

Feasibility studies for the measurement of time-like electromagnetic form factors of the proton at PANDA-FAIR

I. Zimmermann, A. Dbeyssi, D. Khaneft on behalf of the PANDA Collaboration

Baryon Form Factors: Where do we stand? 668. WE-Heraeus-Seminar

April 23 - 27, 2018 – Physikzentrum Bad Honnef

PANDA @ High Energy Storage Ring (FAIR/Darmstadt)

- **Proton Linac 70 MeV**
- Accelerate proton in SIS 18 / 100 \succ
- Antiproton production on Cu target \succ
- **Collection in CR, Storage in HESR**
- Antiproton beam momenta in the range of \succ 1.5 GeV/c - 15 GeV/c
- High momentum resolution
- FAIR Start Version: Luminosity 10³¹cm⁻² s⁻¹ \succ

PANDA @ High Energy Storage Ring (FAIR/Darmstadt)

More than 460 physicists from 75 institutions in 19 countries

PANDA Physics Program

- Hadron Spectroscopy
 - Charmonium
 - ✤ Light mesons
 - Gluonic excitations
 - ✤ Open charm
 - ✤ (Multi) strange baryons
- Nucleon structure
- ✤ Hypernuclear physics
- ✤ Hadrons in the nuclear medium

Electromagnetic Processes at PANDA

PANDA will provide a large set of electromagnetic processes

* Electromagnetic Form Factors of the proton (FFs) in the time-like region

- Generalized Distribution Amplitudes (GDAs)
- Transverse Momentum Dependent Parton Distribution Functions (TMD-PDFs)
- Transition Distribution Amplitudes (TDAs)

Electromagnetic Form Factors of the Proton

- > **Describe internal structure** of the proton
- Hadronic vertex can be parametrized in terms of two Form Factors F₁ & F₂.

$$\Gamma^{\mu} = F_1(Q^2) \gamma^{\mu} - F_2(Q^2) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_p}, \quad Q^2 = -q^2$$

> Sachs Form Factors $G_E \& G_M$:

$$G_{E}(Q^{2}) = F_{1}(Q^{2}) + \frac{Q^{2}}{4m_{p}^{2}}F_{2}(Q^{2}), \quad G_{E}(0) = 1$$
$$G_{M}(Q^{2}) = F_{1}(Q^{2}) + F_{2}(Q^{2}), \quad G_{M}(0) = \mu_{p}$$

In the Breit frame q=(0,q) and in non relativistic approach, G_E and G_M are the Fourier transforms of the charge and magnetic spatial distributions of the nucleon

Electromagnetic Form Factors of the Proton

- > **Describe internal structure** of the proton
- Hadronic vertex can be parametrized in terms of two Form Factors F₁ & F₂.

$$\Gamma^{\mu} = F_1(Q^2) \gamma^{\mu} - F_2(Q^2) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_p}, \quad Q^2 = -q^2$$

> Sachs Form Factors $G_E \& G_M$:

$$G_{E}(Q^{2}) = F_{1}(Q^{2}) + \frac{Q^{2}}{4m_{p}^{2}}F_{2}(Q^{2}), \quad G_{E}(0) = 1$$

$$G_{M}(Q^{2}) = F_{1}(Q^{2}) + F_{2}(Q^{2}), \quad G_{M}(0) = \mu_{p}$$

In the Breit frame Q=(0,Q) and in non relativistic approach, G_E and G_M are the Fourier transforms of the charge and magnetic spatial distributions of the nucleon

Scattering SPACE-LIKE Real FF's q ² < 0	"Unphysical region" $\overline{p}p \rightarrow \pi^0 e^+ e^-$	Annihilation TIME-LIKE Complex FF's	q ² > 0	
$\gamma^{*}(q)$	0	4 M _p ²	$\gamma^*(q)$	q ²

Electromagnetic Form Factors of the Proton

- > **Describe internal structure** of the proton
- Hadronic vertex can be parametrized in terms of two Form Factors F₁ & F₂.

$$\Gamma^{\mu} = F_1(Q^2) \gamma^{\mu} - F_2(Q^2) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_p}, \quad Q^2 = -q^2$$

> Sachs Form Factors $G_E \& G_M$:

$$G_{E}(Q^{2}) = F_{1}(Q^{2}) + \frac{Q^{2}}{4m_{p}^{2}}F_{2}(Q^{2}), \quad G_{E}(0) = 1$$

$$G_{M}(Q^{2}) = F_{1}(Q^{2}) + F_{2}(Q^{2}), \quad G_{M}(0) = \mu_{p}$$

➢ In the Breit frame Q=(0,Q) and in non relativistic approach, G_E and G_M are the Fourier transforms of the charge and magnetic spatial distributions of the nucleon

Scattering Time-like & Space-Like "Unphysical Asymptotic behavior of the Form Factors Form Factors are connected via Dispersion relations $\pi^{0}e^{+}e^{-}$ $\lim_{q^{2}\to-\infty}F_{1,2}^{SL}$ $(q^{2}) = \lim_{q^{2}\to+\infty}F_{1,2}^{TL}$ (q^{2})

G

- Unified frame for the description of form factors over whole kinematical region
- Predicitions for regions without experimental data

> Phys. Lett. B 504, 291 (2001)

Threshold value
$$(q^2 = 4M_p^2)$$

 $_{E}(4M_p^2) = G_M(4M_p^2) \rightarrow R = \frac{|G_E(4M_p^2)|}{|G_M(4M_p^2)|} = 1$

World data on the time-like proton form factor ratio $R=|G_E|/|G_M|$

BaBar: Phys. Rev. D88 072009 LEAR: Nucl.Phys.J., B411:3-32. 1994 BESIII: arXiv:1504.02680. 2015 CMD-3: arXiv:1507.08013v2 (2015)

@ BaBar (SLAC): $e^+e^- → \overline{p}p\gamma$

data collection over wide energy range

@ PS 170 (LEAR): $\overline{p}p \rightarrow e^+e^-$

data collection at low energies

Data from BaBar & LEAR show different trends

- @ BESIII: $e^+e^- \rightarrow \overline{p}p$
- Measurement at different energies
- Uncertainties comparable to previous experiments

@ CMD-3 (VEPP2000 collider, BINP):

- ▶ Energy scan $\sqrt{s} = 1 2 \ GeV$
- Uncertainty comparable to the measurement by BaBar

World data on the time-like proton form factor ratio $R=|G_E|/|G_M|$

[@] BaBar (SLAC): $e^+e^- \rightarrow \overline{p}p\gamma$

data collection over wide energy range

@ PS 170 (LEAR): $\overline{p}p \rightarrow e^+e^-$

data collection at low energies

Data from BaBar & LEAR show different trends

@ BESIII: $e^+e^- \rightarrow \overline{p}p$

- Measurement at different energies
- Uncertainties comparable to previous experiments

CMD-3 (VEPP2000 collider, BINP): Energy scan $\sqrt{s} = 1 - 2 \ GeV$ Und rtain**Test of theoretical models** measurement b **& Predictions!**

Time-like electromagnetic proton form factors @ PANDA: The goals

Time-like electromagnetic proton form factors @ PANDA: The goals

Form factor measurements different final states: $\overline{p}p \rightarrow \ell^+ \ell^- \quad \ell = \mu, e$

- First time measurement with muons in final state
- Study of radiative corrections
- Consistency check of proton form factor data
- Test of lepton universality
- > Possibility to access the **relative phase** of proton time-like form factors:

 $\overline{p}p \rightarrow \ell^+ \ell^-$ in the Born approximation:

- > Unpolarized cross section -> access to $|G_E| \& |G_M|$
- > Polarization observables -> access to relative phase $G_E G_M^*$:

Single spin polarization observable

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_0 A_{1,y} \propto \sin 2\Theta \mathrm{Im}\left(G_M G_E^*\right)$$

A. Z. Dubnickova, S. Dubnicka & M.P. Rekalo Nuovo Cim. A109 (1996) 241-256

> Development of a transverse polarized target for PANDA in Mainz

Time-like electromagnetic proton form factors @ PANDA: The goals

Access the unphysical region, where no data exist so far \geqslant

- Measurement of time-like proton form factors up to $s \approx 30 \text{ GeV}^2$ @ PANDA \geq
 - Study the asymptotic behavior of the form factors
- Strong hadronic background, mainly \succ $\frac{\sigma(\overline{p}p \to \pi^+\pi^-)}{\sigma(\overline{p}p \to \ell^+\ell^-)} \propto \left[10^5 - 10^6\right]$
- **Background rejection factor 10⁻⁸ needed** -> expected signal pollution < 1%

$$\overline{p}p \rightarrow \pi^+\pi^-, \overline{p}p \rightarrow \pi^+\pi^-\pi^0$$

E.W. Singh et al.: EPJA52, 325 (2016)

$$\overline{p}p \rightarrow \ell^+ \ell^- \ (\ell = e, \mu)$$

Study of the statistical and total uncertainty on R, $|G_E| \& |G_M|$, $|F_p|$ and σ

Feasibility studies: time-like proton form factors @ PANDA Monte Carlo Simulation Studies

$$\overline{p}p \to \ell^+ \ell^- \ (\ell = e, \mu) \qquad \overline{p}p \to \pi^+ \pi^-$$

Standard chain Simulation & Analysis with **PANDARoot**:

P _{beam} [GeV/c]	1.5	1.7	2.5	3.3	6.4
s [GeV ²]	5.1	5.4	6.8	8.2	13.9

Event selection:

- Preselection: One positive and one negative particle per event
- Cuts on kinematical variables: Production angles (back-to-back in center-of-mass system), & Invariant Mass.
- Signal/Background separation based on:
 - For e⁺e⁻: Different subdetector information like Electromagnetic Calorimeter, Straw Tube Tracker etc. contribute to particle identification
 - For μ⁺μ⁻: Boosted Decision Trees + cuts.
 Detector information MAINLY from Muon Range System

Feasibility studies: time-like proton form factors @ PANDA Monte-Carlo Simulation studies

Data are from Eisenhandler et. al. NP B96 (1975) A. Eide et. al., NP B60(1973) T. Buran et. al., NPB 116(1976) C. White et. al., PRD 49(1994)

$$\overline{p}p \rightarrow \pi^+\pi^-$$

- New event generator developed by Mainz group (M. Zambrana et al.)
- Based on two different parametrizations

J. Van de Wiele and S. Ong: EPJA46, 291-298 (2010)
M. Sudol et al.: EPJA44, 373 (2010)
E.W. Singh et al.: EPJA52, 325 (2016)

$$\overline{p}p \rightarrow e^+ e^-$$

- Study of precision for |G_E|&|G_M|, the form factor ratio R & effective form factor
- Study of the systematic effects : generator model, fluctuations and fit function
- Method I: event generator based on physical cross section & expected events are simulated
- Method II: 10⁶ events + flat Phase Space (PHSP) event generator + weighting

Signal efficiency & Background rejection

Method I

Signal: $\overline{p}p \rightarrow e^+e^-$ > Zichichi cross section¹ + PHOTOS > Assuming $R = |G_E|/|G_M| = 1$ > s [GeV²]: 5.4, 8.2, 13.9 > L = 2 fb⁻¹ > Additional samples for signal efficiency determination ~10⁶ events

Total signal efficiencies between 39% and 51%

<u>Background:</u> $\overline{p}p \rightarrow \pi^+\pi^-$

- New event generator @ s = 5.4, 8.2, and 13.9 [GeV²]
- > 10⁸ events at each energy point

```
    Background rejection ~ 10<sup>-8</sup>
    Signal pollution < 1%</li>
```

$$\overline{p}p \rightarrow e^+e^-$$

1) A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

Signal efficiency & Background rejection

$\overline{p}p \rightarrow e^+e^-$ Method I Events Signal: $\overline{p}p \rightarrow e^+e^-$ 3500 \blacktriangleright Zichichi cross section¹ + PHOTOS 3000 ➤ Assuming $R = |G_E|/|G_M| = 1$ 2500 > s [GeV²]: 5.4, 8.2, 13.9 \blacktriangleright L = 2 fb⁻¹ 2000 Additional samples for signal efficiency 1500 determination ~10⁶ events 1000 Total signal efficiencies between 39% and 51% 500⁻ <u>Background:</u> $\overline{p}p \rightarrow \pi^+\pi^-$ 01 -0.5 **New event generator** @ s = 5.4, 8.2, and 13.9 $[GeV^2]$ ➢ 10⁸ events at each energy point Extraction of FF's & $R \pm \Delta R$ Background rejection ~ 10⁻⁸ from efficiency corrected Signal pollution < 1% signal distribution

1)

Statistical & total relative uncertainty on R, $|G_E|$ and $|G_M|$

$$\overline{p}p \to \mu^+ \mu^-$$

Study of the statistical and total relative uncertainty on R, $|G_E| \& |G_M|$

B) Feasibility studies: time-like proton form factors @ PANDA Signal efficiency

Study effects of background subtraction

How to obtain the background contamination?

Background rejection factor ~ 10⁻⁵ - 10⁻⁶

- Expected signal/background ratio: between 1:4 and 1:9 at q² = 5.1 (GeV/c)²
- Background subtraction removes pion background contamination

π -background contamination Residual π^2 counts after signal selection $\times 10^3$ 700 counts counts 160 $p_{\text{beam}} = 1.5 \text{ GeV/c}$ 600 Two statistically independent 140 **f(x)** 500 distributions (B1, B2) 120 400 100 300 80 TRandom3 200 60 u⁻ distribution using **f(x)** p_{beam} = 1.5 GeV/c 100 after signal selection (S) 40 20 0.2 0.4 -0.6 -0.4 -0.20 0.6 0.8 -0.8 0.6 -0.6 -0.4 -0.20.8 -0.8 0 0.2 0.4 $\cos(\theta_{CM})$ $\cos(\theta_{CM})$ 22 Background subtraction: (S+B1) – B2 10⁸ events were generated

Statistical relative uncertainty on R, $|G_E| \& |G_M|$

 $\overline{p}p \rightarrow \mu^+ \mu^-$

Analysis : Extraction of |G_{EM}| and R

 $|\cos\theta| \le 0.8$

<u>Signal</u>: $\overline{p}p \rightarrow \mu^+\mu^-$

- Follows physical cross section
- > Assuming $R = |G_E|/|G_M| = 1$
- > $L = 2 \text{ fb}^{-1}$
- ➢ s [GeV²]: 5.1, 5.4, 6.8, 8.2

Total signal efficiency between 24% and 35%

<u>Background:</u> $\overline{p}p \rightarrow \pi^+\pi^-$

- New event generator
 @ s [GeV²]= 5.1, 5.4, 6.8, 8.2
- **Two samples (1*10⁸) at each energy point:**
 - Studying background rejection,
 - Effects of background subtraction

 Extraction of |G_{E,M}| and R from efficiency corrected μ⁻ distribution (after background subtraction)

Statistical & total relative uncertainty

0.5

6

Method I uses different (unrealistic) shape of the pion background contamination -> check influence of shape

Method II uses more realistic shape of pion background contamination than Method I

Statistical & total relative uncertainty

Time-like electromagnetic proton form factors can be measured with high precision @ PANDA using the muon channel

Other relevant background channels

Estimation of rejection factors for other relevant background channels

Monte-Carlo simulation with PHSP & Analysis at $q^2 = 5.1 \text{ GeV}^2$ & 8.2 GeV² for

Calculation of expected statistics and rejection factor

Estimation of upper limit @ CL 95% : sufficient suppression achieved -> signal pollution < 1%

After event preselection

New investigations on **light meson** (charged and neutral) channels can be found in

- Phys. Rev., 2017, C95 (4), pp.045202
- Phys. Rev. C 96 025204 26

C) Feasibility studies: time-like proton form factors for PANDA PHASE-1

$$\overline{p}p \rightarrow \ell^+ \ell^- \ (\ell = e, \mu)$$

Study of the statistical uncertainty on R, $|G_E| \& |G_M|$

The PANDA detector (start/full setup)

PANDA Phase-1: first data taking phase with reduced luminosity and **reduced detector setup**

Proton form factor measurements at PANDA-PHASE1 Relative statistical (total) uncertainty

Summary & Outlook

• Measurements of the proton form factors in the TL region over a large kinematical region using electron and muon channels:

$$\overline{p}p \rightarrow \ell^+ \ell^- \ (\ell = e, \mu)$$

- Feasibility studies show that the TL proton form factors will be measured @ PANDA with high precision for both signal channels
- For PANDA-Phase-1 (reduced luminosity), the measurement is also possible with both channels
- Publication for electron channel 2016: E.W. Singh et al.: EPJA52, 325 (2016)
- Publication for muon channel in preparation
- Development of an event generator including next-to leading order QED radiative corrections is in progress
- Measurement of proton FFs in the unphysical region: $p \to e^+ e^- \pi^0$
 - Feasibility studies with PANDARoot are needed
- Possibility to access the relative phase of proton TL FFs
 - Polarization observables give access to $G_E G_M^*$
 - Development of a transverse polarized proton target for PANDA in Mainz

30

Backup slides

Statistical & total relative uncertainty

$$\overline{p}p \rightarrow \mu^+ \mu^-$$

PANDA: Phases of data taking

Proton form factor measurements at PANDA-PHASE1 Relative statistical uncertainty

$L = 0.1 \text{ fb}^{-1}$

EMC material in front of Muon System -> most of pions are stopped inside the first layers of the Muon System -> EMC material acts as muon filter

p _{beam} = 1.5 GeV/c	Total signal efficiency	Total background efficiency	S/B ratio	$\Delta R/R$ (stat.)
With EMC	32 %	1.2 *10 ⁻⁵	1/8	20%
Without EMC	36 %	1.7 *10-4	1/100	60%

35

Feasibility studies: time-like proton form factors @ PANDA Background studies

$$\overline{p}p \rightarrow \pi^+\pi^-$$

> New event generator developed by Mainz working group (M. Zambrana et al.)

	Low energy	Transistion region	High energy
		2.43 5	.00 p _{beam} (GeV/c)
Data:	Eisenhandler et. Al., NP B96 (1975)		A. Eide et. al., NP B60(1973) T. Buran et. al., NPB 116(1976) C. White et. al., PRD 49(1994)
Model	Legendre polynomial fit	Linear interpolation	Regge Theory J. Van de Wiele and S. Ong, EPJA 46 (2010)