

Ab initio prediction of $\alpha(d,\gamma)^6$ Li and impact of the ⁶Li properties onto α -induced reactions of astrophysical interest

Chloë Hebborn

[PRL 129, 042503 (2022) & arXiv:2307.05636]

August, 2 2023

Light nuclei, such as Lithium, were already present ~ 3 minutes after the Big Bang

The Big-Bang nucleosynthesis accurately predicts abundances at early time...

The Big-Bang nucleosynthesis accurately predicts abundances at early time... but for Lithium isotopes

cf B. Acharya's talk

Different possible solutions to the Lithium problem exist

High-energy physics : inaccurate baryon-to-photon ratio

 \rightarrow BSM physics? unlikely as agreement for He and Be

Different possible solutions to the Lithium problem exist

High-energy physics : inaccurate baryon-to-photon ratio

 \rightarrow BSM physics? unlikely as agreement for He and Be

Astrophysics : uncertainties in measuring the BBN abundances

Different possible solutions to the Lithium problem exist

High-energy physics : inaccurate baryon-to-photon ratio

 \rightarrow BSM physics? unlikely as agreement for He and Be

Astrophysics : uncertainties in measuring the BBN abundances

Nuclear physics :

 \rightarrow Large uncertainties

[cf B. Acharya's & C. Bruno's talks]

→ Uncertainties on $\alpha(d,\gamma)^{6}$ Li dominates the uncertainties on ⁶Li abundances Reactions at low energy are difficult to measure as the two charged nuclei repulse each other

$$\alpha(d,\gamma)^{6}$$
Li

very low cross section = low reaction probability

$$\sigma(E) = \frac{\exp[-2\pi\eta]}{E} \,\mathrm{S}(E)$$

Reactions at low energy are difficult to measure as the two charged nuclei repulse each other

[Mohr et al. 50 1543 (1994)] [Robertson et al. PRL 47 1867 (1981)]

Theories based on two-body models do not evaluate consistently all electromagnetic transitions

Theories based on two-body models do not evaluate consistently all electromagnetic transitions

Theories based on two-body models do not evaluate consistently all electromagnetic transitions

E1 dipole suppressed as $\mathbf{R}_{cm} = \mathbf{R}_{cm}^{ch}$ \ominus Use of pheno. prescription with exp. mass

 \Rightarrow Need for accurate **microscopic** prediction \rightarrow *ab initio* methods

Chloë Hebborn

For a complete *ab initio* description, we need both structure...

No core shell-model

$$\Psi = \sum_{\lambda} c_{\lambda} | \bigvee_{\lambda} \rangle$$

Discrete structure information input

Bound states,

narrow resonances

 \rightarrow short-range

For a complete *ab initio* description, we need both structure... and dynamical clustered description

No core shell-model with continuum

[Navrátil, Quaglioni, Hupin, Romero-Redondo and Calci, Phys. Scr. 91, 053002 (2016)]

Discrete structure information input

Continuous dynamical input (clustering/reactions)

Bound states,

narrow resonances

 \rightarrow short-range

- Bound & scattering states, reactions
 - \rightarrow long-range

Chiral-EFT links the nuclear force to QCD

Systematically improvable expansion !

Includes long-range π physics explicitly

→ empirically constrained parameters capture short-distance physics

Ab initio predictions are accurate for α -d scattering

Convergence with 15 ⁶Li NCSM states, *d* g.s. + 8 *d* pseudostates at $N_{max} = 11$

HPC at LLNL

Ab initio predictions are accurate for α -d scattering

Convergence with 15 ⁶Li NCSM states, *d* g.s. + 8 *d* pseudostates at $N_{max} = 11$

HPC at LLNL

Ab initio predictions are accurate for ⁶Li spectrum but... not perfect

Accurate prediction of $\alpha(d,\gamma)^{6}$ Li \rightarrow need to have the right ⁶Li g.s.

<u> </u>	ы II н.	50 B	11.1		
	าเอ	еı	-te	סס	orn

Use of a phenomenological correction for the overbinding and the position of the 2^+ resonance

Ab initio prediction fills the experimental gap for $\alpha(d,\gamma)^{6}$ Li

Excellent agreement with data : importance of E_{1^+} at low energies and E_{2^+} at higher energies

Ab initio prediction fills the experimental gap for $\alpha(d,\gamma)^{6}$ Li

Excellent agreement with data : importance of E_{1^+} at low energies and E_{2^+} at higher energies

Which electromagnetic transitions drive this reaction?

 ~LI	- 2	LL al	LL.	
LUI	oe	ne	טטט	orn

E2 larger than previous eval. \rightarrow larger **ANC**

M1 are typically not evaluated in few-body models M1 important at low $E \rightarrow$ which role in other capture reactions?

E1 evaluated with pheno. prescriptions predicted to be dominant Isovector E1 transitions negligible due to small T = 1 mixing in ⁶Li

E1 evaluated with pheno. prescriptions predicted to be dominant Isovector E1 transitions negligible due to small T = 1 mixing in ⁶Li

What is the uncertainty due to the choice of χ -EFT force & to the finite size of the basis?

C	nlo	ë⊦	le	bb	orn
				_	

Ab initio-informed predictions reduce the uncertainties on the $\alpha(d,\gamma)^6$ Li rate by an average factor 7

Comparison of two chiral forces and different N_{max} \rightarrow Small uncertainties thanks to the adjustment of the ⁶Li g.s. energy

[Hebborn, Hupin, Kravvaris, Quaglioni, Navrátil, Gysbers, Phys. Rev. Lett. 129, 042503 (2022)]

Ab initio-informed predictions reduce the uncertainties on the $\alpha(d,\gamma)^6$ Li rate by an average factor 7

Comparison of two chiral forces and different N_{max} \rightarrow Small uncertainties thanks to the adjustment of the ⁶Li g.s. energy

[Hebborn, Hupin, Kravvaris, Quaglioni, Navrátil, Gysbers, Phys. Rev. Lett. 129, 042503 (2022)]

→ Discrepancy in ⁶Li abundances cannot be explained by uncertainties on the $\alpha(d,\gamma)^6$ Li reaction rate

Chloë Hebborn

EFB 2023

Various α -induced reactions play a key role in astrophysics

 ${}^{13}\mathbf{C}(\alpha, n){}^{16}\mathbf{O}$: major *n* source

Various α -induced reactions play a key role in astrophysics

 ${}^{13}\mathbf{C}(\alpha, n){}^{16}\mathbf{O}$: major *n* source

 ${}^{12}\mathbf{C}(\alpha,\gamma){}^{16}\mathbf{O}$: ${}^{12}\mathbf{C}/{}^{16}\mathbf{O}$ abundances

Various α -induced reactions play a key role in astrophysics

 ${}^{13}C(\alpha, n){}^{16}O$: major *n* source ${}^{12}C(\alpha, \gamma){}^{16}O$: ${}^{12}C/{}^{16}O$ abundances

 ${}^{13}C(\alpha, n){}^{16}O \& {}^{12}C(\alpha, \gamma){}^{16}O$ influence abundances of heavier isotopes ! Too many nucleons for ab initio predictions of reaction...

How can we predict accurately (<10% error) α -induced rates?

At $E \rightarrow 0$ MeV, non-resonant reactions are peripheral, they scale with the ANC² of subthreshold states

At $E \rightarrow 0$ MeV, non-resonant reactions are peripheral, they scale with the ANC² of subthreshold states

The cross section can be obtained in a two-body model

If one knows $C_{A-\alpha}^2$, one can determine accurately the rate at low E !

Chloë Hebborn

α -transfer (⁶Li, *d*) around the Coulomb barrier are also peripheral and can be used to extract ANCs

The cross section can be obtained in a three-body model

Ch	loë	He	h	orr
	106	116	:DL	

α -transfer (⁶Li, *d*) around the Coulomb barrier are also peripheral and can be used to extract ANCs

The cross section can be obtained in a three-body model

The ${}^{13}C(\alpha, n){}^{16}O$ S-factor has been measured underground and extrapolated to zero energies...

[Ciani et al. (LUNA collaboration) PRL 127, 152701 (2021)]

The ${}^{13}C(\alpha, n){}^{16}O$ S-factor has been measured underground and extrapolated to zero energies...

but new underground measurements predict a S(0) 21% smaller than LUNA...

[Gao et al. (JUNA collaboration) PRL 129, 132701 (2022)]

but new underground measurements predict a S(0) 21% smaller than LUNA... and the differences can be traced to $(C_{13C}^{1/2+})^2$

[Gao et al. (JUNA collaboration) PRL 129, 132701 (2022)]

but new underground measurements predict a S(0) 21% smaller than LUNA... and the differences can be traced to $(C_{13C}^{1/2+})^2$

[Gao et al. (JUNA collaboration) PRL 129, 132701 (2022)]

What can explain this discrepancy?

$$\sigma_{^{6}\mathrm{Li},d} \approx C_{\alpha-d}^{2} C_{A-\alpha}^{2} \hat{\sigma}_{^{6}\mathrm{Li},d}^{DWBA}$$

Using the ab initio $C_{\alpha-d}$ to reanalyze (⁶Li, *d*) data, we reconcile both LUNA and JUNA analyses!

Previous $(C_{\alpha-d})^2$: [Blokhintsev *et al.* PRC **48**, 2390 (1993)] \rightarrow unaccounted syst. uncertainties ! 22% smaller than ab initio $(C_{\alpha-d})^2$

Using the ab initio $C_{\alpha-d}$ to reanalyze (⁶Li, *d*) data, we reconcile both LUNA and JUNA analyses!

Our $(C_{\alpha-d})^2$ explains the discrepancy between JUNA and LUNA S(0), is more precise, & favors the JUNA evaluation of S(0)!

Another key astrophysical reaction ${}^{12}C(\alpha, \gamma){}^{16}O$ have been constrained using $({}^{6}Li, d)$ data and previous ANC !

 $C_{\alpha^{-12}C}$ extracted from (⁶Li, *d*) data used in R-matrix fits (large set of data : ANCs, S-factor, el. scattering, β -delayed α emission)

The ab initio $(C_{\alpha-d})^2$ leads to a reduction of 21% of the $(C_{\alpha-1^2C})^2$ & S-factor at stellar energies!

Data sets cannot constrained ANCs \rightarrow renormalization factors

The ab initio $(C_{\alpha-d})^2$ leads to a reduction of 21% of the $(C_{\alpha-1^2C})^2$ & S-factor at stellar energies!

Data sets cannot constrained ANCs \rightarrow renormalization factors

Tension with (⁷Li, *t*) results \rightarrow unaccounted uncertainties in $C_{\alpha-t}$?

Ab initio methods are accurate for light systems \rightarrow Start from a χ -EFT NN+3N Hamiltonian

& no pheno. approximation of the E1 and M1 !

Ab initio prediction reduces the uncertainties on the $\alpha(d, \gamma)^6$ Li rate by ~7 !

Ab initio methods are accurate for light systems \rightarrow Start from a χ -EFT NN+3N Hamiltonian

& no pheno. approximation of the E1 and M1 !

Ab initio prediction reduces the uncertainties on the $\alpha(d,\gamma)^6$ Li rate by ~7 !

Use of ab initio input in the analysis of indirect measurements : \rightarrow Reconciliation of LUNA & JUNA S-factors for ¹³C(α . n)¹⁶O

 \rightarrow ¹²C(α, γ)¹⁶O S-factor at stellar energies reduced by 21% !

▋→ 🏠

Ab initio methods are accurate for light systems \rightarrow Start from a χ -EFT NN+3N Hamiltonian

& no pheno. approximation of the E1 and M1 !

Ab initio prediction reduces the uncertainties on the $\alpha(d,\gamma)^6$ Li rate by ~7 !

Use of ab initio input in the analysis of indirect measurements : \rightarrow Reconciliation of LUNA & JUNA S-factors for ${}^{13}C(\alpha, n){}^{16}O$

 $\rightarrow {}^{12}C(\alpha,\gamma){}^{16}O$ S-factor at stellar energies reduced by 21% !

Prospects : - comprehensive R-matrix fit of ${}^{12}C(\alpha, \gamma){}^{16}O$ at all E

- propagate these rates into nucleosynthesis network

Ab initio methods are accurate for light systems \rightarrow Start from a χ -EFT NN+3N Hamiltonian

& no pheno. approximation of the E1 and M1 !

Ab initio prediction reduces the uncertainties on the $\alpha(d,\gamma)^6$ Li rate by ~7 !

Use of ab initio input in the analysis of indirect measurements : \rightarrow Reconciliation of LUNA & JUNA S-factors for ${}^{13}C(\alpha, n){}^{16}O$

 $\rightarrow {}^{12}C(\alpha,\gamma){}^{16}O$ S-factor at stellar energies reduced by 21% !

Prospects : - comprehensive R-matrix fit of ${}^{12}C(\alpha, \gamma){}^{16}O$ at all E

- propagate these rates into nucleosynthesis network
- improvements of theoretical description of transfer reaction

And because there are so many nice physics to do, opening postdoctoral position in few-body physics at FRIB © !

https://careers.msu.edu/cw/en-us/job/ 515301/research-associatefixed-term Deadline on August 21 (start date negotiable)

ask me any questions ©

Chloë Hebborn

Thanks to my collaborators...

Lawrence Livermore National Laboratory

Sofia Quaglioni

Kostas Kravvaris

Gregory Potel

∂TRIUMF

Petr Navratil

Peter Gysbers

Melina Avila

Guillaume Hupin

and thank you for your attention !

Ch	loë	H€	eb	bo	rn
	_		_	_	

Irène Joliot-Curie

Appendices

No core shell model with continuum Hamiltonian

[Navrátil, Quaglioni, Hupin, Romero-Redondo and Calci, Phys. Scr. 91, 053002 (2016)]

Using microscopic R-matrix theory to obtain both bound and scattering states

Internal part : need to compute the potential **External :** only free components

Direct measurements are scarce and have large uncertainties

Direct measurements : $\alpha {+} d {\rightarrow} {}^{6} {
m Li} + \gamma$

Indirect measurements : time-inversed reaction ${}^{6}\text{Li}+{}^{208}\text{Pb} \rightarrow \alpha + d$

→ Errors due to nuclear interferences [Hammache et al. PRC 82 065803 (2010)]]

Can the χ -EFT force reproduce the exp. binding energy?

NCSM extrapolation in N_{max} :

Convergence in pseudostates

d pseudostates in 3S_1 - 3D_1 , 3D_2 and 3D_3 - 3G_3

Convergence in N_{max}

What causes this weird shape of M1 transition?

[Nollett et al. PRC 63, 024003 (2001)]

Independence of the SRG evolution

Arise from internal structure of d of ⁶Li

 \rightarrow visible in other models including microscopic d and ⁶Li

Comparison with a three-body model of ⁶Li

Three-body model of ${}^{6}\text{Li} \equiv \alpha + n + p$:

[Baye and Tursunov, JPG 45, 085102 (2018)]

- \rightarrow smaller E2 : explained by smaller ANCs
- \rightarrow no M1 in their model
- → non-negligible E1 : due to transition $\langle {}^{6}\text{Li}(1^{+}; T=1) | M^{E1} | \alpha d(T=0) \rangle$ with ${}^{6}\text{Li} 1^{+} T=0.005 \text{ vs } T=0.0003$ in NCSMC

DWBA analysis of ${}^{13}C({}^{6}Li, d){}^{17}O$ data

FIG. 3. (Color online) Cross section and DWBA fit as a function of center-of-mass angle of the $1/2^+$ subthreshold resonance state of excitation energy 6.356 MeV in ¹⁷O measured in the present work (solid line) and in Ref. [5] (dashed line) by using a ¹³C beam energy of 7.72 and 7.81 MeV, respectively.

[Avila et al. PRC 91, 048801 (2015)]

DWBA analysis of ${}^{12}C({}^{6}Li, d){}^{16}O$ data

[deBoer et al. Rev. Mod. Phys. 89, 035007 (2017)]