BESIII

Cross section measurement of $\bar{\Lambda} \bar{\Lambda}$ production at BESIII

based on Phys. Rev. D 97, 032013 (2018)

Xiaorong Zhou (on behalf of BESIII Collaboration)

 State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

668-WE-Heraeus Seminar on Baryon Form Factors: where do we stand? Physikzentrum Bad Honnef, Germany, April 2018

Baryon pair production

$>$ The Born cross section for $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow B \bar{B}(B$ spin $1 / 2)$, can be expressed in terms of electromagnetic form factor G_{E} and G_{M} :

$$
\sigma_{B \bar{B}}(q)=\frac{4 \pi \alpha^{2} C \beta}{3 q^{2}}\left[\left|G_{M}(q)\right|^{2}+\frac{1}{2 \tau}\left|G_{E}(q)\right|^{2}\right]
$$

$>$ The Coulomb factor $\mathrm{C}= \begin{cases}\frac{\pi \alpha}{\beta} \frac{1}{1-\exp \left(-\frac{\pi \alpha}{\beta}\right)} & \text { for a charged } B \bar{B} \text { pair } \\ 1 & \text { for a neutral } B \bar{B} \text { pair }\end{cases}$

$>$ Electromagnetic FFs (analytic): $G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\tau \kappa F_{2}\left(q^{2}\right), G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+$ $\kappa F_{2}\left(q^{2}\right)$

$$
\tau=\frac{q^{2}}{4 m^{2}}, \quad \kappa=\frac{g-2}{2}, \quad g=\frac{\mu}{J}
$$

- Properties at threshold $\left(q^{2}=4 m^{2}\right)$:
$>G_{E}\left(4 m^{2}\right)=G_{M}\left(4 m^{2}\right)$, angular distribution of B isotropic
$>\sigma^{t h}=\frac{4 \pi \alpha^{2} C}{3 q^{2} \tau}\left[1+\frac{1}{2 \tau}\right]\left|G_{e f f}^{N}\left(q^{2}\right)\right|^{2}=\sigma_{\text {point }}^{N}\left(q^{2}\right)\left|G_{e f f}^{N}\left(q^{2}\right)\right|^{2}$
$>$ The point-like cross sections at threshold: $\sigma_{\text {point }}\left(q^{2}\right)=\frac{2 \pi^{2} \alpha^{2} C}{q^{2}}$
$>$ The cross section for neutron baryon production is zero

Threshold effects

$\square e^{+} e^{-} \rightarrow p \bar{p}$ via ISR at Babar
$>$ Flat cross section near threshold
$\sigma^{t h}=\sigma_{\text {point }}^{p}\left(4 m_{p}{ }^{2}\right)$
$>$ Near-threshold enhancement of FF
Phys. Rev D 87, 092005 (2013)

- $J / \psi \rightarrow \gamma p \bar{p}$ at BESIII
$>0^{-+}$state near-threshold enhancement determined
$>$ With Julich-FSI effect included.
- $e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$precision measurement at BESIII

Phys. Rev. Lett. 108, 112003 (2012)
Phys. Rev. Lett. 120, 132001 (2018

■ Possible explanations
$>$ Tail of a narrow resonance below threshold (baryonium, meson?)
$>$ Dominance of π exchange in final state interaction
$>$ Underestimation of the Coulomb correction factor

The BESIII Detector and Data Samples

- Main drift Chamber (MDC) : $\sigma_{d E / d x}=6 \%, \sigma_{x y}=130 \mu \mathrm{~m}, \sigma_{p} / p=0.5 \%$
- Time of flight system (TOF): $\delta_{t, \text { barrel }}=80 \mathrm{ps}, \delta_{t, \text { endcaps }}=65 \mathrm{ps}$
- Electromagnetic Calorimeter: $\sigma_{E}=2.5 \%, \sigma_{l}=6 \mathrm{~mm}$
- Superconducting Solenoid: $\mathrm{B}=1.0 \mathrm{~T}$
- RPC muon chamber: $\delta_{R}=1.48 \mathrm{~cm}$

A new Cylindrical GEM inner tracker will be installed for BESIII!

- Data samples
$>$ Four energy points from $\sqrt{\mathrm{s}}=2.2324$ to 3.08 GeV
$>$ The total integrated luminosity is $40.8 \mathrm{pb}^{-1}$
\square MC simulation
$>e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$ at $\sqrt{\mathrm{s}}=2.2324 \mathrm{GeV}$ with PHSP, at $\sqrt{\mathrm{s}}=2.40,2.80$ and 3.08 GeV with Conexc.
$>e^{+} e^{-} \rightarrow l^{+} l^{-}(l=e, \mu)$ and $e^{+} e^{-} \rightarrow \gamma \gamma$ with Babayaga
$>$ hadronic final states with Lundarlw

$e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$ at $\sqrt{\mathbf{s}}=2.2324 \mathrm{GeV}$

\square Near threshold production $\left(2 M_{\Lambda}+1.0 \mathrm{MeV}\right)$ and small PHSP in $\Lambda / \bar{\Lambda}$ decays $>$ Indirect search for antiproton in $\boldsymbol{\Lambda} \rightarrow \boldsymbol{p} \boldsymbol{\pi}^{-}, \overline{\boldsymbol{\Lambda}} \rightarrow \overline{\boldsymbol{p}} \boldsymbol{\pi}^{+}$
\Rightarrow Search for mono-energetic π^{0} in $\overline{\boldsymbol{\Lambda}} \rightarrow \overline{\boldsymbol{n}} \boldsymbol{\pi}^{\mathbf{0}}$

$$
\Lambda \rightarrow \mathbf{p} \boldsymbol{\pi}^{-}, \bar{\Lambda} \rightarrow \overline{\mathbf{p}} \boldsymbol{\pi}^{+}
$$

$$
\Lambda \rightarrow \mathbf{p} \pi^{-}, \bar{\Lambda} \rightarrow \overline{\mathbf{n}} \boldsymbol{\pi}^{0}
$$

Reconstruction of $\Lambda \rightarrow p \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}($mode $I)$

$>$ Charged track: $\left|V_{x y}\right|<1 \mathrm{~cm},\left|V_{z}\right|<10 \mathrm{~cm},|\cos \theta|<0.93, N_{\text {chrg }}=2$
$>$ PID: $\mathrm{dE} / \mathrm{dx}+\mathrm{TOF}, N_{\pi^{+}}=N_{\pi^{-}}=1$
$>$ Momentum of π : $[0.08,0.11] \mathrm{GeV} / \mathrm{c}$
$>$ Secondary particles: Select the largest $V_{x y}$ of all tracks, shows enhancement around 3 cm (interaction between \bar{p} and beam pipe)
$>$ Observable: the largest $V_{x y}$, fit with MC shape

Reconstruction of $\bar{\Lambda} \rightarrow \overline{\boldsymbol{n}} \boldsymbol{\pi}^{0}$ (mode II)

Charged track: $\left|V_{x y}\right|<1 \mathrm{~cm},\left|V_{z}\right|<10 \mathrm{~cm},|\cos \theta|<0.93, N_{\text {chrg }} \leq 1$
$>$ Neutral track: $E_{\text {barrel }}>25 \mathrm{MeV}, E_{\text {endcap }}>50 \mathrm{MeV}$, Angle $>10^{\circ}$
$>$ Most energetic shower as \bar{n} candidate, BDT booked for \bar{n} / γ separation
$>\pi^{0}$ reconstruction: 1 C kinematic fit on π^{0} mass, $\frac{\left|E_{\gamma_{1}}-E_{\gamma_{2}}\right|}{p_{\pi^{0}}}<0.95, \chi_{1 C}^{2}<20$,
Angle between \bar{n} and π^{0} larger than 140°
$>$ Observable: the momentum of π^{0}, fit with MC shape

$e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$ at $\sqrt{s}=2.40,2.80,3.08 \mathrm{GeV}$

$>$ Charged track: $\left|V_{x y}\right|<10 \mathrm{~cm},\left|V_{z}\right|<30 \mathrm{~cm},|\cos \theta|<0.93, N_{\text {chrg }}=4$
$>$ PID: $\mathrm{dE} / \mathrm{dx}+\mathrm{TOF}, N_{p}=N_{\bar{p}}=N_{\pi^{+}}=N_{\pi^{-}}=1$
$>$ Secondary vertex fit applied for $\Lambda / \bar{\Lambda}$
$>$ Mass window cut $\left|M_{p \pi^{-} / \bar{p} \pi^{+}}-M_{\Lambda}\right|<0.01 \mathrm{GeV} / c^{2}$
$>$ Opening angle between $\Lambda / \bar{\Lambda}$ in c.m.system: $\theta_{\Lambda \bar{\Lambda}}>170^{\circ}, 176^{\circ}, 178^{\circ}$ at $\sqrt{s}=2.40,2.80,3.08 \mathrm{GeV}$
$>$ Observable: $M_{\Lambda \bar{\Lambda}} / \sqrt{s}$, background free, counting method

Cross section for $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$

\square The Born cross section for $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$ is determined from:

$$
\sigma^{B}=\frac{N_{o b s}}{\mathcal{L}_{i n t} \cdot \varepsilon \cdot(1+\delta) \cdot \mathcal{B}}
$$

The effective FF is defined by

$$
|G|=\sqrt{\frac{\left|G_{M}\right|^{2}+1 / 2 \tau\left|G_{E}\right|^{2}}{1+1 / 2 \tau}}=\sqrt{\frac{3 s \sigma^{B}}{4 \pi \alpha^{2} \beta} \cdot \frac{1}{1+1 / 2 \tau}}
$$

\sqrt{s} (GeV)	$\mathcal{L}_{\text {int }}$ $\left(\mathrm{pb}^{-1}\right)$	$N_{\text {obs }}$	$\epsilon(1+\delta)$ $(\%)$	σ^{B} (pb)	$\|G\|$ $\left(\times 10^{-2}\right)$
2.2324_{1}	2.63	43 ± 7	12.9	$312 \pm 51_{-45}^{+72}$	
2.2324_{2}	2.63	22 ± 6	8.25	$288 \pm 96_{-36}^{+64}$	
2.2324_{c}				$305 \pm 45_{-36}^{+66}$	$61.9 \pm 4.6_{-9.0}^{+18.1}$
2.400	3.42	45 ± 7	25.3	$128 \pm 19 \pm 18$	$12.7 \pm 0.9 \pm 0.9$
2.800	3.75	8 ± 3	36.1	$14.8 \pm 5.2 \pm 1.9$	$4.10 \pm 0.72 \pm 0.26$
3.080	30.73	13 ± 4	24.5	$4.2 \pm 1.2 \pm 0.5$	$2.29 \pm 0.33 \pm 0.14$

Two modes at $\sqrt{s}=2.2324 \mathrm{GeV}$ are combined taking into account the correlation between the uncertainties of the two decay modes

Interpretation of line-shape

- A phenomenological fit, according to the pQCD driven energy power:

$$
\sigma^{B}=\frac{p_{1} \beta}{\left(M_{\Lambda \bar{\Lambda}}-p_{2}\right)^{10}},\left(p_{1}, p_{2} \text { are float parameters }\right)
$$

The anomalous behavior differing from the pQCD prediction at threshold is observed.

Theoretical discussion on $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$

- The calculation on of $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$ is investigated:
$>$ One-photon approximation
$>$ the effects of $\Lambda \bar{\Lambda}$ interaction is considered

From J. Haidenbauer, U. G. Meissner, Phys. Lett. B 761, (2016) 456-461

Search for a related structure in $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}^{-}$

the Lake Louise Winter Institute 2018

$$
\begin{aligned}
& \mathrm{M}=2234.7 \pm 2.0 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma=7.5_{-7.5}^{+13.5} \mathrm{MeV}
\end{aligned}
$$

Summary and prospect

$>$ The cross section for $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$ at $\sqrt{s}=2.2324 \mathrm{GeV}\left(2 M_{\Lambda}+1 \mathrm{MeV}\right)$ is measured to be $305 \pm 45_{-36}^{+66} \mathrm{pb}$
$>$ The observed threshold enhancement implies a more complicated underlying physics scenario.
$>$ The cross section for $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$ at $\sqrt{s}=2.40,2.80$ and 3.08 GeV are consistent with $B A B A R$ and DM2 experiments.

- Topics can be explored at BESIII (on baryon pair production near threshold)

\rightarrow Nucleon (p, n) : ISR method by using data at $\sqrt{s} \geq 3.773 \mathrm{GeV}$
$>p N^{*}: p \bar{p} \pi^{0}$ PWA analysis with data from $\sqrt{s}=2.0$ to 3.08 GeV
$>\Sigma \bar{\Sigma}$: scan method with data at $\sqrt{s}=2.3864,2.396 \mathrm{GeV}$
$>\Lambda \bar{\Sigma}$: scan method with data at $\sqrt{s}=2.3094 \mathrm{GeV}$
$>E \bar{E}:$ scan method with data at $\sqrt{s}=2.6444,2.6464 \mathrm{GeV}$

Thanks for your attention!

Systematic uncertainty at $\sqrt{\mathrm{s}}=\mathbf{2} .2324 \mathrm{GeV}$

Sources	Mode I	Mode II
Tracking \& PID (Control sample $J / \psi \rightarrow p \bar{p} \pi^{+} \pi^{-}$)	12.3\%	-
Largest $V_{x y}$ sel. (Control sample $J / \psi \rightarrow p \bar{p} \pi^{+} \pi^{-}$)	0.3\%	-
\bar{n} selection (Control sample $J / \psi \rightarrow p \bar{n} \pi^{-}$)	-	2.2\%
π^{0} selection (Control sample $\psi(3686) \rightarrow \pi^{0} \pi^{0} J / \psi$)	-	2.3\%
BDT requirement (Control sample $J / \psi \rightarrow p \bar{n} \pi^{-}$)	-	4.8\%
Trigger (Weight according to $E_{\text {tot }}$)	-	1.0\%
Fit procedure (Varying PDF and range)	4.6\%	8.8\%
ISR correction (Change line shape in generator)	${ }_{+3.6}^{+18.5}$	
Energy spread (An alternative energy spread from ψ scan)	2.0\%	
Energy measurement (determined from J / ψ lineshape)	3.9\%	
Luminosity (Large-angle Bhabha events)	1.0\%	
Total	${ }_{-14.4}^{+23.2 \%}$	${ }_{-12.6}^{+22.1 \%}$

- For the uncertainty from Energy spread and Energy measurement, large uncertainties are considered due to rapid variation of velocity β

Systematic uncertainty at $\sqrt{\mathbf{s}}=\mathbf{2 . 4 0 , 2 . 8 0}$ and 3.08 GeV

Sources	2.40 GeV	2.80 GeV	3.08 GeV
Reconstruction of Λ		3.8%	
Reconstruction of $\bar{\Lambda}$		3.4%	
Mass window cut of Λ		2.5%	
Mass window cut of $\bar{\Lambda}$		3.0%	
Angular distribution	12.7%	10.8%	11.4%
ISR correction	2.2%	4.0%	2.9%
Luminosity		1.0%	
Total	14.0%	13.0%	13.0%

- The unknown $\left|G_{E} / G_{M}\right|$ ratio lead to large uncertainty of anguar distribution.

Fit on $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$

