Fine structure of the nucleon electromagnetic form factors in the vicinity of the threshold of e+eannihilation into nucleon - antinucleon pair

A.I. Milstein

G.I.Budker Institute of Nuclear Physics, Novosibirsk, Russia

Layout

- Close to the threshold of $N \bar{N}$, but not very close:
$e^{+} e^{-} \rightarrow p \bar{p}, n \bar{n}$, mesons; $J / \psi \rightarrow p \bar{p} \pi^{0}(\eta) ; J / \psi \rightarrow p \bar{p} \rho(\omega)$; $J / \psi, \psi(2 S) \rightarrow p \bar{p} \gamma ; J / \psi \rightarrow \gamma \eta^{\prime} \pi^{+} \pi^{-}$decay.
- Very close to the threshold of $N \bar{N}$: Approach of calculation of $\sigma_{e l}\left(e^{+} e^{-} \rightarrow p \bar{p}\right.$ and $\left.e^{+} e^{-} \rightarrow n \bar{n}\right)$, $\sigma_{\text {in }}\left(e^{+} e^{-} \rightarrow\right.$ mesons), and $\sigma_{t o t}$ cross sections.
- Our predictions for $\sigma_{e l}, \sigma_{i n}$, and $\sigma_{t o t}$ cross sections. Discussion of isospin-violating effects.
- Conclusion
$e^{+} e^{-} \rightarrow p \bar{p}$, near the threshold of the process, strong energy dependence!

Cross section $e^{+} e^{-} \rightarrow p \bar{p}$; data are from B. Aubert, et al., BaBar, Phys. Rev. D 73, 012005 (2006)
$e^{+} e^{-} \rightarrow n \bar{n}, 3\left(\pi^{+} \pi^{-}\right)$near the threshold of $N \bar{N}$ pair production

Left picture: cross section $e^{+} e^{-} \rightarrow n \bar{n}$; data are from M.N. Achasov, et al., SND, Phys. Rev. D 90, 112007 (2014); right picture: cross section $e^{+} e^{-} \rightarrow 3\left(\pi^{+} \pi^{-}\right)$; data are from R.R.Akhmetshin, et al., CMD3,Physics Letters, B723, 634 (2013),(black dots); B. Aubert, et al., BaBar , Phys. Rev. D 73 (2006) 052003, (green open circles)

$$
e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-} \pi^{0}\right)
$$

Cross section $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-} \pi^{0}\right)$; from B. Aubert, et al., BaBar, Phys. Rev. D 73 (2006) 052003

Strong enhancement of decay probability at low invariant mass of $p \bar{p}$ in the processes $J / \Psi \rightarrow \gamma p \bar{p}, B^{+} \rightarrow K^{+} p \bar{p}$ and $B^{0} \rightarrow D^{0} p \bar{p}$, $B^{+} \rightarrow \pi^{+} p \bar{p}$ and $B^{+} \rightarrow K^{0} p \bar{p}, \Upsilon \rightarrow \gamma p \bar{p} \ldots$ These effects are similar to that in $e^{+} e^{-}$annihilation.

One of the most natural explanation of this enhancement is final state interaction of nucleon and antinucleon
B. Kerbikov, A. Stavinsky, and V. Fedotov, Phys. Rev. C 69, 055205 (2004); D.V. Bugg, Phys. Lett. B 598, 8 (2004); B. S. Zou and H. C. Chiang, Phys. Rev. D 69, 034004 (2004); B. Loiseau and S. Wycech, Phys. Rev. C 72, 011001 (2005); A. Sibirtsev, J. Haidenbauer, S. Krewald, Ulf-G. Meiner, and A.W. Thomas, Phys. Rev. D 71, 054010 (2005); J. Haidenbauer, Ulf-G. Meiner, A. Sibirtsev, Phys.Rev. D 74, 017501 (2006); V.F. Dmitriev and A.I.Milstein, Phys. Lett. B 658 (2007), 13.

Final state interaction

Final state interaction (including annihilation channels) may be taken into account by means optical potentials:

$$
V_{N \bar{N}}=U_{N \bar{N}}-i W_{N \bar{N}}
$$

Nijmegen, Paris, Jülich... optical potentials give the same predictions for the cross sections of elastic and inelastic scattering of unpolarized particles but essentially different predictions for spin observables! The cross section $\sigma=\sigma_{a n n}+\sigma_{c e x}+\sigma_{e l}$ of $p \bar{p}$ scattering has the form

$$
\sigma=\sigma_{0}+\left(\boldsymbol{\zeta}_{1} \cdot \boldsymbol{\zeta}_{2}\right) \sigma_{1}+\left(\boldsymbol{\zeta}_{1} \cdot \boldsymbol{\nu}\right)\left(\boldsymbol{\zeta}_{2} \cdot \boldsymbol{\nu}\right)\left(\sigma_{2}-\sigma_{1}\right),
$$

where ζ_{1} and ζ_{2} are the unit polarization vectors of the proton and antiproton, respectively.
Investigation of the process $e^{+} e^{-} \rightarrow N \bar{N}$ gives important information for modification of optical potentials!

Near the threshold but not very close to the threshold.

It is possible to neglect the proton-neutron mass difference and the Coulomb potential. Our predictions for $e^{+} e^{-} \rightarrow N \bar{N}$ [V.F.Dmitriev, A.I.Milstein, S.G. Salnikov, PR D93, 034033 (2016)]

Left: the cross sections of $p \bar{p}$ (red line) and $n \bar{n}$ (green line) production, Right: $\left|G_{E}^{p} / G_{M}^{p}\right|$ for proton. The experimental data are from J.P.Lees et al., BaBar, Phys.Rev. D 87, 092005 (2013), R.R. Akhmetshin et al., CMD3, Physics Letters B759, 634 (2016) M.N. Achasov et al.,SND, Phys. Rev. D 90, 112007 (2014).
$e^{+} e^{-} \rightarrow 6 \pi$ near the threshold (via virtual $N \bar{N}$ pair production).
The cross section in the energy region between 1.7 GeV and 2.1 GeV is approximated by the formula

$$
\sigma_{6 \pi}=A \sigma_{\mathrm{ann}}^{1}+B \cdot E+C,
$$

where the best coincidence is for $A=0.56, B=0.012 \mathrm{nb} / \mathrm{MeV}$, $C=4.96 \mathrm{nb}$. The coefficient A agrees with the data of $p \bar{p} \rightarrow$ pions annihilation at rest, where 6π give $\sim 55 \%$ of $I=1$ contribution (C. Amsler et al., Nucl. Phys. A720, 357 (2003)).

The invariant mass spectra of $J / \psi \rightarrow p \bar{p} \pi^{0}$ and $J / \psi \rightarrow p \bar{p} \eta$ decays [V.F.Dmitriev, A.I.Milstein, S.G. Salnikov, PL B 760, 139 (2016)]:

Left: $J / \psi \rightarrow p \bar{p} \pi^{0}$ decay. Right: $J / \psi \rightarrow p \bar{p} \eta$ decay. The red band corresponds to our previous parameters of the potential and the green band corresponds to the refitted model. The phase space behavior is shown by the dashed curve.

$$
J / \psi \rightarrow p \bar{p} \gamma(\rho, \omega) \text { decays }
$$

A.I.Milstein, S.G.Salnikov, Nucl. Phys. A 966, 54 (2017)

Dominant contribution is given by the state of $p \bar{p}$ pair with the quantum numbers $J^{P C}=1^{-+}\left({ }^{1} S_{0}\right)$. The invariant mass spectra in $J / \psi \rightarrow p \bar{p} \rho(\omega)$ decays:

Left: $J / \psi \rightarrow p \bar{p} \omega$ decay. Right: $J / \psi \rightarrow p \bar{p} \rho$ decay.
$J / \psi, \psi(2 S) \rightarrow p \bar{p} \gamma$ decay
The invariant mass spectra in $J / \psi(\psi(2 S) \rightarrow p \bar{p} \gamma$ decays:

Left: $J / \psi \rightarrow p \bar{p} \gamma$ decay. Right: $\psi(2 S) \rightarrow p \bar{p} \gamma$ decay.

The $\eta^{\prime} \pi^{+} \pi^{-}$invariant mass spectrum in $J / \psi \rightarrow \gamma \eta^{\prime} \pi^{+} \pi^{-}$decay:

The thin line shows the contribution of non- $N \bar{N}$ channels. Vertical dashed line is the $N \bar{N}$ threshold.

Very close to the thresholds.

(A.I.Milstein, S.G.Salnikov, arXiv:1804.01283)

It is necessary to take also into account the proton-neutron mass difference and the Coulomb potential. The coupled-channels radial Schrdinger equation for the ${ }^{3} S_{1}-{ }^{3} D_{1}$ states reads

$$
\begin{aligned}
& {\left[p_{r}^{2}+\mu \mathcal{V}-\mathcal{K}^{2}\right] \Psi=0, \quad \Psi^{T}=\left(u^{p}, w^{p}, u^{n}, w^{n}\right),} \\
& \mathcal{K}^{2}=\left(\begin{array}{cc}
k_{p}^{2} \mathbb{I} & 0 \\
0 & k_{n}^{2} \mathbb{I}
\end{array}\right), \quad \mathbb{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mu=\frac{1}{2}\left(m_{p}+m_{n}\right), \\
& k_{p}^{2}=\mu E, \quad k_{n}^{2}=\mu(E-2 \Delta), \quad \Delta=m_{n}-m_{p},
\end{aligned}
$$

where $\left(-p_{r}^{2}\right)$ is the radial part of the Laplace operator, $u^{p}(r)$, $w^{p}(r)$ and $u^{n}(r), w^{n}(r)$ are the radial wave functions of a protonantiproton or neutron-antineutron pair with the orbital angular momenta $L=0$ and $L=2$, respectively, m_{p} and m_{n} are the proton and neutron masses, E is the energy of a system counted from the $p \bar{p}$ threshold.

The optical potential.

\mathcal{V} is the matrix 4×4 which accounts for the $p \bar{p}$ interaction and $n \bar{n}$ interaction as well as a transition $p \bar{p} \leftrightarrow n \bar{n}$. This matrix can be written in a block form as

$$
\mathcal{V}=\left(\begin{array}{ll}
\mathcal{V}^{p p} & \mathcal{V}^{p n} \\
\mathcal{V}^{p n} & \mathcal{V}^{n n}
\end{array}\right)
$$

where the matrix elements read

$$
\begin{aligned}
& \mathcal{V}^{p p}=\frac{1}{2}\left(\mathcal{U}^{1}+\mathcal{U}^{0}\right)-\frac{\alpha}{r} \mathbb{I}+\mathcal{U}_{c f}, \quad \mathcal{V}^{n n}=\frac{1}{2}\left(\mathcal{U}^{1}+\mathcal{U}^{0}\right)+\mathcal{U}_{c f}, \\
& \mathcal{V}^{p n}=\frac{1}{2}\left(\mathcal{U}^{0}-\mathcal{U}^{1}\right), \quad \mathcal{U}_{c f}=\frac{6}{\mu r^{2}}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \\
& \mathcal{U}^{I}=\left(\begin{array}{cc}
V_{S}^{I} & -2 \sqrt{2} V_{T}^{I} \\
-2 \sqrt{2} V_{T}^{I} & V_{D}^{I}-2 V_{T}^{I}
\end{array}\right) .
\end{aligned}
$$

$V_{S}^{I}(r), V_{D}^{I}(r)$, and $V_{T}^{I}(r)$ are the terms in the potential V^{I} of the strong $N N$ interaction, corresponding to the isospin I,

$$
V^{I}=V_{S}^{I}(r) \delta_{L 0}+V_{D}^{I}(r) \delta_{L 2}+V_{T}^{I}(r)\left[6(\boldsymbol{S} \cdot \boldsymbol{n})^{2}-4\right] .
$$

Here \boldsymbol{S} is the spin operator of the produced pair $(S=1)$ and $\boldsymbol{n}=\boldsymbol{r} / r$. The optical potential V is expressed via the potentials \widetilde{U}^{I} as follows

$$
V(r)=\widetilde{U}^{0}+\left(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right) \widetilde{U}^{1}
$$

$\tau_{1,2}$ are the isospin Pauli matrices. The terms $V_{S, D, T}^{I}$ are

$$
V_{i}^{1}(r)=\widetilde{U}_{i}^{0}(r)+\widetilde{U}_{i}^{1}(r), \quad V_{i}^{0}(r)=\widetilde{U}_{i}^{0}(r)-3 \widetilde{U}_{i}^{1}(r), i=S, D, T .
$$

The potentials $\widetilde{U}_{i}^{I}(r)$ consist of the real and imaginary parts:

$$
\begin{aligned}
& \widetilde{U}_{i}^{0}(r)=\left(U_{i}^{0}-i W_{i}^{0}\right) \theta\left(a_{i}^{0}-r\right) \\
& \widetilde{U}_{i}^{1}(r)=\left(U_{i}^{1}-i W_{i}^{1}\right) \theta\left(a_{i}^{1}-r\right)+U_{i}^{\pi}(r) \theta\left(r-a_{i}^{1}\right),
\end{aligned}
$$

where $\theta(x)$ is the Heaviside function, $U_{i}^{I}, W_{i}^{I}, a_{i}^{I}$ are free parameters fixed by fitting the experimental data, and $U_{i}^{\pi}(r)$ are the terms in the pion-exchange potential.

	\widetilde{U}^{0}	\widetilde{U}^{0}	\widetilde{U}_{T}^{0}	\widetilde{U}_{S}^{1}	\widetilde{U}_{D}^{1}	\widetilde{U}_{T}^{1}
$\boldsymbol{U}_{i}(\mathrm{MeV})$	-458_{-12}^{+10}	-184_{-20}^{+17}	-43_{-3}^{+4}	1.9 ± 0.6	991 ${ }_{-15}^{+13}$	$-4.5_{-0.1}^{+0.2}$
$W_{i}(\mathrm{MeV})$	247 ± 5	82_{-7}^{+13}	-31_{-6}^{+2}	$-8.9_{-0.5}^{+0.8}$	5_{-20}^{+14}	$1.7_{-0.1}^{+0.2}$
$a_{i}(\mathrm{fm})$	$0.531_{-0.006}^{+0.007}$	$1.177_{-0.03}^{+0.02}$	0.74 ± 0.03	1.88 ± 0.02	0.479 ± 0.003	2.22 ± 0.03
g	$g_{p}=0.338 \pm 0.004$			$g_{n}=-0.15-0.33 i \pm 0.01$		

The parameters of the short-range potential.

The asymptotic forms of four independent regular solutions Solutions, which have no singularities at $r=0$, at large distances are

$$
\begin{aligned}
& \Psi_{1 R}^{T}(r)=\frac{1}{2 i}\left(S_{11} \chi_{p 0}^{+}-\chi_{p 0}^{-}, S_{12} \chi_{p 2}^{+}, S_{13} \chi_{n 0}^{+}, S_{14} \chi_{n 2}^{+}\right), \\
& \Psi_{2 R}^{T}(r)=\frac{1}{2 i}\left(S_{21} \chi_{p 0}^{+}, S_{22} \chi_{p 2}^{+}-\chi_{p 2}^{-}, S_{23} \chi_{n 0}^{+}, S_{24} \chi_{n 2}^{+}\right), \\
& \Psi_{3 R}^{T}(r)=\frac{1}{2 i}\left(S_{31} \chi_{p 0}^{+}, S_{32} \chi_{p 2}^{+}, S_{33} \chi_{n 0}^{+}-\chi_{n 0}^{-}, S_{34} \chi_{n 2}^{+}\right), \\
& \Psi_{4 R}^{T}(r)=\frac{1}{2 i}\left(S_{41} \chi_{p 0}^{+}, S_{42} \chi_{p 2}^{+}, S_{43} \chi_{n 0}^{+}, S_{44} \chi_{n 2}^{+}-\chi_{n 2}^{-}\right) .
\end{aligned}
$$

Here $S_{i j}$ are some functions of the energy and

$$
\begin{aligned}
\chi_{p l}^{ \pm} & =\frac{1}{k_{p} r} \exp \left[\pm i\left(k_{p} r-l \pi / 2+\eta \ln \left(2 k_{p} r\right)+\sigma_{l}\right)\right] \\
\chi_{n l}^{ \pm} & =\frac{1}{k_{n} r} \exp \left[\pm i\left(k_{n} r-l \pi / 2\right)\right] \\
\sigma_{l} & =\frac{i}{2} \ln \frac{\Gamma(1+l+i \eta)}{\Gamma(1+l-i \eta)}, \quad \eta=\frac{m_{p} \alpha}{2 k_{p}}
\end{aligned}
$$

where $\Gamma(x)$ is the Euler Γ function.

The amplitude of $e^{+} e^{-} \rightarrow N \bar{N}$ near the threshold

In the non-relativistic approximation the amplitudes in units $\pi \alpha / \mu^{2}$ are

$$
\begin{aligned}
& T_{\lambda^{\prime} \lambda}^{p \bar{p}}=\sqrt{2} G_{s}^{p}\left(\boldsymbol{e}_{\lambda^{\prime}} \cdot \boldsymbol{\epsilon}_{\lambda}^{*}\right)+G_{d}^{p}\left[\left(\boldsymbol{e}_{\lambda^{\prime}} \cdot \boldsymbol{\epsilon}_{\lambda}^{*}\right)-3\left(\hat{\boldsymbol{k}} \cdot \boldsymbol{e}_{\lambda^{\prime}}\right)\left(\hat{\boldsymbol{k}} \cdot \boldsymbol{\epsilon}_{\lambda}^{*}\right)\right], \\
& T_{\lambda^{\prime} \lambda}^{n \bar{n}}=\sqrt{2} G_{s}^{n}\left(\boldsymbol{e}_{\lambda^{\prime}} \cdot \boldsymbol{\epsilon}_{\lambda}^{*}\right)+G_{d}^{n}\left[\left(\boldsymbol{e}_{\lambda^{\prime}} \cdot \boldsymbol{\epsilon}_{\lambda}^{*}\right)-3\left(\hat{\boldsymbol{k}} \cdot \boldsymbol{e}_{\lambda^{\prime}}\right)\left(\hat{\boldsymbol{k}} \cdot \boldsymbol{\epsilon}_{\lambda}^{*}\right)\right],
\end{aligned}
$$

where $e_{\lambda^{\prime}}$ is a virtual photon polarization vector, corresponding to the spin projection $J_{z}=\lambda^{\prime}= \pm 1, \boldsymbol{\epsilon}_{\lambda}$ is the spin- 1 function of $N \bar{N}$ pair, $\lambda= \pm 1,0$ is the spin projection on the nucleon momentum \boldsymbol{k}, and $\hat{\boldsymbol{k}}=\boldsymbol{k} / k$. In the non-relativistic approximation the standard formula for the differential cross section of $N \bar{N}$ pair production in $e^{+} e^{-}$annihilation reads

$$
\frac{d \sigma^{N}}{d \Omega}=\frac{k_{N} \alpha^{2}}{16 \mu^{3}}\left[\left|G_{M}^{N}(E)\right|^{2}\left(1+\cos ^{2} \theta\right)+\left|G_{E}^{N}(E)\right|^{2} \sin ^{2} \theta\right]
$$

Here θ is the angle between the electron (positron) momentum and the momentum of the final particle.

The proton and neutron Sachs form factors are:

$$
\begin{array}{ll}
G_{M}^{p}=G_{s}^{p}+\frac{1}{\sqrt{2}} G_{d}^{p}, & G_{E}^{p}=G_{s}^{p}-\sqrt{2} G_{d}^{p} \\
G_{M}^{n}=G_{s}^{n}+\frac{1}{\sqrt{2}} G_{s}^{n}, & G_{E}^{n}=G_{s}^{n}-\sqrt{2} G_{d}^{n}
\end{array}
$$

Thus,

$$
G_{E}^{N} / G_{M}^{N}=(1-\sqrt{2} x) /(1+x / \sqrt{2}), \quad x=G_{d}^{N} / G_{s}^{N}
$$

The explicit forms of the form factors are

$$
\begin{array}{ll}
G_{s}^{p}=g_{p} u_{1 R}^{p}(0)+g_{n} u_{1 R}^{n}(0), & G_{d}^{p}=g_{p} u_{2 R}^{p}(0)+g_{n} u_{2 R}^{n}(0), \\
G_{s}^{n}=g_{p} u_{3 R}^{p}(0)+g_{n} u_{3 R}^{n}(0), & G_{d}^{n}=g_{p} u_{4 R}^{p}(0)+g_{n} u_{4 R}^{n}(0),
\end{array}
$$

The quantities $u_{i R}^{p}(r)$ and $u_{i R}^{n}(r)$ denote the first and third components of the regular solutions $\Psi_{i R}(r)$. The amplitudes g_{p} and g_{n} can be considered as the energy independent parameters.

The elastic $N \bar{N}$ pair production cross section.

The integrated cross sections of the nucleon-antinucleon pair production have the form

$$
\sigma_{\mathrm{el}}^{p}=\frac{\pi k_{p} \alpha^{2}}{4 \mu^{3}}\left[\left|G_{s}^{p}\right|^{2}+\left|G_{d}^{p}\right|^{2}\right], \quad \sigma_{\mathrm{el}}^{n}=\frac{\pi k_{n} \alpha^{2}}{4 \mu^{3}}\left[\left|G_{s}^{n}\right|^{2}+\left|G_{d}^{n}\right|^{2}\right]
$$

The label "el" indicates that the process is elastic, i.e., a virtual $N \bar{N}$ pair transfers to a real pair in a final state.

The inelastic cross section σ_{in}.

There is also an inelastic process when a virtual $N \bar{N}$ pair transfers into mesons in a final state. The total cross section $\sigma_{\text {tot }}$, is

$$
\begin{equation*}
\sigma_{\mathrm{tot}}=\sigma_{\mathrm{el}}^{p}+\sigma_{\mathrm{el}}^{n}+\sigma_{\mathrm{in}} . \tag{1}
\end{equation*}
$$

The total cross section may be expressed via the Green's function $\mathcal{D}\left(r, r^{\prime} \mid E\right)$ of the wave equation

$$
\begin{equation*}
\sigma_{\mathrm{tot}}=\frac{\pi \alpha^{2}}{4 \mu^{3}} \operatorname{Im}\left[\mathcal{G}^{\dagger} \mathcal{D}(0,0 \mid E) \mathcal{G}\right], \quad \mathcal{G}^{T}=\left(g_{p}, 0, g_{n}, 0\right) \tag{2}
\end{equation*}
$$

where the function $\mathcal{D}\left(r, r^{\prime} \mid E\right)$ satisfies the equation

$$
\begin{equation*}
\left[p_{r}^{2}+\mu \mathcal{V}-\mathcal{K}^{2}\right] \mathcal{D}\left(r, r^{\prime} \mid E\right)=\frac{1}{r r^{\prime}} \delta\left(r-r^{\prime}\right) \tag{3}
\end{equation*}
$$

The function $\mathcal{D}(r, 0 \mid E)$ can be written as

$$
\begin{aligned}
& \mathcal{D}(r, 0 \mid E)=k_{p}\left[\Psi_{1 N}(r) \Psi_{1 R}^{T}(0)+\Psi_{2 N}(r) \Psi_{2 R}^{T}(0)\right] \\
& +k_{n}\left[\Psi_{3 N}(r) \Psi_{3 R}^{T}(0)+\Psi_{4 N}(r) \Psi_{4 R}^{T}(0)\right]
\end{aligned}
$$

Non-regular solutions are defined by their asymptotic behavior at large distances:

$$
\begin{equation*}
u_{1 N}^{p}(r)=\chi_{p 0}^{+}, \quad w_{2 N}^{p}(r)=\chi_{p 2}^{+}, \quad u_{3 N}^{n}(r)=\chi_{n 0}^{+}, \quad w_{4 N}^{n}(r)=\chi_{n 2}^{+} \tag{4}
\end{equation*}
$$

All other elements ψ_{i} of the non-regular solutions satisfy the relation

$$
\lim _{r \rightarrow \infty} r \psi_{i}(r)=0
$$

Results.

Comparison of our predictions with the data for $\sigma_{e l}$ of $e^{+} e^{-} \rightarrow p \bar{p}$ The experimental data are from J.P.Lees et al., BaBar, Phys.Rev. D 87, 092005 (2013).

$\sigma_{e l}$ for $p \bar{p}$ (left) and $n \bar{n}$ (right) as a function of E of a pair. Solid curves are the exact results, dashed curves are obtained at $\Delta=0$ and without account for the Coulomb potential, dotted curve in the left picture is obtained at $\Delta=0$ and with account for the Coulomb potential, dashdotted curve in the left picture corresponds to the approximation

$$
\sigma_{\mathrm{el}}=C \sigma_{\mathrm{el}}^{(0)}, \quad C=\frac{2 \pi \eta}{1-e^{-2 \pi \eta}}, \quad \eta=\frac{m_{p} \alpha}{2 k_{p}}
$$

$\sigma_{\text {tot }}(\mathrm{left})$ and $\sigma_{\text {in }}$ (right) as a function of E. Solid curves correspond to the exact results, dashed curves are the results, obtained at $\Delta=0$ and without account for the Coulomb interaction, dotted curves are obtained at $\Delta=0$ and with account for the Coulomb potential, and dash-dotted curves are obtained at $\Delta \neq 0$ and without account for the Coulomb potential. Vertical lines show the thresholds of $p \bar{p}$ and $n \bar{n}$ pair production.

The cross sections $\sigma_{\mathrm{tot}}, \sigma_{\mathrm{in}}, \sigma_{e l}^{p}$, and $\sigma_{e l}^{n}$ as a function of E.

Wave functions at origin for $p \bar{p}$ in a final state. Solid curves are the exact results, dashed curves are the results, obtained without account for the Coulomb interaction.

Wave functions at origin for $n \bar{n}$ in a final state. The Coulomb interaction is unimportant.

Conclusion

- We have investigated in detail the energy dependence of the cross sections of $p \bar{p}, n \bar{n}$, and meson production in $e^{+} e^{-}$annihilation in the vicinity of the $p \bar{p}$ and $n \bar{n}$ thresholds.
- Unusual phenomena are related to the interaction at large distances ("nuclear physics" of elementary particles).
- An importance of the isospin-violating effects (proton-neutron mass difference and the Coulomb interaction) is elucidated.
- Commonly accepted factorization approach for the account of the Coulomb potential does not work well enough in the vicinity of the thresholds.
- The results of SND and CMD-3 obtained at $e^{+} e^{-}$collider VEPP2000 will give an important contribution to understanding of the phenomena.

