

FREE SYSTEM OF FOUR CORRELATED NEUTRONS

Meytal Duer, TU Darmstadt

August 1st, 2023

AT AND BEYOND THE NEUTRON DRIPLINE

AT AND BEYOND THE NEUTRON DRIPLINE

- Low-density nuclear matter: nn interactions dominated by attractive S-wave
 - dineutron unbound by ~100 keV
 - → large scattering length: a_{nn} =-18.9(4) fm
 - strong correlations even at very low-density

FB Physik | Institut Institut für Kernphysik | Meytal Duer

DINEUTRON CORRELATION

- Borromean halo nuclei ¹¹Li, ¹⁴Be, ¹⁷B
- (p,pn) knockout reaction at the RIBF facility

opening angle between 2n: 90° ⇒ non-correlated case >90° ⇒ spatial correlation

LONG-STANDING QUEST FOR MULTI-NEUTRON SYSTEMS

XX century:

XXI century:

- radioactive-ion beams
 - first positive signals

- transfer reactions
 e.g. Cerny et al., Phys. Lett. 53B (1974)
- double-charge exchange (π⁻, π⁺) reaction
 e.g. Ungar et al., Phys. Lett. B 144 (1984)
 - no indication for a tetra-neutron

TECHNISCHE

DARMSTADT

THE ELUSIVE TETRA-NEUTRON

GANIL 2002 breakup reaction

6 candidates: bound ⁴n or low-energy resonance (Er<2 MeV)

Marqués et al., PRC 65 (2002) Marqués et al., arXiv:nucl-ex/0504009 (2005)

THE ELUSIVE TETRA-NEUTRON

GANIL 2002 breakup reaction

6 candidates: bound ⁴n or low-energy resonance (Er<2 MeV)

Marqués et al., PRC 65 (2002) Marqués et al., arXiv:nucl-ex/0504009 (2005)

RIKEN 2016

double-charge exchange ^{8}He ^{8}Be - $^{8}\alpha$

4 candidates for ⁴n resonance: $E_r=0.8\pm1.4$ MeV, Γ <2.6 MeV

Kisamori et al., PRL 116 (2016)

CAN A BOUND TETRA-NEUTRON EXIST?

Historical consensus: no bound tetra-neutron can exist

Pieper PRL 90, 2003:

$$H = \sum_{i=1}^{A} T_{i} + \sum_{i < j=1}^{A} V_{ij} + \sum_{i < j < k=1}^{A} V_{ijk}$$

• ab initio Green's function Monte Carlo

• using modern realistic NN and NNN potentials

"it does not seem possible to change modern nuclear Hamiltonians to bind a tetra-neutron without destroying many other successful predictions... our understanding of nuclear forces will have to be significantly changed"

A TETRA-NEUTRON RESONANCE?

TECHNISCHE UNIVERSITÄT DARMSTADT

Quantum Monte Carlo calculation:

$$H = \sum_{i=1}^{A} T_{i} + \sum_{i < j=1}^{A} V_{ij} + \sum_{i < j < k=1}^{A} V_{ijk} + \sum_{i=1}^{A} V_{WS}(r_{i})$$

- 4n confined in Woods-Saxon potential radius R_{WS} , depth V_0
- extrapolation to $V_0 \rightarrow 0$
- possible resonance at 2.1(2) MeV

S. Gandolfi et al., PRL 118 (2017)

A TETRA-NEUTRON RESONANCE?

Quantum Monte Carlo calculation:

$$H = \sum_{i=1}^{A} T_{i} + \sum_{i < j=1}^{A} V_{ij} + \sum_{i < j < k=1}^{A} V_{ijk} + \sum_{i=1}^{A} V_{WS}(r_{i})$$

- 4n confined in Woods-Saxon potential radius R_{WS} , depth V_0
- extrapolation to $V_0 \rightarrow 0$
- possible resonance at 2.1(2) MeV

Full treatment of continuum:

• no tetra-neutron resonance can exist

"the four-neutron system is studied using exact continuum equations... This indicates the absence of an observable 4n resonance, in contrast to a number of earlier works." Deltuva, PLB 782 2018

resonance behaviour only for unrealistic 3N force

FB Physik | Institut Institut für Kernphysik | Meytal Duer

LONG-STANDING QUEST FOR MULTI-NEUTRON SYSTEMS

Modified from Marqués & Carbonell, EPJA 57 (2021)

Experiment:

 until recently three (weak) positive signals:
 ★ GANIL 2002, RIKEN 2016, TUM 2022 indications for bound / unbound

Theory:

- no bound 4n
- no consensus about a resonant state

PRESENT EXPERIMENTAL WORK

- large momentum transfer
 - → sudden removal of an α -particle from ⁸He
 - → 4n as spectators
- four-neutron energy spectrum via missing-mass
 - precise measurement of charged particles

 $\bar{P}_{miss} = \bar{P}_{B_{He}} + \bar{P}_{p(tgt)} - \bar{P}_{He} - \bar{P}_{p} \rightarrow E_{4n} = \sqrt{E_{miss}^2 - P_{miss}^2} - 4m_n$

TECHNISCHE

DARMSTADT

THE RADIOACTIVE ION BEAM FACTORY (RIBF)

- Primary stable beams accerelated up to 345 AMeV
- High intensities of 1 p μ A for light- medium-mass beams, 100 pnA for ²³⁸U
- Access to exotic nuclei: projectile fragmentation / in-flight fission

Okuno et al., J. Phys. Conf. Ser. 1401 (2020)

THE RADIOACTIVE ION BEAM FACTORY (RIBF)

- Primary stable beams accerelated up to 345 AMeV
- High intensities of 1 p μ A for light- medium-mass beams, 100 pnA for ²³⁸U
- Access to exotic nuclei: projectile fragmentation / in-flight fission

- Superconducting Ring Cyclotron primary ¹⁸O beam
- **BigRIPS fragment separator** production and selection of ⁸He
- SAMURAI setup

SAMURAI dipole magent: 1.25 T (max. 3 T) Tracking & PID of ⁸He beam Tracking & PID of fragments (p, ⁴He) Neutrons (not possible in this experiment)

SAMURAI dipole magent: 1.25 T (max. 3 T) Tracking & PID of ⁸He beam Tracking & PID of fragments (p, ⁴He) Neutrons (not possible in this experiment)

SAMURAI dipole magent: 1.25 T (max. 3 T) Tracking & PID of ⁸He beam Tracking & PID of fragments (p, ⁴He) Neutrons (not possible in this experiment)

LH₂ target

⁸He

180

TECHNISCHE

UNIVERSITÄT DARMSTADT

- QE simulation

SAMURAI dipole magent: 1.25 T (max. 3 T) Tracking & PID of ⁸He beam Tracking & PID of fragments (p, ⁴He) Neutrons (not possible in this experiment)

Neutron detectors

Small p-⁴He cross section (~1 μ b) at the specific kinematics

- relatively low statistics for ⁸He(p,p⁴He) events
- 4n detection impossible

RESULTS: MISSING-MASS SPECTRUM

Benchmark measurement:

quasi-free knockout ⁶He(p,p⁴He)

- 2n relative-energy spectrum expected to be well described by theory
- theoretical input M. Göbel et al., PRC 104 (2021)
 - → 3-body (⁴He+2n) cluster model
 - → nn final-state interaction (FSI)

⁶He(p,p⁴He)2n

confirms the expected dineutron low-energy peak ~100 keV

RESULTS: MISSING-MASS SPECTRUM

confirms the expected dineutron low-energy peak ~100 keV

RESULTS: MISSING-MASS SPECTRUM

MD et al., Nature 606, 678 (2022)

- Continuum component: five-body (⁴He+4n) COSMA model Zhukov et al., PRC (1994); Grigorenko et al., EPJA (2004)
- Background estimate: two-step reactions (~3%)

• Resonance-like structure: $E_r = 2.37\pm0.38(\text{stat.})\pm0.44(\text{sys.}) \text{ MeV}$ $\Gamma = 1.75\pm0.22(\text{stat.})\pm0.30(\text{sys.}) \text{ MeV}$

A CORRELATED 4N SYSTEM

Resonance or non-resonant FSI among the neutrons and reaction mechanism?

Predictions for a tetra-neutron

★ Shirokov PRL (2016); Gandolfi PRL (2017); ↓ Fossez PRL (2017); ☆ Li PRC (2019);

A CORRELATED 4N SYSTEM

Resonance or non-resonant FSI among the neutrons and reaction mechanism?

Predictions for a tetra-neutron

★ Shirokov PRL (2016); Gandolfi PRL (2017); ↓ Fossez PRL (2017); ☆ Li PRC (2019); Full treatment of continuum → no tetra-neutron Recent review: Marqués & Carbonell, EPJA 57 (2021)

Low-energy structures

"even without an observable resonance the transition operators exhibit pronounced low-energy peaks. They may be seen also in more complicated reaction such as ⁸He(⁴He,⁸Be) with the 4n subsystem in the final state"

A CORRELATED 4N SYSTEM

Resonance or non-resonant FSI among the neutrons and reaction mechanism?

Predictions for a tetra-neutron

★ Shirokov PRL (2016); Gandolfi PRL (2017); ↓ Fossez PRL (2017); ☆ Li PRC (2019);

Full treatment of continuum → no tetra-neutron Recent review: Marqués & Carbonell, EPJA 57 (2021)

Low-energy structures

"we propose a natural explanation for the low energy structure: it emerges as a consequence of final state interaction among the 4n and the -important- presence of four neutrons in the periphery of the ⁸He projectile"

Laszauskas et al., PRL (2023)

FB Physik | Institut Institut für Kernphysik | Meytal Duer

FUTURE PERSPECTIVES

Correlations in multi-neutron systems

K. Miki, MD et al. (SAMURAI74), accepted proposal 2022

- properties of the 4n system: correlations among 4n in coincidence
 - → exclusive ⁸He(p,pα)4n knockout

- → reaction mechanism: 6He(p,3p)4n knockout
- search for 6n correlation via missing-mass
 ⁸He(p,3p) measurement

FUTURE PERSPECTIVES

Multi-neutron decays of ¹⁰He

T. Nakamura et al. (SAMURAI47), 2023

• ¹¹Li(p,2p) knockout:

¹⁰He \rightarrow ⁸He+2n / ⁶He+4n / ⁴He+6n

- → mainly missing-mass: (p,2p) + fragment
- → 2n in coincidence to study nn correlations

Thank you!

SAMURAI19 experiment: M. Duer, T. Aumann, R. Gernhäuser, V. Panin, S. Paschalis, D. M. Rossi, N. L. Achouri, D. Ahn, H. Baba, C. A. Bertulani, M. Böhmer, K. Boretzky, C. Caesar, N. Chiga, A. Corsi, D. Cortina-Gil, C. A. Douma, F. Dufter, Z. Elekes, J. Feng, B. Fernández-Domínguez, U. Forsberg, N. Fukuda, I. Gasparic, Z. Ge, J. M. Gheller, J. Gibelin, A. Gillibert, K. I. Hahn, Z. Halász, M. N. Harakeh, A. Hirayama, M. Holl, N. Inabe, T. Isobe, J. Kahlbow, N. Kalantar-Nayestanaki, D. Kim, S. Kim, T. Kobayashi, Y. Kondo, D. Körper, P. Koseoglou, Y. Kubota, I. Kuti, P. J. Li, C. Lehr, S. Lindberg, Y. Liu, F. M. Marqués, S. Masuoka, M. Matsumoto, J. Mayer, K. Miki, B. Monteagudo, T. Nakamura, T. Nilsson, A. Obertelli, N. A. Orr, H. Otsu, S. Y. Park, M. Parlog, P. M. Potlog, S. Reichert, A. Revel, A. T. Saito, M. Sasano, H. Scheit, F. Schindler, S. Shimoura, H. Simon, L. Stuhl, H. Suzuki, D. Symochko, H. Takeda, J. Tanaka, Y. Togano, T. Tomai, H. T. Törnqvist, J. Tscheuschner, T. Uesaka, V. Wagner, H. Yamada, B. Yang, L. Yang, Z. H. Yang, M. Yasuda, K. Yoneda, L. Zanetti, J. Zenihiro, and M. V. Zhukov.

"Indications for a bound tetraneutron"

⁷Li(⁷Li,¹⁰C) at 46 MeV, MP Tandem of Garching, Germany

Target: 100 μ g/cm2, 7Li2O deposited on 20 μ g/cm C foils. Targets were quite hygroscopic after vapor deposition-> also H2O and possibly CO2.

Other target component (H, Li, C, O)
 ⁷Li(¹⁶O,¹⁰C)¹³B
 E* = 2.93(16) MeV, σ= 0.24(9) MeV:

- ⁷Li(⁷Li,¹⁰C_{gs}) *tetraneutron resonance* E_r=2.93(16) MeV & extremely small width (0.24 MeV upper limit, eloss of C in tgt uncertainty)
- ⁷Li(⁷Li,¹⁰C*) ¹⁰C in 1st excited state 3.354 MeV
 + bound tetraneutron BE = 0.42(16) MeV

~10 events \rightarrow statistical significance 3σ

Red curve: ⁷Li(¹⁶O,¹⁰C*)¹³B case; Solid: phase space of 4n + constant bkg.

Faestermann et al., PLB 824 (2022)

Continuum component

Fig. 11. Continuum response of the ⁴n system in the MWS with a "Gaussian" source (13). Solid, dashed and dotted curves correspond to rms hyperradius $\langle \rho_{\text{sour}} \rangle$ of the source equal to 8.9, 7.3, and 5.6 fm, respectively. Panels are calculated with (a) no final-state interaction, (b) RT potential (the correct *n-n* scattering length). All calculations are normalized to unity at the peak.

Zhukov et al., PRC (1994); Grigorenko et al., EPJA (2004)

BENCHMARK MEASUREMENT

Quasi-free knockout 6He(p,p4He)

 2n relative-energy spectrum is expected to be well described by theory

Theoretical input:

- w/o FSI: 3-body (⁴He+n+n) cluster model
 - > nn interaction ${}^{1}S_{0}$ wave
 - nα interactions in s-, p-, d-wave
 - > phenomenological 3-body force
- w/ FSI: nn final-state interaction
 - t-matrix approach

M. Göbel et al., PRC 104 (2021)

Experimentally:

- commonly used value from π⁻ capture -18.6(4) fm
- contradictory results from d(n,pn)n reaction:
 - Bonn: -16.3(4) fm Huhn et al., PRL 85 (2000)
 - > TUNL: -18.7(7) fm Gonzalez et al., PRC 73 (2006)

Simulated det. eff: 1n – 39% 2n – 5% 3n - <0.5% 4n – 0.06% total (peak 0.5%)

Future perspectives

(p,pa) 80% acc. theta + 60% acc. phi + 20% loss eff. -> 40% For (p,3p) 1%

Missing-mass reso. ~1.5 MeV

 $N_{\text{events/day}} = N_{\text{proj}} \times \sigma(b) \times d(g/\text{cm}^2) \times 0.6(\text{Avogadro})/\text{A} \times \epsilon_{p-\alpha} \times \epsilon_{4n} \times f(E_{4n})$ $= (10^6 \cdot 24 \cdot 3600 \cdot 0.5) \times (0.5 \cdot 10^{-3}) \times 0.142 \times 0.6 \times 0.4 \times 0.0089 \times 0.15 \simeq 1,000 \text{ events/day}.$

$$\begin{split} \mathbf{N}_{\text{events/day}} &= \mathbf{N}_{\text{proj}} \times \sigma(\mathbf{b}) \times d(\mathbf{g/cm}^2) \times 0.6(\text{Avogadro})/\mathbf{A} \times \epsilon_{3p} \times \epsilon_{4n} \times f(E_{4n}) \\ &= (10^6 \cdot 24 \cdot 3600 \cdot 0.5) \times (1 \cdot 10^{-3}) \times 0.142 \times 0.6 \times 0.010 \times 0.0089 \times 0.15 \simeq 50 \text{ events/day}, \end{split}$$

By products:

- ${}^{6(8)}{\rm He}(p,2p){}^{5(7)}{\rm H}$
- ${}^{6(8)}\text{He}(p,pn)^{5(7)}\text{He}$
- ${}^{6(8)}\text{He}(p, p^3\text{He})^{3(5)}n.$