

An experimental overview of time like e.m. Baryon form factors

Monica Bertani INFN, Laboratori Nazionali di Frascati

668 WE-Heraeus-Seminar on Baryon Form Factors: Where do we stand? 23-27 April 2018

BARYON FORM FACTORS

- Fundamental properties of Baryons
 - Characterize the internal structure
 - Connected to charge and magnetization distributions
 - Playground for **theory** and **experiment**:
 - at low q² probe the size of the hadron
 - at high q² test QCD scaling

By a global analysis of scattering and annihilation experiments Form Factors can be extracted

ELECTROMAGNETIC FORM FACTORS (FF)

• Energy scan (direct annihilation): fixed q²

$$\frac{d\sigma^{Born,1\gamma}}{d\Omega} = \frac{\alpha^2 \beta C}{4q^2} [(1 + \cos^2 \theta) |G_M|^2 + \frac{4M^2}{q^2} \sin^2 \theta |G_E|^2]$$
$$\sigma^{Born}(q^2) = \frac{4\pi \alpha^2 \beta C}{3q^2} [|G_M(q^2)|^2 + \frac{2M^2}{q^2} |G_E(q^2)|^2]$$
$$\begin{bmatrix} C = \frac{\pi \alpha}{\beta} \frac{1}{1 - \exp(\pi \alpha / \beta)} & \text{charged point-like B} \\ C = 1 & \text{neutral point-like B} \end{bmatrix} k = \frac{g-2}{2}, g = \frac{\mu}{J}$$

Initial State Radiation:

$$\frac{d^2 \sigma^{ISR}}{dx d\theta_{\gamma}} = -W(s, x, \theta_{\gamma}) \sigma^{Born}(q^2)$$
$$W^{LO}(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2} \right)$$
$$x = 1 - q^2/s = 2E_{\gamma}/\sqrt{s}$$

Energy scan (direct annihilation): fixed q²

a

$$\frac{d\sigma^{Born,1\gamma}}{d\Omega} = \frac{\alpha^2 \beta C}{4q^2} [(1 + \cos^2 \theta) |G_M|^2 + \frac{4M^2}{q^2} \sin^2 \theta |G_E|^2]$$

$$\sigma^{Born}(q^2) = \frac{4\pi \alpha^2 \beta C}{3q^2} [|G_M(q^2)|^2 + \frac{2M^2}{q^2} |G_E(q^2)|^2]$$

Effective FF: $|G| = \sqrt{\frac{\sigma^{Born}(q^2)}{(1 + \frac{2M^2}{q^2})(\frac{4\pi \alpha^2 \beta C}{3q^2})}}$

Initial State Radiation:

$$\frac{d^2 \sigma^{ISR}}{dx d\theta_{\gamma}} = -W(s, x, \theta_{\gamma}) \sigma^{Born}(q^2)$$
$$W^{LO}(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2} \right)$$
$$x = 1 - q^2/s = 2E_{\gamma}/\sqrt{s}$$

• Energy scan (direct annihilation): fixed q²

Initial State Radiation:

- High $\sigma \mathbf{x}$ low luminosity = high statistics
- High q² precision (ideal for G_{E,M}, thresholds, structure studies...)
- High geometrical acceptance of NNbar pair
- Low background
- Detection efficiencies decrease with q²
 - Low σx high luminosity = high statistics
- Continuous q2 range available: m²_{th} < q² < s in one experiment
- Luminosity at threshold and acceptance $\neq 0$
- Full baryon angular distribution in hadronic center of mass

Energy scan (direct annihilation): fixed q²

EXPERIMENTAL ACCESS: ANGULAR DISTRIBUTION

EXPERIMENTAL ACCESS: ANGULAR DISTRIBUTION

SCAN DATA SETS

See Talks/Postes:

- proton ff (C.Rosner)
- neutron (E.P. Solodov, S.Amhed)
- Λ (X.Zhou)
- Λ_{c} (W.Wen)
- Hyperons (K.Shoenning)

PROTON FORM FACTORS

PROTON SPACE-LIKE AND TIME-LIKE FF

S. Pacetti et al. / Physics Reports 550-551 (2015) 1-103

Flat cross section near threshold followed by a step

$$\sigma_{p\bar{p}}(4M_p^2) = \frac{\pi^2 \alpha^3}{2M_p^2} \frac{\beta_p}{\beta_p} |G^p(4M_p^2)|^2 = 850 |G^p(4M_p^2)|^2 \Longrightarrow G^p(4M_p^2) = 1$$
as point-like fermion pairs!
Structures in BABAR data

see Rinaldo's talk

- Steep behaviour of G_{eff} at threshold
- no individual determination of G_E or G_M
- Structures in BaBar data:
 - Resonances [(PRD92 (2015) 034018]
 - Rescattering processes in final state [(PRLI14 (2015) 232301]

CROSS SECTION e⁺e⁻→pp

BESIII has a lot of new, preliminary points (ISR technique), compatible with BaBar

[see talk by C.Rosner for BESIII results]

M.BERTANI BAD HONNEF 23/04/2018

15

PROTON FORM FACTOR

Asymptotic behaviour is S.L. and T.L. region differ: |G_M^{TL} (10GeV²)>|G_M^{SL} (10GeV²)
BESIII has a lot of new, preliminary points (ISR technique), compatible with BaBar

[see talk by C.Rosner for BESIII results]

G_E AND G_M RATIO

Extraction of the electromagnetic R=|GE|/|GM| ratio from proton angular distribution

$$\frac{d\sigma}{\mathcal{L} \cdot d\cos\theta_p} = \frac{\pi \alpha^2 \beta C}{2q^2} |G_M|^2 [(1 + \cos^2\theta) + \frac{|G_E|^2}{|G_M|^2} \cdot \frac{4M^2}{q^2} \sin^2\theta]$$

R=|G_E|/G_M| consistent with I

- precision 11%-43%
- Discrepancy between BaBar and PS170

[see talk by C.Rosner for BESIII results]

G_E AND G_M RATIO

Extraction of the electromagnetic R=|GE|/|GM| ratio from proton angular distribution

$$\frac{d\sigma}{\mathcal{L} \cdot d\cos\theta_p} = \frac{\pi \alpha^2 \beta C}{2q^2} |G_M|^2 [(1 + \cos^2\theta) + \frac{|G_E|^2}{|G_M|^2} \cdot \frac{4M^2}{q^2} \sin^2\theta]$$

few separate determinations of |G_M|

[see talk by C.Rosner for BESIII results]

OSCILLATIONS IN PROTON FF

[A. Bianconi, E. Tomasi-Gustafsson PRL114 (2015)232301, PRC93(2016)035201]

Periodic interference in F_p (e⁺e⁻ -> pp_{bar}) first seen in BaBar data, confirmed in BESIII ! Oscillations due to rescattering of and pbar at ~Ifm distance → large Imaginary part close to threshold p=proton momentum in p rest frame D=F_{osc=}Osc-Reg.

$\Lambda_{\rm C}$ cross section

CROSS SECTION OF $e^+e^- \rightarrow \Lambda \overline{\Lambda}_c$

see poster by Weiping Wen !

NEUTRAL BARYONS FORM FACTORS

NEUTRAL BARYONS ENERGY BEHAVIOUR AT THRESHOLD

$$\sigma_{B^0\overline{B^0}}(q^2) = \frac{4\pi\alpha^2 C\beta}{3q^2} \left[|G_M(q^2)|^2 + \frac{2M^2}{q^2} |G_E(q^2)|^2 \right] \xrightarrow{\pi\alpha^2\beta} \frac{\pi\alpha^2\beta}{3q^2} |G|^2 \rightarrow 0$$

o NO Coulomb correction at hadron level: C=1, yet experimentally
non zero cross are found

NEUTRON F.F.

- Only two direct measurements of σ (e+e- \rightarrow nn) and neutron Effective f.f.
- Large errors (30%)

- No measurement of $R = |G_E/G_M|$ or $|G_E|$ and $|G_M|$
- q<2GeV σ (e+e- → nnbar) $\approx \sigma$ (e+e- → ppbar)
- Gn| > |Gp| as q increases (pQCD: |Gp|≈: |Gn|)
- Non vanishing cross section at threshold ?

BESIII will soon have new results, stay tuned ! see S.Ahmed Poster !

NEUTRON F.F.

- Only two direct measurements of σ (e+e- \rightarrow nnbar) and neutron Effective f.f.
- Large errors (30%)

Gn| > |Gp| as q increases (pQCD: |Gp|≈: |Gn|)

M.BERTANI BAD HONNEF 23/04/2018 BESIII will soon have new results, stay tuned ! see S.Amed Poster ! new data from VEPP2000 ? see E.Solodov's talk

25

LAMBDA FORM FACTOR

- Only few measurements of σ (e⁺e⁻ $\rightarrow \Lambda \overline{\Lambda}$) and Lambda Effective f.f.:
 - BaBar, DM2, very recently BESIII:

[(PRD92 (2015) 034018]

- Threshold enhancement: BESIII point only I MeV over threshold $q^2=2.2324$ GeV: $s(e+e-\rightarrow\Lambda\Lambda bar)=(305+-45+66-36)pb$, not zero !
- Away from threshold agreement between BESIII and BaBar points

see Xiaoron Zhu's talk about BESIII measurement

LAMBDA FORM FACTOR

• Interactions in the final state of $\Lambda\overline{\Lambda}$ well reproduce BaBar data but not the first BESIII point near threshold.

J. Haidenbauer, U.-G. Meißner / Physics Letters B 761 (2016) 456-461

see Xiaoron Zhu's talk !

POLARIZATION OBSERVABLES

- With hyperons, polarization is experimentally observable by their weak Parity violating decay, polarization effects can be observed even if the initial e⁺e⁻ state in unpolarized.
- the phase between G_E and G_M can be obtained from angular distribution
- mathematical formalism developed [PLB772(2017)16]
- New, preliminary results obtained by BESIII for Λ (K.Shoenning's talk)

$\Sigma^0\Sigma^0$ and $\Lambda\Sigma^0$ channels

PRD76, 092006

Phys.Rev. D76 (2007) 092006

Cross sections of $e^+e^- \rightarrow \Sigma^0 \overline{\Sigma^0}$, $\Lambda \overline{\Sigma^0}$ via ISR (BABAR)

M.BERTANI BAD HONNEF 23/04/2018 Other neutral baryon: large errors but hints of a non zero cross section

CONCLUSIONS

- New results on Baryon FFs, both SL and TL, from theoretical and experimental side have brought to light many issues, yet they opened new questions !
- Experimental measurements are getting more precise, higher luminosity, more data to come from existing and future experiments
- \checkmark Stay tuned and let's follow the talks in these days

THANK YOU!

PROTON FORM FACTOR

Figure 5: World data on the cross section of $e^+e^- \rightarrow p\overline{p}$ and the effective FF of the proton, as the function of q^2 : (a) The cross section measured by $e^+e^- \rightarrow p\overline{p}$, (b) The effective FF of the proton including $p\overline{p} \rightarrow e^+e^-$ experiments.

$e^+e^- \rightarrow pp$ at BESIII Phys. Rev. D91, 112004 (2015)

Based on **157 pb⁻¹** collected in 12 scan points with \sqrt{s} = **2.23** – **3.71 GeV** in 2011/2012

- p and \overline{p} from vertex, in time, back to back, $E_{p,\overline{p}} = E_{CM}/2$
- Background negligible or subtracted
- Efficiencies around 60%
- Radiative corrections up to LO in ISR (ConExc)
- Normalization to $e^+e^- \rightarrow \gamma\gamma$ (Babayaga 3.5)

E _{cm} (GeV)	Ldt (pb ⁻¹)
2.23	2.6
2.40	3.4
2.80	3.8
3.05,3.06,3.08	60.7
3.40,3.50,3.54,3.56	23.3
3.60,3.65,3.67	63.0

