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This in not a thorough review of the field, so I probably not quote your favorite paper.



Exotic states in the constituent quark model

• And second, I will mostly focus this talk on what can we can learn from 
the constituent quark model approach for exotic states from the double 
heavy four-quark sector.

• Topics I will not cover
– QCD sum rules.
– Lattice QCD.
– Dinamically generated resonances.
– Phenomenological mass-based relations.
– etc…

3



Constituent quark model. 
What I have learned from exotic systems thanks to the study 

of double heavy tetraquarks

J. Vijande PhD 
University of Valencia, Spain



The basics

5

1.3 5 0.3c b um GeV m GeV m GeV≈ ≈ ≈

• The constituent quark model have (probably surprisingly) described rather well
mesons and baryons as composite objects made of constituent valence quarks

interacting by means of a potential, normally pairwise, but not always.



The basics

5

1.3 5 0.3c b um GeV m GeV m GeV≈ ≈ ≈

• The constituent quark model have (probably surprisingly) described rather well
mesons and baryons as composite objects made of constituent valence quarks

interacting by means of a potential, normally pairwise, but not always.

• A four-quark state is the simplest object with a non-trivial color structure.
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1.3 5 0.3c b um GeV m GeV m GeV≈ ≈ ≈

• The constituent quark model have (probably surprisingly) described rather well
mesons and baryons as composite objects made of constituent valence quarks

interacting by means of a potential, normally pairwise, but not always.
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We are in 2023 and…

There are many experimental results, but I will quote just one for now:
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In the beginning. 40 years ago in the year 1982
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The authors consider linear+coulomb and power-law potentials and a
variational approach using a harmonic oscillator wave function .

More complex options are included for the all-heavy four-quark states
(chromomagnetic interaction, bag model, negative parity states, etc…)
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The authors search bound states with central forces only, by
comparing three methods: a gaussian parametrization of the
wave-function, the harmonic oscillator expansion and the
hyperspherical expansion. They include spin-spin terms and
virtual meson-meson configurations.
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Exploring numerical methods

9

The authors search bound states with central forces only, by
comparing three methods: a gaussian parametrization of the
wave-function, the harmonic oscillator expansion and the
hyperspherical expansion. They include spin-spin terms and
virtual meson-meson configurations.

Using the Bhaduri potential they identified the
S=1 I=0 case as the most promising candidate
for a bound state.



A systematic analysis
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Using the interquark potential due to Bhaduri et al., the
energies of all L = 0,1,2,3 four-quark states are calculated
for any value of the total S and I and for q = u, d, s, c, b
using a harmonic oscillator basis up to 7/8 quanta. Natural
parity is considered.

This implies 924 combinations.
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First detailed study of typical radii and radial properties.

Improving the numerical methods
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Beyond pairwise interactions
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The ground state potential for a system composed of two
quarks and two antiquarks is well fitted by a string flip-
flop potential.
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Will the relativistic kinematics increase the number of stable multiquarks?

16

The authors investigate the mass spectra using the relativized
quark model proposed by Godfrey, Capstick, and Isgur.

The spatial wave function is expanded in terms of a set of
Gaussian basis functions where the Gaussian size parameters
are taken in geometric progressionQQus and QQss



Will the relativistic kinematics increase the number of stable multiquarks?
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In this case the threshold is made of two (qQ) mesons
while in the four-quark state there are (qq), (QQ) and four
(qQ) interactions. Who will benefit more from the
relativistic dynamics?

We consider the AL1 potential properly re-parametrized
in the SR case for keeping the description of the meson
spectra.
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In this case the threshold is made of two (qQ) mesons
while in the four-quark state there are (qq), (QQ) and four
(qQ) interactions. Who will benefit more from the
relativistic dynamics?
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Few-body dynamics
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A very delicate interplay between color and spin configurations.

 using the AL1 modelQQqq
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Few-body dynamics

19

The treatment of the four-body dynamics for double-charm tetraquarks is
discussed. The variational and Born-Oppenheimer approximations together with
the Hall-Post inequalities give energies very close to the exact ones, while the
diquark approximation might be more problematic.
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What about resonances?

• Once again, quite a few
experimental data….

• ATLAS and CMS 
collaborations has 
confirmed it.
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What about resonances?

• Among the various possibilities to deal with resonances in the four-quark sector scaling
methods, real or complex, are being widely used nowadays.

• Numerical techniques borrowed from molecular, nuclear and/or atomic physics are being
used.
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Conclusions

• The constituent quark model predicts a clear bound state, , and another one, ,
just below threshold with (I)JP=(0)1+. Some particular models may point to the existence
of about five more bound states.

• A few resonances may exist in the heavy sector (probably too soon to say with certainty).
– There is not an overwhelming abundance of bound states or resonances within the constituent

quark model.

• The numerical methods required should be able to handle short- and long-range
correlations, i.e. a meson-meson structures together with a more clusterized behaviour.

• Approximations and simplifications in the colour-spin structure should be done carefully.
– We should double check whether our findings are entirely due to our hypothesis and

aproximations before extracting any general conclusion.

31
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Potentials derived from the MIT Bag model

30

The bound-state problem of two- and four-
quarks with coupled channels in color space
is studied, using a potential derived from the
MIT bag model.
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Exploring constituent quark models

31

These systems were studied with a potential model fitted in the
baryon spectrum that includes meson-exchange forces between
quarks and entirely neglects the chromomagnetic interaction.

A detailed formalism is presented to fully account for flavour-
symmetry breaking in the chromomagnetic interaction together with
its application to four-quark systems.
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Compact or meson-meson configuration?
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In this work the meson-meson configuration is solved by means
of the Lippmann-Schwinger equation using the same interaction
as the four-quark problem.
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