

Hyperon form factors - present and future

WE-Heraeus Seminar on Baryon Form Factors: Where do we stand?

Karin Schönning for the BES III and PANDA collaborations

Outline

- Why hyperons?
- Space-like versus time-like EMFF's
- The EMFF phase
- Recent theory predictions
- Recent experimental results
- BES III at BEPC-II
 - First EMFF's phase measurement
- Possibilities with PANDA at FAIR
- Summary

Why hyperons?

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?

Why hyperons?

- Systems with strangeness
 - − Scale: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$: Relevant degrees of freedom?
 - Probes QCD in the confinement domain.
- Systems with charm
 - − Scale: $m_c \approx 1300$ MeV: Quarks and gluons more relevant.
 - Probes QCD just below pQCD.

Space-like vs. time-like FF's

Time-like form factors

- Time-like FF's are complex:
 - $G_E(q^2) = |G_E(q^2)| \cdot e^{i\Phi_E}$
 - $G_M(q^2) = |G_M(q^2)| \cdot e^{i\Phi_M}$
 - $\Delta \Phi(q^2) = \Phi_M(q^2) \Phi_E(q^2) =$ phase between G_E and G_M
- Phase between G_E and G_M polarization effects on the final state even when the initial state is unpolarized *.

*Nuovo Cim. A 109 (1996) 241.

The EMFF phase

- Phase is **production related** and depends on q^2 and scattering angle θ .
- Constraint 1: Phase result of interfering amplitudes (*e.g.* s- and *d* partial waves)
 - $\Delta \Phi(q^2) = 0$ at threshold
- **Constraint 2:** Analyticity requires TL FF ~ SL FF as $|q^2| \rightarrow \infty$
 - $\varDelta \Phi(q^2) \rightarrow 0$ as $|q^2| \rightarrow \infty$

The EMFF phase

• Imaginary part polarizes the final state baryons*:

 $P_n = -\frac{\sin 2\theta Im[G_E(Q^2)G_M^*(Q^2)]/\sqrt{\tau}}{(|G_E(Q^2)|^2\sin^2\theta)/\tau + |G_M(Q^2)|^2(1+\cos^2\theta)}$ Eq. 1

Polarization Real part related to the 0.5 ΔΦ=90° correlation between the $\Delta \phi = 60^{\circ}$ $\Delta \phi = 30^{\circ}$ baryon- and antibaryon spin: 0 S = 2.396 GeV $C_{lm} = \frac{\sin 2\theta Re[G_E(Q^2)G_M^*(Q^2)]/\sqrt{\tau}}{(|G_E(q^2)|^2\sin^2\theta)/\tau + |G_M(Q^2)|^2(1+\cos^2\theta)} -0.5$ R=1.0 -0.5 0.5 -1 0 Eq. 2 $\cos\theta_{\Lambda}$

*Nuovo Cim. A 109 (1996) 241.

Phase and polarisation

Advantage of hyperons:

Polarization experimentally accessible by the weak, parity violating decay:

Example: Angular distribution of $\Lambda \rightarrow p\pi^{-}$ decay

 $I(\cos\theta_{\rm p}) = N(1 + \alpha P_{\Lambda} \cos\theta_{\rm p})$

 P_{Λ} : polarisation

 α = 0.64 asymmetry parameter

UPPSALA UNIVERSITET

Phase and polarisation

Challenges:

Polarisation depends on **energy** and **scattering angle** and has impact on **decay angles**.

- Formalism needs to take this into account correctly.
- Acceptance depends on many variables.
- Large data samples required.

Phase and polarisation

Challenges:

Polarisation depends on **energy** and **scattering angle** and has impact on **decay angles**.

- Formalism needs to take this into account correctly.
- Acceptance depends on many variables.
- Large data samples required.

→ Until now, no conclusive phase measurements exist! Main focus so far on cross section / effective form factor.

Recent experimental results

- See talks and posters by:
 - Monica Bertani (general time-like EMFF's)
 - Rinaldo Baldini Ferroli (anomalies in baryon EMFF's)
 - Xiaorong Zhou (EMFF's of the strange Λ hyperon)
 - Weiping Wang (EMFF's of the charmed Λ_c hyperon)

Recent experimental results

CLEO-c:

- Cross sections in the high energy limit (q = 3770 MeV and q = 4170 MeV) of octet baryons and Ω^- .
- Claim evidence for effects from di-quark correlations*.

*PRD 96 (2017) 092004.

Recent theory predictions

- Time-like EMFF's of Λ studied by Haidenbauer and Meissner*.
- Special focus on $\Lambda\overline{\Lambda}$ final state interaction.
- $\Lambda\overline{\Lambda}$ potentials fitted to $\overline{p}p \to \overline{\Lambda}\Lambda$ data from PS185**

Predictions for $\sigma(e^+e^- \rightarrow \Lambda \overline{\Lambda})$ and $|G_{eff}|$:

• Small difference between different $\Lambda\overline{\Lambda}$ potentials*.

*PLB 761 (2016) 456. ** Phys. Rep. 368 (2002) 119.

Predictions for $R = |G_E|/|G_M|$:

- Larger difference between different $\Lambda\overline{\Lambda}$ potentials*.
- Comparison to previous data* inconclusive.

*PLB 761 (2016) 456. ** PRD 76 (2007) 092006.

Recent theory predictions

- Different potential models give different values of the phase.
- What do data tell us?

*PLB 761 (2016) 456.

New data from BES III @ BEPC II

BES III in Beijing, China, excellent for baryon TL EMFF's!

UPPSALA UNIVERSITET

- BEPC = Beijing Electron Positron Collider.
- Operates in the τ-charm mass region

- BES III = Beijing Spectrometer
 - Wide physics scope
 - More details in talk by C. Rosner

Energy scan 2014-2015

• World leading data sample between 2.0 and 3.08 GeV.

Measurement of Λ EMFF with BES III

- Large data sample at 2.396 GeV.
- Exclusive event selection: $e^+e^- \rightarrow \Lambda \overline{\Lambda}, \Lambda \rightarrow p\pi^-, \overline{\Lambda} \rightarrow \overline{p}\pi^+$:
 - ≥ 4 tracks within the MDC
 - $-p_{p} > 0.2 \text{ GeV}$
 - $p_{\pi} < 0.2 \text{ GeV}$
 - Vertex fit
 - 4C fit

€€ऽШ

200

150

100

50

0 1.1

Events / 1MeV

Measurement of Λ EMFF with BES III

• Invariant mass cut: $|M(p\pi) - M_{\Lambda}| < 0.006 \text{ GeV/c}^2$

🔶 Data

1.12

1.11

 $M(p\pi^{-}) \text{ GeV/c}^2$

Monte Carlo

- $N_{signal} = 555 \pm 24$
- $N_{sidebands} = 14 \pm 4$

Measurement of Λ EMFF with BES III

Cross section:

$$\sigma = \frac{N_{signal}}{L\varepsilon(1+\delta)BR(\Lambda \to p\pi^{-})BR(\overline{\Lambda} \to \overline{p}\pi^{+})} = 119.0 \pm 5.3 \pm 7.3 \ pb$$

$$\cdot (1+\delta) \ ISR \ correction \ based \ on \ model \ by \ Czyz^{*} \ et \ a!.$$

$$\cdot \varepsilon = 17.7\%$$

$$\cdot L = 66.9 \pm 0.02 \pm 0.5 \ pb^{-1}$$

$$\cdot BR(\Lambda \to p\pi^{-}) = BR(\overline{\Lambda} \to \overline{p}\pi^{+}) = 0.64\%$$
Effective form factor:
$$|G(q^{2})| = \sqrt{\frac{\sigma}{1+\frac{1}{2\tau}(\frac{4\pi\alpha^{2}\beta}{3q^{2}})}} = 0.123 \pm 0.003 \pm 0.004$$

$$\cdot \tau = \frac{q^{2}}{4m_{\Lambda}^{2}}, \ \beta = \sqrt{1-\frac{1}{\tau}}, \ \alpha = \frac{1}{137}$$
*PRD 75 (2007) 074026

Measurement of Λ EMFF with BES III

*PLB 772 (2017) 16.

For $R = |G_E/G_M|$ and $\Delta \Phi$, formalism for exclusive measurement derived*: $\mathscr{W}(\xi) = \mathscr{T}_0(\xi) + \eta \, \mathscr{T}_5(\xi)$ $-\alpha_{\Lambda}^{2}\left(\mathscr{T}_{1}(\xi)+\sqrt{1-\eta^{2}}\cos(\Delta\Phi)\mathscr{T}_{2}(\xi)+\eta\mathscr{T}_{6}(\xi)\right)$ Eq. 3 $+\alpha_{\Lambda}\sqrt{1-\eta^{2}}\sin(\Delta\Phi)\left(\mathscr{T}_{3}(\xi)-\mathscr{T}_{4}(\xi)\right).$ $\mathscr{T}_0(\xi) = 1$ $\mathscr{T}_1(\xi) = \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 + \cos^2\theta \cos\theta_1 \cos\theta_2$ $\mathscr{T}_2(\xi) = \sin\theta\cos\theta(\sin\theta_1\cos\theta_2\cos\phi_1 + \cos\theta_1\sin\theta_2\cos\phi_2)$ $\mathscr{T}_3(\xi) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$ $\mathscr{T}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$ e^{-} π^{\dagger} $\mathscr{T}_5(\xi) = \cos^2\theta$ $\mathscr{T}_6(\xi) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2$ $(heta_2, arphi_2)$ The $\eta = \frac{\tau - R^2}{\tau + R^2}$ is related to the angular distribution.

Measurement of Λ EMFF with BES III

- Eq. 3 fitted to data using an unbinned Maximum Likelihood fit.
- Result:

$$R = 0.94 \pm 0.16 \pm 0.03 (\pm 0.02 \alpha_{\Lambda})$$

- $\Delta \Phi = 42^{o} \pm 16^{o} \pm 8^{o} (\pm 6^{o} \alpha_{\Lambda})$

RESI

*PRD 76 (2007) 092006.

- Most precise result on *R* (BaBar: *R* = 1.73^{+0.99}_{-0.57} in 2.23 < *q* < 2.40 GeV*)
- First conclusive result on $\Delta \Phi$

(BaBar: $-0.76 < sin\Delta\Phi < 0.98$ in 2.23 < q < 2.80 GeV*)

BESII

Measurement of Λ EMFF with BES III

Systematic uncertainties:

• New BES III results on $J/\Psi \rightarrow \Lambda \overline{\Lambda}$ suggest $\alpha_{\Lambda} = 0.64 \rightarrow \alpha_{\Lambda} = 0.75$

 \rightarrow Impact on our $\Delta \Phi$ result.

NB: $\Delta \Phi$ result at J/Ψ consistent with our finding.

		2
Source	Ret	$\Delta \Phi(\%)$
$\chi^2(4C)$ cut	2.8	16.8
mass window of on	0.1	5.5
different range of $\cos\theta_{\Lambda}$	1.3	6.8
lotal	3.1	18.9
different α_{Λ}	2.0	13.7

Future at BES III

- Possible to measure R and $\Delta \Phi$ for $\Sigma^0, \Sigma^+, \Xi^-$ and Λ_c^+ :
 - Formalism available / under development.
 - A lot of data on tape.
 - More is coming!

Future at PANDA

The PANDA experiment at FAIR

SIS 100/300 eV SIS18 **30 GeV Protons** p-Linac HESR Cu Target p/s @ 3 GeV 10^{7} PANDA ccelerating RESR/CR Collecting **Facility for Antiproton** Accumulating and Ion Research Precooling 100m

The PANDA experiment at FAIR

The High Energy Storage Ring (HESR)

- Anti-protons within 1.5 GeV/c < p_{pbar} < 15 GeV/c
- Cluster jet or pellet targets
- Day One luminosity: 10³¹ cm⁻²s⁻¹

The PANDA experiment at FAIR

Beam Dipole

Target Spectrometer

- 4π coverage
- Precise tracking
- PID
- Calorimetry

- Vertex detector
- Modular design
- Time-based data acquisition
 with software trigger

32

Forward Spectrometer

Possibilities with PANDA

Σ

et

- Transition form factors accessible from hyperon Dalitz decays.
- Possible in case of *e.g.* Σ^0 and $\Lambda(1520)$.
- Theory predictions by Granados, Leupold and Perotti*:
 - $-\chi$ PT and Dispersion Theory.
 - Comprehensive framework developing.
 - First calculations for $\Sigma^0 \rightarrow \Lambda e^+ e^-$.
 - Slope of G_M of special interest.

Experimental challenge:

- Typically small predicted BR's (10⁻³ 10⁻⁶)
- QED prediction for BR($\Sigma^0 \rightarrow \Lambda e^+ e^-$): 5.10⁻³

→ Need very high hyperon production rates!

- PANDA is a hyperon factory!
- Large cross sections of *e.g.* Σ^0 channels: $-\sigma(\bar{p}p \rightarrow \bar{\Lambda}\Sigma^0 + c.c.) \sim 40 \ \mu b \text{ at 4 GeV}$ $-\sigma(\bar{p}p \rightarrow \bar{\Sigma}^0\Sigma^0) \sim 20 \ \mu b \text{ at 4 GeV}$

- Simulation study of $\bar{p}p \rightarrow \bar{\Lambda}\Sigma^0 + c.c., \Sigma^0 \rightarrow \Lambda\gamma$ by S. Grape (PhD thesis, UU 2009): Σ^0 production rates of
 - 30 s⁻¹ at Day One luminosity
 - 600 s⁻¹ at design luminosity
- Back-of-the-envelope calculation of the Dalitz decay rate:

$$\frac{dN_{\Lambda e^+e^-}}{dt} = \frac{dN_{\Lambda\gamma}}{dt} \cdot BR(\Sigma^0 \to \Lambda e^+e^-) \frac{\varepsilon(\Lambda e^+e^-)}{\varepsilon(\Lambda\gamma)} + \begin{bmatrix} 0.5 \cdot \varepsilon(\Lambda e^+e^-) \ s^{-1} \ \text{with PANDA Day One} \end{bmatrix}$$

$$10 \cdot \varepsilon(\Lambda e^+e^-) \ s^{-1}$$
with HESR design luminosity6

$$\frac{dN_{\Lambda e^+e^-}}{dt} = \frac{dN_{\Lambda\gamma}}{dt} \cdot BR(\Sigma^0 \to \Lambda e^+e^-) \frac{\varepsilon(\Lambda e^+e^-)}{\varepsilon(\Lambda\gamma)} + \begin{bmatrix} 0.5 \cdot \varepsilon(\Lambda e^+e^-) \ s^{-1} \ \text{with PANDA Day One} \end{bmatrix}$$

$$10 \cdot \varepsilon(\Lambda e^+e^-) \ s^{-1}$$
with HESR design luminosity7

Possibilities with PANDA

While waiting for PANDA@HESR: PANDA@HADES!

See talk by J. Ritman

Summary

- Hyperons provide a new angle to hadron structure.
- Polarisation measurements give information about the EMFF phase.
- BESIII:
 - Unique large-scale energy scan → world-leading data samples for baryon EMFF measurements.
 - Λ : Ratio $R = |G_E/G_M|$ measured with unprecedented precision.
 - Λ : Relative phase $\Delta \Phi$ of G_E and G_M measured for the first time.
 - Can measure also $\Sigma^0, \Sigma^+, \Xi^-$ and Λ_c^+ .

Summary

- PANDA:
 - Hyperon transition FF's accessible in Dalitz decays:
 PANDA a hyperon factory!
 - Until then: PANDA@HADES

Thanks for your attention!