EM NOISE & INTERFERENCE IN MEASUREMENT SETUPS

Tools for Physicists 22

Matthias Hoek

DISCLAIMER

What this is not

- Teaching design principles
- Silver bullet for your measurement problem

But rather

- Discussing possible reasons
- Giving hints for solutions
- Help with checking your setup

MODEL OF INTERFERENCE INFLUENCE

SIGNAL TRANSMISSION

Voltage

- In general: $R_L \gg R_i$
- Current determined by R_L
 - Can be ignored for large R_L
- Current
 - In general: $R_L \ll R_i$
 - Voltage determined by R_L
 - Can be ignored for $R_L \rightarrow 0$

SIGNAL TRANSMISSION

- Loop is always closed
 - Signal current has a return path!
- Asymmetric
 - One conductor connected to ground
- Symmetric
 - Signals symmetric wrt ground

IGI

- Opposite polarity
- Better in terms of interference

SIGNAL TRANSMISSION – CABLE ROUTING

Keep area between wires as small as possible!

GROUND/EARTH

Devices connected in rows (typical lab setup)

- Two main tasks
 - 1) Reference potential
 - 2) Equalize potential
- Can lead to substantial currents
 - Bad for task 1)
- (Unwanted) Coupling of different loops

INTERFERENCE COUPLING - CAPACITIVE

• Coupling via C_K • $I_{IF} = C_K \frac{\mathrm{d} v_{IF}}{\mathrm{d} t}$ • Depends on frequency $\bullet U_{L,IF} = C_K \frac{\mathrm{d}U_{IF}}{\mathrm{d}t} \frac{R_i \cdot R_L}{R_i + R_L}$ Countermeasures Reduce C_K , $\frac{\mathrm{d}v_{IF}}{\mathrm{d}t}$ Use low-pass filter

(T

INTERFERENCE COUPLING - INDUCTIVE

- Mutual inductance M_K reason for coupling
- $U_{IF} = M_K \frac{\mathrm{d}I_{IF}}{\mathrm{d}t} \approx U_{L,IF}$ • Depends on frequency
- Countermeasures
 - Reduce M_K
 - Use current transmission

IG

• Reduce $\frac{\mathrm{d}I_{IF}}{\mathrm{d}t}$

INTERFERENCE COUPLING - INDUCTIVE

- Countermeasures cnt'd
 - Twisting transmission lines
 - Causes change of sign for magnetic flux
 - Still influence between neighbouring lines
 - Use low-pass filter

INTERFERENCE COUPLING - IMPEDANCE

Asymmetric transmission

- Coupling through common impedance Z_K
 - Often a common ground connection

(T

INTERFERENCE COUPLING - IMPEDANCE

Symmetric transmission

- Only common-mode interference signal
- Reduces coupling to other loops
 - Compensates current on ground line

COUNTER MEASURES IN THE LAB - ISOLATING TRANSFORMER

Insert large resistance between different grounds
 Decoupling (especially at low frequency)

(-

Might not be fast enough for some signals

COUNTER MEASURES IN THE LAB – GROUND LOOPS

- Multiple connections to ground in one circuit
 - Can be connected via a capacitance
- *Z_K* define the coupling of the interference
 - Keep Z_K small
- *Z_E* decouples interference
 Make *Z_E* large
- Improve grounding scheme

COUNTER MEASURES – GROUND CONNECTIONS

- Use one common connection to ground
 - No coupling from external ground loop
 - Impedance between stages is zero

IG

- Might enhance coupling between different stages
 - Oscillations?

COUNTER MEASURES - COMMON MODE CHOKE (GLEICHTAKTDROSSEL)

https://commons.wikimedia.org/w/index.php?curid=5107944

- Only common-mode signal has net current
- Ground loops have low impedance
 - Improvement with small change impedance already
- Can also be used for multiple wires, e.g. flat-ribbon

COUNTER MEASURES – FLAT RIBBON CABLE

SSSSSSSS⊥ ⊙⊙⊙⊙⊙⊙⊙⊙

S_SS_SS_S ••••••••

- Keep loop area small
 Reduce inductance
- More ground connections reduce resistance
 - Less voltage drop
- Twisted line pairs

COUNTER MEASURES – CABLE CONNECTIONS

- Capacitive and EM coupling can be suppressed by screen
- Current I_{IF} in screen can cause interference U_{S,IF}
- Braided screen
 - Magnetic field inside screen ≠0Inductance
- Keep connection impedance low

COUNTER MEASURES – CABLE CONNECTIONS

 \underline{Z}_{α}

- Capacitive coupling
- One-sided ground connection
 - Induced potential causes noise on signal line
- Two-sided ground connection
 - Both branches (partially) compensate

G

COUNTER MEASURES – CABLE CONNECTIONS

- Inductive or impedance coupling
- One-sided ground connection
 - *U_{IF}* directly superimposed on signal!

G

- Two-sided ground connection
 - Only partially sumperimposed $\left(\frac{Z'_T \cdot l}{Z_S}\right)$

FINDING THE SOURCES – MAY BE?

Capacitive Coupling

- Short signal source ($R_i = 0$)
 - Interference should vanish
- Inductive Coupling
 - Open signal source ($R_i \rightarrow \infty$)
 - Interference should vanish (but gets larger if capacitive)
 - True also for impedance coupling
 - Shielding
 - Do not ground (capacitive coupling)