

Cross section measurement of AA production at BESIII based on Phys. Rev. D 97, 032013 (2018)

Xiaorong Zhou (on behalf of BESIII Collaboration) State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

668-WE-Heraeus Seminar on Baryon Form Factors: where do we stand? Physikzentrum Bad Honnef, Germany, April 2018

Baryon pair production

> The elec > The > Ele κF_{2} Pro

e Born cross section for
$$e^+e^- \rightarrow \gamma^* \rightarrow B\bar{B}$$
 (*B* spin ½), can be expressed
ctromagnetic form factor G_E and G_M :

$$\sigma_{B\bar{B}}(q) = \frac{4\pi \alpha^2 C\beta}{3q^2} [|G_M(q)|^2 + \frac{1}{2\tau}|G_E(q)|^2]$$

$$= Coulomb factor C = \begin{pmatrix} \frac{\pi \alpha}{\beta} \frac{1}{1 - \exp(-\frac{\pi \alpha}{\beta})} & \text{for a charged } B\bar{B} \text{ pair} \\ 1 & \text{for a neutral } B\bar{B} \text{ pair} \end{pmatrix}$$

$$= Coulomb factor C = \begin{pmatrix} \frac{\pi \alpha}{\beta} \frac{1}{1 - \exp(-\frac{\pi \alpha}{\beta})} & \text{for a charged } B\bar{B} \text{ pair} \\ 1 & \text{for a neutral } B\bar{B} \text{ pair} \end{pmatrix}$$

$$= Coulomb factor C = \begin{pmatrix} \pi \alpha (q^2) + \pi (q^2$$

The point-like cross sections at threshold: $\sigma_{\text{point}}(q^2) = \frac{2\pi \alpha c}{q^2}$ > The cross section for neutron baryon production is zero

Possible explanations > Tail of a narrow resonance below threshold (baryonium, meson?) \triangleright Dominance of π exchange in final state interaction > Underestimation of the Coulomb correction factor ▶ ...

Threshold effects

The BESIII Detector and Data Samples

Data samples Four energy points from $\sqrt{s}=2.2324$ to 3.08 GeV > The total integrated luminosity is 40.8 pb^{-1}

Main drift Chamber (MDC) : $\sigma_{dE/dx} = 6\%$, $\sigma_{xy} = 130 \mu m$, $\sigma_p/p=0.5\%$ Time of flight system (TOF): $\delta_{t,barrel} = 80 \text{ ps}, \delta_{t,endcaps} = 65 \text{ ps}$ Electromagnetic Calorimeter: $\sigma_E = 2.5\%$, $\sigma_l = 6$ mm Superconducting Solenoid: B = 1.0 TRPC muon chamber: $\delta_R = 1.48$ cm

A new Cylindrical GEM inner tracker will be installed for BESIII!

- $ightarrow e^+e^- \rightarrow \Lambda \overline{\Lambda}$ at $\sqrt{s} = 2.2324$ GeV with PHSP, at $\sqrt{s} = 2.40$, 2.80 and 3.08 GeV with Conexc.
- $\geq e^+e^- \rightarrow l^+l^-$ ($l = e, \mu$) and $e^+e^- \rightarrow \gamma\gamma$ with Babayaga
- badronic final states with Lundarlw

$e^+e^- \rightarrow \Lambda\bar{\Lambda}$ at $\sqrt{s} = 2.2324$ GeV

Near threshold production (2M_Λ +1.0 MeV) and small PHSP in Λ/Λ̄ decays Indirect search for antiproton in Λ → pπ⁻, Λ̄ → pπ⁺ Search for mono-energetic π⁰ in Λ̄ → nπ⁰

$\Lambda \rightarrow p\pi^-, \overline{\Lambda} \rightarrow \overline{p}\pi^+$

Reconstruction of $\Lambda \rightarrow p\pi^-$, $\Lambda \rightarrow \overline{p}\pi^+$ (mode I)

 \triangleright PID: dE/dx+TOF, $N_{\pi^+} = N_{\pi^-} = 1$ \blacktriangleright Momentum of π : [0.08, 0.11] GeV/c around 3 cm (interaction between \bar{p} and beam pipe) \triangleright Observable: the largest V_{xy} , fit with MC shape

- > Charged track: $|V_{xv}| < 1 \text{ cm}, |V_z| < 10 \text{ cm}, |\cos\theta| < 0.93, N_{chrg} = 2$
- \triangleright Secondary particles: Select the largest V_{xy} of all tracks, shows enhancement

Reconstruction of $\overline{\Lambda} \rightarrow \overline{n}\pi^0$ (mode II)

Angle between \bar{n} and π^0 larger than 140° \triangleright Observable: the momentum of π^0 , fit with MC shape

≻ Charged track: $|V_{xy}| < 1 \text{ cm}, |V_z| < 10 \text{ cm}, |\cos\theta| < 0.93, N_{chrg} \le 1$ > Neutral track: $E_{barrel} > 25$ MeV, $E_{endcap} > 50$ MeV, Angle> 10° \triangleright Most energetic shower as \bar{n} candidate, BDT booked for \bar{n}/γ separation > π^0 reconstruction: 1C kinematic fit on π^0 mass, $\frac{|E_{\gamma_1} - E_{\gamma_2}|}{\pi} < 0.95, \chi_{1C}^2 < 20$, $p_{\pi 0}$

$e^+e^- \rightarrow \Lambda\bar{\Lambda}$ at $\sqrt{s} = 2.40, 2.80, 3.08$ GeV

> PID: dE/dx+TOF, $N_p = N_{\bar{p}} = N_{\pi^+} = N_{\pi^-} = 1$ > Secondary vertex fit applied for $\Lambda/\overline{\Lambda}$ > Mass window cut $|M_{p\pi^-/\bar{p}\pi^+} - M_A| < 0.01 \text{ GeV}/c^2$ $\sqrt{s} = 2.40, 2.80, 3.08 \text{ GeV}$ > Observable: $M_{\Lambda \overline{\Lambda}}/\sqrt{s}$, background free, counting method

- > Charged track: $|V_{xy}| < 10$ cm, $|V_z| < 30$ cm, $|\cos\theta| < 0.93$, $N_{chrg} = 4$
- > Opening angle between $\Lambda/\overline{\Lambda}$ in c.m.system: $\theta_{\Lambda\overline{\Lambda}} > 170^{\circ}$, 176°, 178° at

Cross section for $e^+e^- \rightarrow \Lambda\bar{\Lambda}$

The Born cross section for σ^B :

The effective FF is defined b

\sqrt{s}	$\mathcal{L}_{ ext{int}}$	$N_{\rm obs}$	$\epsilon(1+\delta)$	$\sigma^{ m B}$	G
(GeV)	(pb^{-1})		(%)	(pb)	$(\times 10^{-2})$
2.2324_{1}	2.63	43 ± 7	12.9	$312 \pm 51^{+72}_{-45}$	
2.2324_{2}	2.63	22 ± 6	8.25	$288 \pm 96^{+64}_{-36}$	
2.2324_{c}				$305\pm45^{+66}_{-36}$	$61.9 \pm 4.6^{+18.1}_{-9.0}$
2.400	3.42	45 ± 7	25.3	$128 \pm 19 \pm 18$	$12.7 \pm 0.9 \pm 0.9$
2.800	3.75	8 ± 3	36.1	$14.8 \pm 5.2 \pm 1.9$	$4.10 \pm 0.72 \pm 0.26$
3.080	30.73	13 ± 4	24.5	$4.2\pm1.2\pm0.5$	$2.29 \pm 0.33 \pm 0.14$

Two modes at $\sqrt{s}=2.2324$ GeV are combined taking into account the correlation between the uncertainties of the two decay modes

$r e^+ e^- \rightarrow \Lambda \overline{\Lambda}$ is determined from: N_{obs}
$\overline{\mathcal{L}_{int} \cdot \varepsilon \cdot (1 + \delta) \cdot \mathcal{B}}$
J
$M ^2 + 1/2\tau G_E ^2 = 3s\sigma^B = 1$
$1+1/2\tau$ $\sqrt{4\pi\alpha^2\beta}$ $1+1/2\tau$

Interpretation of line-shape

- A phenomenological fit, according to the pQCD driven energy power: $\sigma^{B} = \frac{p_{1}\beta}{(M_{\Lambda\overline{\Lambda}} - p_{2})^{10}}, (p_{1}, p_{2} \text{ are float parameters})$
 - The anomalous behavior differing from the pQCD prediction at threshold is observed.

Theoretical discussion on $e^+e^- \rightarrow \Lambda\Lambda$

The calculation on of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ is investigated: > One-photon approximation \succ the effects of $\Lambda \overline{\Lambda}$ interaction is considered

From J. Haidenbauer, U. G. Meissner, Phys. Lett. B 761, (2016) 456-461

Search for a related structure in $e^+e^- \rightarrow K^+K^+K^-K^-$

the Lake Louise Winter Institute 2018

M=2234.7 \pm 2.0 MeV/ c^2 $\Gamma = 7.5^{+13.1}_{-7.5}$ MeV

Summary and prospect

- physics scenario.
- consistent with *BABAR* and DM2 experiments.

→ The cross section for $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ at $\sqrt{s} = 2.2324$ GeV (2 M_{Λ} + 1 MeV) is measured to be 305 ± 45⁺⁶⁶₋₃₆ pb

> The observed threshold enhancement implies a more complicated underlying

 \blacktriangleright The cross section for $e^+e^- \rightarrow A\bar{A}$ at $\sqrt{s} = 2.40, 2.80$ and 3.08 GeV are

Topics can be explored at BESIII (on baryon pair production near threshold)

Nucleon (p, n): ISR method by using data at $\sqrt{s} \ge 3.773$ GeV $\gg pN^*$: $p\bar{p}\pi^0$ PWA analysis with data from $\sqrt{s}=2.0$ to 3.08 GeV $\Sigma^+ \succ \Sigma \overline{\Sigma}$: scan method with data at $\sqrt{s}=2.3864, 2.396$ GeV $\succ \Lambda \overline{\Sigma}$: scan method with data at $\sqrt{s}=2.3094$ GeV

 \succ *EE*: scan method with data at $\sqrt{s}=2.6444$, 2.6464 GeV

Thanks for your attention!

14

Systematic uncertainty at $\sqrt{s} = 2.2324$ GeV

Source

- Tracking & PID (Control san
- Largest V_{xy} sel. (Control sam
 - \bar{n} selection (Control sam
- π^0 selection (Control sample a
 - BDT requirement (Control s
 - Trigger (Weight acco
 - Fit procedure (Varying
 - ISR correction (Change line
- Energy spread (An alternative en
 - Energy measurement (determin
 - Luminosity (Large-angle
 - Total

S	Mode I	Mo
nple $J/\psi \rightarrow p\bar{p}\pi^+\pi^-$)	12.3%	
ple $J/\psi \rightarrow p\bar{p}\pi^+\pi^-$)	0.3%	
ple $J/\psi \rightarrow p\bar{n}\pi^{-}$)	_	2.
$\psi(3686) \rightarrow \pi^0 \pi^0 J/\psi)$	—	2.
ample $J/\psi \rightarrow p\bar{n}\pi^{-}$)	_	4.
ording to E_{tot})	_	1.
PDF and range)	4.6%	8.
e shape in generator)		+18.5% -3.6%
lergy spread from ψ scan)		2.0%
ned from J/ψ lineshape)		3.9%
e Bhabha events)		1.0%
	+23.20/ -14.4%	+2 -1

For the uncertainty from Energy spread and Energy measurement, large uncertainties are considered due to rapid variation of velocity β

- .2%
- .3%
- .8%
- .0%
- .8%

$2.10_{2.6}$ %

Systematic uncertainty at $\sqrt{s} = 2.40$, 2.80 and 3.08 GeV

Sources

Reconstruction of Λ Reconstruction of $\overline{\Lambda}$ Mass window cut of Λ Mass window cut of $\overline{\Lambda}$ Angular distribution ISR correction Luminosity Total

> • distribution.

2.40 G	leV	2.80 GeV	3.08
		3.8%	
		3.4%	
		2.5%	
		3.0%	
12.7%		10.8%	11.
2.2%		4.0%	2.9
		1.0%	
14.0%		13.0%	13.

The unknown $|G_E/G_M|$ ratio lead to large uncertainty of anguar

Fit on $e^+e^- \rightarrow \Lambda\Lambda$