methods: a gaussian parametrization of the wave-function, the harmonic oscillator expansion and the hyperspherical expansion. They include spin-spin terms and virtual meson-meson configurations.

Using the Bhaduri potential they identified the S=1 I=0 case as the most promising candidate for a bound state.

A systematic analysis

Z. Phys. C 57, 273-282 (1993)	
Systematics of $L=0 \boldsymbol{q}^{\mathbf{2}} \overline{\boldsymbol{q}}^{\mathbf{2}}$ systems	2 nimim Particles and Fields © Springer-Verlag 1993
B. Silvestre-Brac ${ }^{1}$, C. Semay ${ }^{2, \star}$	
Z. Phys. C 59, 457-470 (1993)	
Spectrum and decay properties of diquonia B. Silvestre-Brac ${ }^{1}$, C. Semay ${ }^{2 / \star}$	ZEITSCHRIFT FÜR PHYSIK C
Z. Phys. C 61, 271-275 (1994)	ZEITSCHRIFT
Diquonia and potential models	FÜR PHYSIK C © Springer-Verlag 1994
C. Semay ${ }^{1 . \star}$, B. Silvestre-Brac ${ }^{2}$	

Using the interquark potential due to Bhaduri et al., the energies of all $L=0,1,2,3$ four-quark states are calculated for any value of the total S and I and for $\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}, \mathrm{b}$ using a harmonic oscillator basis up to $7 / 8$ quanta. Natural parity is considered.

This implies 924 combinations.

A systematic analysis

Z. Phys. C 57, 273-282 (1993)	
Systematics of $L=0 \boldsymbol{q}^{\mathbf{2}} \overline{\boldsymbol{q}}^{\mathbf{2}}$ systems	zanaminc Particles and Fields © Springer-Verlag 1993
B. Silvestre-Brac ${ }^{1}$, C. Semay ${ }^{2 . \star}$	
Z. Phys. C 59, 457-470 (1993)	
Spectrum and decay properties of diquonia B. Silvestre-Brac ${ }^{1}$, C. Semay ${ }^{2, \star}$	ZEITSCHRIFT FÜR PHYSIK C (0) Springer-Verlag 1993
Z. Phys. C 61, 271-275 (1994)	ZEITSCHRIFT
Diquonia and potential models	FÜR PHYSIK C © Springer-Verlag 1994
C. Scmay ${ }^{1 . \star}$, B. Silvestre-Brac ${ }^{2}$	

Using the interquark potential due to Bhaduri et al., the energies of all $L=0,1,2,3$ four-quark states are calculated for any value of the total S and I and for $\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}, \mathrm{b}$

Nature	I	$J=S$	$E_{d}(\mathrm{MeV})$	$\Delta(\mathrm{MeV})$
$n n \bar{b} \bar{b}$	0	1	10525	-131
$n s \bar{b} \bar{b}$	$1 / 2$	1	10680	-40
$n n \bar{c} \bar{b}$	0	1	7244	1
$n n \bar{c} \bar{b}$	0	0	7206	11
$n n \bar{c} \bar{c} \bar{b}$	0	1	3931	19
$n n \bar{b} \bar{b}$	1	2	10735	30
$n s \bar{b} \bar{b}$	$1 / 2$	2	10816	48
$n n \bar{s} \bar{c}$	0	2	2975	49
$n n \bar{s} \bar{b}$	0	2	6306	49
$n n \bar{c} \bar{b}$	0	2	7422	49
$n n \bar{n} \bar{n}$	0	2	1605	51
$n n \bar{n} \bar{b}$	$1 / 2$	2	6181	52
$n n \bar{n} \bar{s}$	$1 / 2$	2	1734	52
$n n \bar{b} \bar{b}$	1	1	10712	56
$n s \bar{n} \bar{s} \bar{s}$	0,1	2	1854	59
$n s \overline{\bar{c}} \bar{b}$	$1 / 2$	2	7496	59

This implies 924 combinations.

Improving the numerical methods

A different approach based on Gaussian variational wave functions including combinations of three different radial coordinates is considered.

PHYSICAL REVIEW D	VOLUME 57, NUMBER 11	1 JUNE 1998
Tetraquarks with heavy flavors		
	D. M. Brink Dipartimento di Fisica, Università degli Studi di Trento, 1 -38050 Povo (Trento). Italy	
	Fl. Stancu Université de Liège, Institut de Physique B5, Sart Tilman, B-4000 Liège 1, Belgium	

$E(q q \bar{b} \bar{b})(\mathrm{MeV})$					
$S I$	1 Gaussian	5 Gaussians	Brac-Semay	Threshold	$E-E_{T}$
10	10577.7	10558.1	10525	$B+B^{*}$	-98.9
01	10802.4	10766.2		$B+B$	156.2
11	10812.1	10774.1	10712	$B+B^{*}$	117.1
21	10831.5	10789.8	10735	$B^{*}+B^{*}$	85.8

First detailed study of typical radii and radial properties.

Improving the numerical methods

A different approach based on Gaussian variational wave functions including combinations of three different radial coordinates is considered.

PHYSICAL REVIEW D	VOLUME 57, NUMBER 11	1 JUNE 1998
Tetraquarks with heavy flavors		
	D. M. Brink Dipartimento di Fisica, Università degli Studi di Trento, 1 -38050 Povo (Trento). Italy	
	Fl. Stancu Université de Liège, Institut de Physique B5, Sart Tilman, B-4000 Liège 1, Belgium	

$E(q q \bar{b} \bar{b})(\mathrm{MeV})$					
SI	1 Gaussian	5 Gaussians	Brac-Semay	Threshold	$E-E_{T}$
10	10577.7	10558.1	10525	$B+B^{*}$	-98.9
01	10802.4	10766.2		$B+B$	156.2
11	10812.1	10774.1	10712	$B+B^{*}$	117.1
21	10831.5	10789.8	10735	$B^{*}+B^{*}$	85.8

First detailed study of typical radii and radial properties.

IS	Threshold [Bh]	$\begin{aligned} & N_{\max }=90 \\ & {[\mathrm{Bh}]} \end{aligned}$	Ref. [3] [Bh]	Threshold [AL1]	$\begin{aligned} & N_{\max }=90 \\ & {[\mathrm{AL} 1]} \end{aligned}$	Ref. [4] [AL1]
01	10650.9	10518.9	10525	10644.1	10503.9	10509
10	10601.4	10601.4	> 10642	10587.0	10587.0	-
11	10650.9	10650.9	10712	10644.1	10644.1	-
$c c \bar{u} \bar{d} \quad S=1 I=0$						
		Threshold		$N_{\text {max }}=140$		Ref. [3]
Bhaduri		3905.3		3904.7		3931
AL1		3878.6		3875.9		3892

Improving the numerical methods

A different approach based on Gaussian variational wave functions including combinations of three different radial coordinates is considered.
PHYSICAL REVIEW D
VOLUME 57, NUMBER 11

$E(q q \bar{b} \bar{b})(\mathrm{MeV})$					
SI	1 Gaussian	5 Gaussians	Brac-Semay	Threshold	$E-E_{T}$
10	10577.7	10558.1	10525	$B+B^{*}$	-98.9
01	10802.4	10766.2		$B+B$	156.2
11	10812.1	10774.1	10712	$B+B^{*}$	117.1
21	10831.5	10789.8	10735	$B^{*}+B^{*}$	85.8

First detailed study of typical radii and radial properties.

Exploring constituent quark models

PHYSICAL REVIEW D 76, 094027 (2007)
Are there compact heavy four-quark bound states?
J. Vijande, ${ }^{1}$ E. Weissman, ${ }^{2}$ A. Valcarce, ${ }^{3}$ and N. Barnea ${ }^{2,4}$

PHYSICAL REVIEW D 79, 074010 (2009)
Exotic meson-meson molecules and compact four-quark states

$$
\text { J. Vijande, }{ }^{1,2} \text { A. Valcarce, }{ }^{2} \text { and N. Barnea }{ }^{3,4}
$$

We revisit the same sector using more powerful numerical techniques:

- A hyperspherical harmonic formalism (up to $K=30$)
- A variational method using generalized gaussians with all non-diagonal terms (relative $l \neq 0$)

$$
\begin{aligned}
& R_{s}(1234)=\sum_{i=1}^{n} \beta_{s}^{(i)} R_{s}^{(i)}= \\
& \sum_{i=1}^{n} \beta_{s}^{(i)} e^{-a_{s}^{(i)} \vec{x}^{2}-b_{s}^{(i)} \vec{y}^{2}-c_{s}^{(i)} \vec{z}^{2}-d_{s}^{(i)} \vec{x} \vec{y}-e_{s}^{(i)} \vec{x} \vec{z}-f_{s}^{(i)} \vec{y} \vec{z}}
\end{aligned}
$$

Exploring constituent quark models

PHYSICAL REVIEW D 76, 094027 (2007)

Are there compact heavy four-quark bound states?

J. Vijande, ${ }^{1}$ E. Weissman, ${ }^{2}$ A. Valcarce, ${ }^{3}$ and N. Barnea ${ }^{2,4}$

PHYSICAL REVIEW D 79, 074010 (2009)
Exotic meson-meson molecules and compact four-quark states

```
J. Vijande,, 1,2 A. Valcarce, ' and N. Barnea }\mp@subsup{}{}{3,4
```

We revisit the same sector using more powerful numerical techniques:

- A hyperspherical harmonic formalism (up to $K=30$)
- A variational method using generalized gaussians with all non-diagonal terms (relative $l \neq 0$)

Exploring constituent quark models

PHYSICAL REVIEW D 76, 094027 (2007)

Are there compact heavy four-quark bound states?

J. Vijande, ${ }^{1}$ E. Weissman, ${ }^{2}$ A. Valcarce, ${ }^{3}$ and N. Barnea ${ }^{2,4}$

PHYSICAL REVIEW D 79, 074010 (2009)
Exotic meson-meson molecules and compact four-quark states

```
J. Vijande, ,}\mp@subsup{}{}{1,2}\mathrm{ A. Valcarce, ' and N. Barnea }\mp@subsup{}{}{3,4
```

(L, S, I)	Standard Gaussians	HH $\left(\sum_{i} \ell_{i}=0\right)$	HH
$(0,0,1)$	4155	4154	3911
$(0,1,0)$	3927	3926	3860
$(0,1,1)$	4176	4175	3975
$(0,2,1)$	4195	4193	4031

We revisit the same sector using more powerful numerical techniques:

- A hyperspherical harmonic formalism (up to $K=30$)
- A variational method using generalized gaussians with all non-diagonal terms (relative $l \neq 0$)

Exploring constituent quark models

PHYSICAL REVIEW D 76, 094027 (2007)

Are there compact heavy four-quark bound states?

J. Vijande, ${ }^{1}$ E. Weissman, ${ }^{2}$ A. Valcarce, ${ }^{3}$ and N. Barnea ${ }^{2,4}$

PHYSICAL REVIEW D 79, 074010 (2009)
Exotic meson-meson molecules and compact four-quark states

```
J. Vijande, ,}\mp@subsup{}{}{1,2}\mathrm{ A. Valcarce, ' and N. Barnea }\mp@subsup{}{}{3,4
```

(L, S, I)	Standard Gaussians	HH $\left(\sum_{i} \ell_{i}=0\right)$	HH
$(0,0,1)$	4155	4154	3911
$(0,1,0)$	3927	boud.	4926
$(0,1,1)$	4176	4175	3860
$(0,2,1)$	4195	4193	3975

We revisit the same sector using more powerful numerical techniques:

- A hyperspherical harmonic formalism (up to $K=30$)
- A variational method using generalized gaussians with all non-diagonal terms (relative $l \neq 0$)

Exploring constituent quark models

Exploring constituent quark models

PHYSICAL REVIEW D 76, 094027 (2007)
 Are there compact heavy four-quark bound states?
 J. Vijande, ${ }^{1}$ E. Weissman, ${ }^{2}$ A. Valcarce, ${ }^{3}$ and N. Barnea ${ }^{2,4}$
 PHYSICAL REVIEW D 79, 074010 (2009)

Exotic meson-meson molecules and compact four-quark states J. Vijande, ${ }^{1,2}$ A. Valcarce, ${ }^{2}$ and N. Barnea ${ }^{3,4}$

Exploring constituent quark models

$$
\text { PHYSICAL REVIEW D 76, } 094027 \text { (2007) }
$$

Are there compact heavy four-quark bound states?

J. Vijande, ${ }^{1}$ E. Weissman, ${ }^{2}$ A. Valcarce, ${ }^{3}$ and N. Barnea ${ }^{2,4}$

PHYSICAL REVIEW D 79, 074010 (2009)
Exotic meson-meson molecules and compact four-quark states J. Vijande, ${ }^{1,2}$ A. Valcarce, ${ }^{2}$ and N. Barnea ${ }^{3,4}$

Quark content	$J^{P}(L, S, I)$	Model	Decay mode
$c c \bar{n} \bar{n}$	$1^{+}(0,1,0)$	CQC	Weak
		BCN	Electromagnetic
$b b \bar{n} \bar{n}$	$1^{+}(0,1,0)$	CQC	Weak
		BCN	Weak
	$3^{-}(1,2,1)$	CQC	Electromagnetic
		BCN	Electromagnetic
	$0^{+}(0,0,0)$	CQC	Electromagnetic
	$1^{-}(1,0,0)$	BCN	Electromagnetic
			Weak

Beyond pairwise interactions

PHYSICAL REVIEW D 76, 114013 (2007)

Stability of multiquarks in a simple string model

J. Vijande, ${ }^{1,2, *}$ A. Valcarce, ${ }^{2, \uparrow}$ and J.-M. Richard ${ }^{3, *}$

Flip-Flop model

$$
V_{f}=\lambda \min \left(r_{13}+r_{24}, r_{23}+r_{14}\right)
$$

Butterfly model

Beyond pairwise interactions

PHYSICAL REVIEW D 76, 114013 (2007)

Stability of multiquarks in a simple string model

J. Vijande, ${ }^{1,2, *}$ A. Valcarce, ${ }^{2, \uparrow}$ and J.-M. Richard ${ }^{3, *}$

Butterfly model

Flip-Flop model

$V_{s}=\min \left(V_{f}, V_{b}\right)$
$V_{b}=\lambda \min _{k, \ell}\left(r_{1 k}+r_{2 k}+r_{k \ell}+r_{\ell 3}+r_{\ell 4}\right)$

Beyond pairwise interactions

PHYSICAL REVIEW D 94, 094032 (2016)

Tetraquark bound states and resonances in a unitary microscopic quark model: A case study of bound states of two light quarks and two heavy antiquarks
P. Bicudo ${ }^{*}$ and M. Cardoso ${ }^{\dagger}$

> To summarize, we obtain tetraquark bound states on the $q q \bar{b} \bar{b}$ system, with quantum numbers 0^{+}for s and c quarks, or light quarks with $I_{12}=1$. For light quarks with $I_{12}=0$, we obtain bound states with quantum numbers 1^{+}.
> We also tried to find bound states for the $q q \bar{c} \bar{c}$ system, but we were unable to find them when the lightest quarks have constituent masses equal to or larger than the ones of light quarks $m_{q} \geq 400 \mathrm{MeV}$.

The ground state potential for a system composed of two quarks and two antiquarks is well fitted by a string flipflop potential.

Will the relativistic kinematics increase the number of stable multiquarks?

Will the relativistic kinematics increase the number of stable multiquarks?

PHYSICAL REVIEW D 103, 054020 (2021)

Effect of relativistic kinematics on the stability of multiquarks Jean-Marc Richard \odot^{*} Alfredo Valcarce \odot^{\dagger} Javier Vijande \odot^{\ddagger}

In this case the threshold is made of two ($q Q$) mesons while in the four-quark state there are $(q q),(Q Q)$ and four $(q Q)$ interactions. Who will benefit more from the relativistic dynamics?

We consider the AL1 potential properly re-parametrized in the SR case for keeping the description of the meson spectra.

Will the relativistic kinematics increase the number of stable multiquarks?

PHYSICAL REVIEW D 103, 054020 (2021)

Effect of relativistic kinematics on the stability of multiquarks Jean-Marc Richard \odot^{*} Alfredo Valcarce \odot^{\dagger} Javier Vijande \odot^{\ddagger}

In this case the threshold is made of two ($q Q$) mesons while in the four-quark state there are $(q q),(Q Q)$ and four $(q Q)$ interactions. Who will benefit more from the relativistic dynamics?

We consider the AL1 potential properly re-parametrized in the SR case for keeping the description of the meson spectra.

Few-body dynamics

PHYSICAL REVIEW C 97, 035211 (2018)

Few-body quark dynamics for doubly heavy baryons and tetraquarks

Jean-Marc Richard, ${ }^{1,{ }^{*}}$ Alfredo Valcarce, ${ }^{2, \dagger}$ and Javier Vijande ${ }^{3, \ddagger}$

A very delicate interplay between color and spin configurations.

Few-body dynamics

The treatment of the four-body dynamics for double-charm tetraquarks is discussed. The variational and Born-Oppenheimer approximations together with the Hall-Post inequalities give energies very close to the exact ones, while the diquark approximation might be more problematic.

PHYSICAL REVIEW C 97, 035211 (2018)

Few-body quark dynamics for doubly heavy baryons and tetraquarks

Jean-Marc Richard, ${ }^{1,{ }^{*}}$ Alfredo Valcarce, ${ }^{2, \dagger}$ and Javier Vijande ${ }^{3, \ddagger}$

What about the probabilities?

PHYSICAL REVIEW C 80, 035204 (2009)
Probabilities in nonorthogonal bases: Four-quark systems
J. Vijande ${ }^{1}$ and A. Valcarce ${ }^{2}$

$$
\begin{aligned}
& {\left[\left(q_{1} q_{2}\right)\left(\bar{q}_{3} \bar{q}_{4}\right)\right] \equiv\left\{\left|\overline{3}_{12} 3_{34}\right\rangle,\left|6_{12} \overline{6}_{34}\right\rangle\right\} \equiv\left\{|\overline{3} 3\rangle_{c}^{12},|6 \overline{6}\rangle_{c}^{12}\right\}} \\
& {\left[\left(q_{1} \bar{q}_{3}\right)\left(q_{2} \bar{q}_{4}\right)\right] \equiv\left\{\left|1_{13} 1_{24}\right\rangle,\left|8_{13} 8_{24}\right\rangle\right\} \equiv\left\{|11\rangle_{c},|88\rangle_{c}\right\}} \\
& {\left[\left(q_{1} \bar{q}_{4}\right)\left(q_{2} \bar{q}_{3}\right)\right] \equiv\left\{\left|1_{14} 1_{23}\right\rangle,\left|8_{14} 8_{23}\right\rangle\right\} \equiv\left\{\left|1^{\prime} 1^{\prime}\right\rangle_{c},\left|8^{\prime} 8^{\prime}\right\rangle_{c}\right\}}
\end{aligned}
$$

What about the probabilities?

PHYSICAL REVIEW C 80, 035204 (2009)
Probabilities in nonorthogonal bases: Four-quark systems
J. Vijande ${ }^{1}$ and A. Valcarce ${ }^{2}$

$$
\begin{aligned}
& {\left[\left(q_{1} q_{2}\right)\left(\bar{q}_{3} \bar{q}_{4}\right)\right] \equiv\left\{\left|\overline{3}_{12} 3_{34}\right\rangle,\left|6_{12} \overline{6}_{34}\right\rangle\right\} \equiv\left\{|\overline{3} 3\rangle_{c}^{12},|6 \overline{6}\rangle_{c}^{12}\right\} \quad \text { Calculations }} \\
& {\left[\left(q_{1} \bar{q}_{3}\right)\left(q_{2} \bar{q}_{4}\right)\right] \equiv\left\{\left|1_{13} 1_{24}\right\rangle,\left|8_{13} 8_{24}\right\rangle\right\} \equiv\left\{|11\rangle_{c},|88\rangle_{c}\right\}} \\
& {\left[\left(q_{1} \bar{q}_{4}\right)\left(q_{2} \bar{q}_{3}\right)\right] \equiv\left\{\left|1_{14} 1_{23}\right\rangle,\left|8_{14} 8_{23}\right\rangle\right\} \equiv\left\{\left|1^{\prime} 1^{\prime}\right\rangle_{c},\left|8^{\prime} 8^{\prime}\right\rangle_{c}\right\}}
\end{aligned}
$$

What about the probabilities?

PHYSICAL REVIEW C 80, 035204 (2009)
Probabilities in nonorthogonal bases: Four-quark systems
J. Vijande ${ }^{1}$ and A. Valcarce ${ }^{2}$

$$
\begin{aligned}
& {\left[\left(q_{1} q_{2}\right)\left(\bar{q}_{3} \bar{q}_{4}\right)\right] \equiv\left\{\left|\overline{3}_{12} 3_{34}\right\rangle,\left|6_{12} \overline{6}_{34}\right\rangle\right\} \equiv\left\{|\overline{3} 3\rangle_{c}^{12},|6 \overline{6}\rangle_{c}^{12}\right\} \quad \text { Calculations }} \\
& {\left[\left(q_{1} \bar{q}_{3}\right)\left(q_{2} \bar{q}_{4}\right)\right] \equiv\left\{\left|1_{13} 1_{24}\right\rangle,\left|8_{13} 8_{24}\right\rangle\right\} \equiv\left\{|11\rangle_{c},|88\rangle_{c}\right\}} \\
& {\left[\left(q_{1} \bar{q}_{4}\right)\left(q_{2} \bar{q}_{3}\right)\right] \equiv\left\{\left|1_{14} 1_{23}\right\rangle,\left|8_{14} 8_{23}\right\rangle\right\} \equiv\left\{\left|1^{\prime} 1^{\prime}\right\rangle_{c},\left|8^{\prime} 8^{\prime}\right\rangle_{c}\right\}}
\end{aligned}
$$

Physical interpretation

What about the probabilities?

PHYSICAL REVIEW C 80, 035204 (2009)

Probabilities in nonorthogonal bases: Four-quark systems
J. Vijande ${ }^{1}$ and A. Valcarce ${ }^{2}$

$$
\begin{aligned}
& {\left[\left(q_{1} q_{2}\right)\left(\bar{q}_{3} \bar{q}_{4}\right)\right] \equiv\left\{\left|\overline{3}_{12} 3_{34}\right\rangle,\left|6_{12} \bar{\sigma}_{34}\right\rangle\right\} \equiv\left\{|\overline{3} 3\rangle_{c}^{12},|6 \overline{6}\rangle_{c}^{12}\right\} \quad \text { Calculations }} \\
& {\left[\left(q_{1} \bar{q}_{3}\right)\left(q_{2} \bar{q}_{4}\right)\right] \equiv\left\{\left|1_{13} 1_{24}\right\rangle,\left|8_{13} 8_{24}\right\rangle\right\} \equiv\left\{|11\rangle_{c},|88\rangle_{c}\right\}} \\
& {\left[\left(q_{1} \bar{q}_{4}\right)\left(q_{2} \bar{q}_{3}\right)\right] \equiv\left\{\left|1_{14} 1_{23}\right\rangle,\left|8_{14} 8_{23}\right\rangle\right\} \equiv\left\{\left|1^{\prime} 1^{\prime}\right\rangle_{c},\left|8^{\prime} 8^{\prime}\right\rangle_{c}\right\}}
\end{aligned}
$$

Physical interpretation

Journal of Mathematical Chemistry 5(1990)323-357

THEORY OF PROJECTED PROBABILITIES ON NON-ORTHOGONAL STATES: APPLICATION TO ELECTRONIC POPULATIONS IN MOLECULES
R.S. MANNING* and N. De LEON ${ }^{\star} \dagger$

$$
\begin{aligned}
|\Psi\rangle & =\alpha|11\rangle_{c}+\beta|88\rangle_{c} \\
& =\alpha|11\rangle_{c}+\beta\left(\chi\left|1^{\prime} 1^{\prime}\right\rangle_{c}+\delta\left|8^{\prime} 8^{\prime}\right\rangle_{c}\right) \\
& =\alpha|11\rangle_{c}+\gamma\left|1^{\prime} 1^{\prime}\right\rangle_{c}+\mu\left|8^{\prime} 8^{\prime}\right\rangle_{c} \\
& =\alpha|11\rangle_{c}+\gamma\left|1^{\prime} 1^{\prime}\right\rangle_{c}+\mu\left(\varpi|11\rangle_{c}+\varsigma|88\rangle_{c}\right) \\
& =\ldots . . .=\wp_{|1\rangle_{c}}|\Psi\rangle+\wp_{\left|[1\rangle_{c}\right\rangle_{c}}|\Psi\rangle
\end{aligned}
$$

What about the probabilities?

PHYSICAL REVIEW C 80, 035204 (2009) Probabilities in nonorthogonal bases: Four-quark systems
 J. Vijande ${ }^{1}$ and A. Valcarce ${ }^{2}$

$\left(S_{T}, I\right)$	$(0,1)$	$(1,1)$	$(1,0)$	$(1,0)$	$(0,0)$
Flavor	$c c \bar{n} \bar{n}$	$c c \bar{n} \bar{n}$	$c c \bar{n} \bar{n}$	$b b \bar{n} \bar{n}$	$b b \bar{n} \bar{n}$
Energy	3877	3952	3861	10395	10948
Threshold	$\left.D D\right\|_{S}$	$\left.D D^{*}\right\|_{S}$	$\left.D D^{*}\right\|_{S}$	$\left.B B^{*}\right\|_{S}$	$\left.B_{1} B\right\|_{P}$
Δ_{E}	+5	+15	-76	-217	-153
$\left.P[\overline{3} 3\rangle_{c}^{12}\right]$	0.333	0.333	0.881	0.974	0.981
$P\left[\mid 6 \overline{\left.\gamma_{c}^{12}\right]}\right.$	0.667	0.667	0.119	0.026	0.019
$P\left[\|11\rangle_{c}\right]$	0.556	0.556	0.374	0.342	0.340
$P\left[\|88\rangle_{c}\right]$	0.444	0.444	0.626	0.658	0.660
$P_{M M}$	1.000	-	-	-	0.254
$P_{M M^{*}}$	-	1.000	0.505	0.531	-
$P_{M^{*} M^{*}}$	0.000	0.000	0.495	0.469	0.746
$\left\langle x^{2}\right\rangle^{1 / 2}$	60.988	13.804	0.787	0.684	0.740
$\left\langle y^{2}\right\rangle^{1 / 2}$	60.988	13.687	0.590	0.336	0.542
$\left\langle z^{2}\right\rangle^{1 / 2}$	0.433	0.617	0.515	0.503	0.763
$R M S_{4 q}$	30.492	6.856	0.363	0.217	0.330
Δ_{R}	69.300	11.640	0.799	0.700	0.885

What about the probabilities?

PHYSICAL REVIEW C 80, 035204 (2009)
 Probabilities in nonorthogonal bases: Four-quark systems

J. Vijande ${ }^{1}$ and A. Valcarce ${ }^{2}$

$\left(S_{T}, I\right)$	$(0,1)$	$(1,1)$	$(1,0)$	$(1,0)$	$(0,0)$
Flavor	$c c \bar{n} \bar{n}$	$c c \bar{n} \bar{n}$	$c c \bar{n} \bar{n}$	$b b \bar{n} \bar{n}$	$b b \bar{n} \bar{n}$
Energy	3877	3952	3861	10395	10948
Threshold	$\left.D D\right\|_{S}$	$\left.D D^{*}\right\|_{S}$	$\left.D D^{*}\right\|_{S}$	$\left.B B^{*}\right\|_{S}$	$\left.B_{1} B\right\|_{P}$
Δ_{E}	+5	$+15)$	-76	-217	-153
$P\left[\|\overline{3} 3\rangle_{c}^{12}\right]$	0.333	0.333	0.881	0.974	0.981
$P\left[\|6 \overline{6}\rangle_{c}^{12}\right]$	0.667	0.667	0.119	0.026	0.019
$P\left[\|11\rangle_{c}\right]$	0.556	0.556	0.374	0.342	0.340
$P\left[\|88\rangle_{c}\right]$	0.444	0.444	0.626	0.658	0.660
$P_{M M}$	1.000	-	-	-	0.254
$P_{M M^{*}}$	-	1.000	0.505	0.531	-
$P_{M^{*} M^{*}}$	0.000	0.000	0.495	0.469	0.746
$\left\langle x^{2}\right\rangle^{1 / 2}$	60.988	13.804	0.787	0.684	0.740
$\left\langle y^{2}\right\rangle^{1 / 2}$	60.988	13.687	0.590	0.336	0.542
$\left\langle z^{2}\right\rangle^{1 / 2}$	0.433	0.617	0.515	0.503	0.763
$R M_{4 q}$	30.492	6.856	0.363	0.217	0.330
Δ_{R}	69.300	11.640	0.799	0.700	0.885

What about the probabilities?

Pauli Principle

Exotic $\boldsymbol{b} \boldsymbol{c} \bar{q} \bar{q}$ four-quark states

T.F. Caramés, ${ }^{1, *}$ J. Vijande, ${ }^{2, \dagger}$ and A. Valcarce ${ }^{1, \ddagger}$

Pauli Principle

PHYSICAL REVIEW D 99, 014006 (2019)
$c c \bar{n} n$

Pauli Principle

PHYSICAL REVIEW D 99, 014006 (2019)

Exotic $\boldsymbol{b} \boldsymbol{c} \bar{q} \bar{q}$ four-quark states
T.F. Caramés, ${ }^{1,{ }^{*}}$ J. Vijande, ${ }^{2, \dagger}$ and A. Valcarce ${ }^{1, \#}$

ccnn

$b b \overline{n n}$

Pauli Principle

PHYSICAL REVIEW D 99, 014006 (2019)

$c c \bar{n}$

$b b \bar{n} n$

$b c \overline{n n}$

Is just an intermediate state?

Pauli Principle

PHYSICAL REVIEW D 99, 014006 (2019)

Exotic $\boldsymbol{b} \boldsymbol{c} \bar{q} \bar{q}$ four-quark states
T. F. Caramés, ${ }^{1, *}$ J. Vijande, ${ }^{2, \dagger}$ and A. Valcarce ${ }^{1, *}$

Pauli Principle

Pauli Principle

What about resonances?

Science Bulletin 65 (2020) 1983-1993

- Once again, quite a few experimental data

Article
Observation of structure in the J / ψ-pair mass spectrum
LHCb collaboration

ARTICLE INFO

Article history:

Received 1 July 2020
Received in revised form 28 July 2020 Accepted 19 August 2020 Available online 29 August 2020

Keywords:

QCD
Exotics
Tetraquark
Spectroscopy
Ourknnium

Abstract

Using proton-proton collision data at centre-of-mass energies of $\sqrt{s}=7,8$ and 13 TeV recorded by the LHCb experiment at the Large Hadron Collider, corresponding to an integrated luminosity of $9 \mathrm{fb}^{-1}$, th invariant mass spectrum of J / ψ pairs is studied. A narrow structure around $6.9 \mathrm{GeV} / \mathrm{c}^{2}$ matching the line shape of a resonance and a broad structure just above twice the J / ψ mass are observed. The deviation of the data from nonresonant J / ψ-pair production is above five standard deviations in the mass region between 6.2 and $7.4 \mathrm{GeV} / c^{2}$, covering predicted masses of states composed of four charm quarks. The mass and natural width of the narrow $X(6900)$ structure are measured assuming a Breit-Wigne ineshape. © 2020 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open acces article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

What about resonances?

- Among the various possibilities to deal with resonances in the four-quark sector scaling methods, real or complex, are being widely used nowadays.
- Numerical techniques borrowed from molecular, nuclear and/or atomic physics are being used.

Few-Body Syst (2023) 64:24
https://doi.org/10.1007/s00601-023-01808-x
Rimantas Lazauskas
Numerical Aspects of Resonant States in Quantum Mechanics

What about resonances?

PHYSICAL REVIEW D 106, 096005 (2022)

S-wave fully charmed tetraquark resonant states

Guang-Juan Wang ©.$^{1,{ }^{*}}$ Oi Meng. ${ }^{2, \dagger}$ and Makoto Oka $\odot^{1,3, \%}$

We calculate the mass spectrum of the S-wave fully-charmed tetraquark resonant states $c c \bar{c} \bar{c}$ in the nonrelativistic quark model, which successfully describes the charmonium spectrum. The four-body system is solved with the Gaussian expansion method. The complex scaling technique is used to identify the genuine resonances. With the nonrelativistic quark model, our results show the existence of two $c c \bar{c} \bar{c}$ resonances in each of the $J^{P C}=0^{++}, 1^{+-}$, and 2^{++}sectors, respectively. In the S-wave sector, no resonance is found at the energy region of the $X(6200)$ and $X(6600)$ states. The lower 0^{++}and 2^{++} resonances are located around 100 MeV higher than the $X(6900)$ state observed in experiments but have the decay widths consistent with the experiment. The higher 0^{++}and 2^{++}resonances are found at around 7.2 GeV with the widths of 60.6 MeV and 91.2 MeV , respectively, and they may be good candidates for the $X(7200)$ state.

TABLE IV. The masses and half decay widths $E_{r}-i \frac{\Gamma}{2}$ (in unit of MeV) of the $c c \bar{c} \bar{c}$ resonances obtained with the BGS quark model [86].

$J^{P C}$	1 st	2nd
0^{++}	$7035.1-i 38.9$	$7202.2-i 30.3$
1^{+-}	$7049.6-i 34.7$	$7273.5-i 24.9$
2^{++}	$7068.5-i 41.8$	$7281.3-i 45.6$

What about resonances?

Physics Letters B 824 (2022) 136800

Doubly heavy tetraquark resonant states

Qi Meng ${ }^{\text {d,* }}$, Masayasu Harada ${ }^{\text {b,c,d }, ~ E m i k o ~ H i y a m a ~}{ }^{\text {e,f,d,g, }}$, Atsushi Hosaka ${ }^{\text {g.d.f.f }}$, Makoto Oka

ARTICLE INFO

Article history:

Received 22 June 2021
Received in revised form 19 October 2021
Accepted 24 November 2021
vailable on. Baizo November 2021
Editor: J.-P. Blaizot

ABSTRACT

Spectrum of the doubly heavy tetraquarks, $b b \bar{q} \bar{q}$, is studied in a constituent quark model. Four-bod problem is solved in a variational method where the real scaling technique is used to identify resonan states above the fall-apart decay thresholds. In addition to the two bound states that were reported in the previous study we have found several narrow resonant states above the $B B^{*}$ and $B^{*} B^{*}$ thresholds. Their structures are studied and are interpreted by the quark dynamics. A narrow resonance with spin parity $J^{P}=1^{+}$is found to be a mixed state of a compact tetraquark and a $B^{*} B^{*}$ scattering state. This is driven by a strong color Coulombic attraction between the $b b$ quarks. Negative-parity excited resonance with $J^{P}=0^{-}, 1^{-}$and 2^{-}form a triplet under the heavy-quark spin symmetry. It turns out that they share a similar structure to the λ-mode of a singly heavy baryon as a result of the strongly attractive correlation for the doubly heavy diquark.

Fig. 3. The stabilization plots of the energy eigenvalues of $I\left(J^{\pi}\right)=0\left(1^{+}\right)$states by changing the scaling parameter α.

Conclusions

- The constituent quark model predicts a clear bound state, $b b \bar{u} \bar{d}$, and another one, $c c \bar{u} \bar{d}$, just below threshold with $(I) J^{P}=(0) 1^{+}$. Some particular models may point to the existence of about five more bound states.
- A few resonances may exist in the heavy sector (probably too soon to say with certainty).
- There is not an overwhelming abundance of bound states or resonances within the constituent quark model.
- The numerical methods required should be able to handle short- and long-range correlations, i.e. a meson-meson structures together with a more clusterized behaviour.
- Approximations and simplifications in the colour-spin structure should be done carefully. - We should double check whether our findings are entirely due to our hypothesis and aproximations before extracting any general conclusion.

Potentials derived from the MIT Bag model

The bound-state problem of two- and fourquarks with coupled channels in color space is studied, using a potential derived from the MIT bag model.

Potentials derived from the MIT Bag model

PHYSICAL REVIEW D	VOLUME 35, NUMBER 3	1 FEBRUARY 1987
On the existence of stable dimesons		
L. Heller Theoretical Division, Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545		
Theoretical Division, Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545 and Institute for Theoretical Physics, P.O. Box $80.006,3508$ TA Utrecht, The Netherlands* (Received 11 August 1986)		
PHYSICAL REVIEW D	VOLUME 37, NUMBER 3	1 FEBRUARY 1988
Stability of dimesons		
J. Carlson and L. Heller		
	J. A. Tjon	

The bound-state problem of two- and fourquarks with coupled channels in color space is studied, using a potential derived from the MIT bag model.

Exploring constituent quark models

Eur. Phys. J. C 49, 743-754 (2007) DOI $10.1140 /$ epjc/s10052-006-0142-1	THE EUROPEAN
Regular Article - Theoretical Physics	PHYSICAL JOURNAL C
Chromomagnetism, flavour symmetry breaking	
and S-wave tetraquarks	
F. Buccella ${ }^{1, \mathrm{a}}$, H. Høgaasen ${ }^{2, \mathrm{~b}}$, J.-M. Richard ${ }^{3, c}$, P. Sorba ${ }^{4, \mathrm{~d}}$	

These systems were studied with a potential model fitted in the baryon spectrum that includes meson-exchange forces between quarks and entirely neglects the chromomagnetic interaction.

System	$\left(C_{1}\right)+$ OME	$\left(C_{2}\right)+$ OME	Ref. $\|4\|$
$c c \bar{q} \bar{q}$	-0.185	-0.332	0.019
$b b \bar{q} \bar{q}$	-0.226	-0.497	-0.135

A detailed formalism is presented to fully account for flavoursymmetry breaking in the chromomagnetic interaction together with its application to four-quark systems.

[^0]
Exploring constituent quark models

Eur. Phys. J. A 19, 383-389 (2004) DOI 10.1140/epja/i2003-10128-9	The European Physical Journal A
Tetraquarks in a chiral constituent-quark model	
J. Vijijande ${ }^{1, \mathrm{a}}, \mathrm{F}$. Fernández 1, A.	estre-Brac ${ }^{2}$

Exploring constituent quark models

Eur. Phys. J. A 19, $383-389(2004)$ DOI $10.1140 /$ epia $/$ i2003-10128-9 2	THE EUROPEAN PHYSICAL JOURNAL A		
Tetraquarks in a chiral constituent-quark model		\quad	A different constituent quark model incorporating meson
:---			
exchanges between light quarks on top of gluon exchange			
was explored			

Institute of Physics Publishing Journal of Physics G: Nuclear and Particle Physics
J. Phys. G: Nucl. Part. Phys. 31 (2005) 481-506 doi:10.1088/0954-3899/31/5/017

Constituent quark model study of the meson spectra

JVijande, F Fernández and A Valcarce

Exploring constituent quark models

Eur. Phys. J. A 19, 383-389 (2004)	THE EUROPEAN
DOI $10.1140 /$ epja/i2003-10128-9	PHYSICAL JOURNAL A

Tetraquarks in a chiral constituent-quark model
J. Vijande ${ }^{1, \mathrm{a}}$, F. Fernández ${ }^{1}$, A. Valcarce ${ }^{1}$, and B. Silvestre-Brac ${ }^{2}$

Institute of Physics Publishing
Journal of Physics G: Nuclear and Particle Physics
J. Phys. G: Nucl. Part. Phys. 31 (2005) 481-506
doi:10.1088/0954-3899/31/5/017
A different constituent quark model incorporating meson exchanges between light quarks on top of gluon exchange was explored
A variational method based on a Gaussian expansion was considered.

$$
\begin{aligned}
& R_{s}(1234)=\sum_{i=1}^{n} \beta_{s}^{(i)} R_{s}^{(i)}= \\
& \sum_{i=1}^{n} \beta_{s}^{(i)} e^{-a_{s}^{(i)} \vec{x}^{2}-b_{s}^{(i)} \vec{y}^{2}-c_{s}^{(i)} \vec{z}^{2}-d_{s}^{(i)} \vec{x} \vec{y}-e_{s}^{(i)} \vec{x} \vec{z}-f_{s}^{(i)} \vec{y} \vec{z}}
\end{aligned}
$$

Constituent quark model study of the meson spectra

Exploring constituent quark models

Eur. Phys. J. A 19, 383-389 (2004)	THE EUROPEAN DOI 10.140//eja/ i2003-10128-9 PHYSICAL JOURNAL A
Tetraquarks in a chiral constituent-quark model	

J. Vijande ${ }^{1, \mathrm{a}}$, F. Fernández ${ }^{1}$, A. Valcarce ${ }^{1}$, and B. Silvestre-Brac ${ }^{2}$

Institute of Physics Publishing
Journal of Physics G: Nuclear and Particle Physics
J. Phys. G: Nucl. Part. Phys. 31 (2005) 481-506
doi:10.1088/0954-3899/31/5/017

A different constituent quark model incorporating meson exchanges between light quarks on top of gluon exchange was explored

A variational method based on a Gaussian expansion was considered.

$$
\begin{aligned}
& R_{s}(1234)=\sum_{i=1}^{n} \beta_{s}^{(i)} R_{s}^{(i)}= \\
& \sum_{i=1}^{n} \beta_{s}^{(i)} e^{\left.-a_{s}^{(i)} \vec{x}^{2}-b_{s}^{(i)} \vec{y}^{2}-c_{s}^{(i)} z^{2}-d(2) \vec{x} \dot{y}-e^{(i)} \vec{x} z-f^{(i)} \vec{z} z\right)}
\end{aligned}
$$

Constituent quark model study of the meson spectra

Exploring constituent quark models

Eur. Phys. J. A 19, 383-389 (2004)	The European
DOI 10.1140/epja/i2003-10128-9	Physical Journal a

Tetraquarks in a chiral constituent-quark model

A different constituent quark model incorporating meson exchanges between light quarks on top of gluon exchange was explored

A variational method based on a Gaussian expansion was considered.
J. Vijande ${ }^{1, \mathrm{a}}$, F. Fernández ${ }^{1}$, A. Valcarce ${ }^{1}$, and B. Silvestre-Brac ${ }^{2}$

(S, I)		$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$	$(2,0)$	$(2,1)$
$n n \bar{s} \bar{s}$	E_{T}	2396	1858	1696	1934	2672	1993
	ΔE	+1404	+866	+291	+530	+852	+173
$n n \bar{c} \bar{c}$	E_{T}	4508	4155	3927	4176	4852	4195
	ΔE	+742	+389	+34	+283	+833	+175
$n n \bar{b} \bar{b}$	E_{T}	10975	10682	10424	10685	11321	10693
	ΔE	+413	+120	-178	+83	+679	+51

$$
R_{s}(1234)=\sum_{i=1}^{n} \beta_{s}^{(i)} R_{s}^{(i)}=
$$

$$
\sum_{i=1}^{n} \beta_{s}^{(i)} e^{\left.-a_{s}^{(i)} \vec{x}^{2}-b_{s}^{(i)} \vec{y}^{2}-c_{s}^{(i)} \vec{z}^{2}-d_{s}^{(i)} \vec{x} \vec{y}-e^{(i)} \vec{x} \vec{z}-f_{s}^{(i)} \vec{y} z\right)}
$$

Compact or meson-meson configuration?

Physics Letters B 699 (2011) 291-295
Doubly charmed exotic mesons: A gift of nature?
T.F. Caramés ${ }^{\text {a }}$, A. Valcarce ${ }^{\text {a }, *,}$, J. Vijande ${ }^{\text {b }}$

$$
|c c \overline{n n}\rangle=\alpha_{1}|\overline{3} 3\rangle+\ldots+\alpha_{2}|6 \overline{6}\rangle+\ldots \stackrel{? ? ?}{=} \alpha_{1}\left|D D^{*}\right\rangle+\alpha_{2}\left|D^{*} D^{*}\right\rangle+\ldots
$$

In this work the meson-meson configuration is solved by means of the Lippmann-Schwinger equation using the same interaction as the four-quark problem.

[^1]
[^0]: For ($Q Q \bar{q} \bar{q}$) with identical heavy quarks, the chromomagnetic interaction is optimal for $J^{P}=1^{+}$, since the Pauli principle forbids the 0^{+}eigenstates with the lowest eigenvalue of H_{CM}. [...]
 [...] The very large value of the mass ratio M_{Q} / m_{n}, where M_{Q}^{-1} is the average of the inverse masses m_{c} and $m_{b},{ }^{3}$ presumably gives binding or almost binding from the sole chromoelectric effects. The chromomagnetic interaction is also favourable, and, if alone, would give a binding of more than 100 MeV .

[^1]: VNiVERSITAT
 B VALENCIA

