Tools for Physicists: Boost your Analysis
with High Performance Computing (HPC)

Hands on Trivial Parallelisation, Peter-Bernd Otte, 11.5.2022

2
/// ///// Ui

i

sff,{{”gfi!!??iii e T

' ﬁ%f?ﬁ‘g o

Le cture TO d d y HIM femosz

Institut fir Kemphysik
Johannes Gutenberg-Universitit Mainz

* Course webpage: https://indico.him.uni-mainz.de/event/136/ TOOLS&%‘;E?JS&E'?B: PI-Ingﬁ(ER

d Pa rt Of ”TOO I S fo r P hys i C i StS” Se ri e S : Be prepared for the real lab work - know how to tackle the problems.

10 independent hands-on topics. Get in touch with the pros in their field.

htt ps ://WWW. h i_ m a i n Z . d e/tfp 2 2 Focusing on thesis starters (Bachelor, Master, PhD), Postdocs welcome.

Technisches Zeichnen Mathematica
Mo, 25.4. 14:15, Konferenzraum HIM We, 15.6. 14:15, HIM Conference Hall

Code Optimization 3D Printing and Designing Basics
We, 4.5. 14:15, HIM Conference Hall We, 22.6. 13:00, HIM Conference Hall

Talk (407)
* Motivation for High Performance Computing (HPC)

Boost your Analysis with High 2S5 PCB Design with KiCAD

Performance Computing ‘el We, 29.6. 14:15, HIM Conference Hall
We, 11.5, 14:15, HIM Conference Hall oy 1,

Statistics EM Noise & Interference in
We, 18.5. 14:15 + 25.5. + 1.6., HIM Conference Measurement Setups
Hall We, 6.7. 14:15, HIM Conference Hall

e Cluster building blocks and our HIMster2
p i e s @fw

* Trivial Parallelisation

Visit the course webpage and register today! www.hi-mainz.de /tfp22

Hands on (607)

Organised by Dr. Peter-Bernd Otte (HIM)

https://indico.him.uni-mainz.de/event/136/
https://www.hi-mainz.de/tfp19

Trivial Parallelisation

* todays course covers only trivial parallelisation and skips theory
—> see lecture next semester “Parallel Programming with OpenMP and MPI”

time

e Basic principle: run your existing analysis N times in parallel

A 4

Trivial Parallelisation

* todays course covers only trivial parallelisation and skips theory
—> see lecture next semester “Parallel Programming with OpenMP and MPI”

time

* Basic principle: run your existing analysis N times in parallel

- How do we get there?

A 4

Worked out example

building of a house

+ 1 worker = 1 year /\\

e 3 workers =4 months

e 9 workers =7

—> Scaling?

=i | =ie |=;.

=)o | =)o =il

Running in parallel

Your analysis consists of 100 files to analyse

* On your desktop computer:
$./myAnalysisExec InputFilel.dat OutputFilel.dat

* 8cores:
./myAnalysisExec InputFilel.dat OutputFilel.dat &
./myAnalysisExec InputFile2.dat OutputFile2.dat &

- Your room mate has a computer, too, so why not use it?

HPC out of distributed desktop computers?

FLOPS / computer (floating-point operation per second):
* FLOPS=fx Ncores X Ninstr per cycle
* Intel E5-2670 (2,6 GHz, 8 cores): 2,6GHz x 8 x 8 = 166,4 GFLOPS

N computers: 200 (=25 offices / floor, 4 floors, 2 people / office, 1 computer / person)
33TFLOPS cluster “for free” <> Clover = 106TFLOPS, HIMster2/Mogon2: 2801TFLOPS

Drawbacks:

OS: Windows (20%), MacOS (20%), Linux (50%) other (10%) — all on a different version level

Temperature in office rooms, closed window, 15th July: OW = 29°C, with 400W = 50°C
(simulated with: www.thesim.at)
Network: 1GBit/s, Backbone 10GBit/s (HIMster2: 100GBit/s)

* 10GBit/s / 200 computers / 8 cores = 780kByte/s

* Compare bisection bandwidth (minimal accumulated bandwidth between any bisections of the
network): fat tree & binary tree

Storage?

No node checks, difficult to maintain, reduced availability

bisection bandwidth

http://www.thesim.at/

Why High Performance
Computing (HPC)?

Why HPC?

* Intense computational problem =2 single desktop computer not capable enough

* Run on a “super computer”
1. <2002: fast single core super computer
2. Since 2002: parallel systems as super computers

- Why parallel systems?

Moore’s Law
The Fifth Paradigm Logarithmic Plot

The Era of
Moore’s Law

* 1900-2000

* source: Wikipedia

o
o
o-\
—
&
| —
o
Q
©
=
O
O
)
9p)
—
o
o
0
=
12
rew)
i,
=
At
(0
&)

Electromechanical Relay Vacuum Tube Transistor Integrated Circuit

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Law

2,600,000,000

The Era of Moore’s

1,000,000,000 -

* Moore's law (1965) =
observation number

]) 100,000,000
of transistors in a IC doubles
every ~2a. g
= 10,000,000
e Still valid, no natural law. 3
o)
Z 1,000,000
(7]
S
I_
100,000
10,000
Cramming More Components onto IC (1965):
ftp://download.intel.com/sites/channel/museum/Moores Law/Articles- 2,300 -

Press Releases/Gordon Moore 1965 Article.pdf or

https://ieeexplore.ieee.org/document/658762?tp=&arnumber=658762

curve shows transistor
count doubling every
two years

80486 e

80386e

80286 @

68000@ 050186

8086e #8088

®6809
8080 ®2Z80

8008 @ @105 6502
d004@ “pea 1802

8085,
68100

Microprocessor transistor counts 1971-2011 & Moore's law

16-Core SPARC T3
Six-Core Core iZ.
Six-Core Xeon 7400, “_& ®10-Core Xeon Westmere-
Dual-Core ftanium ® @ ~-8-core POWER7

ANMD K10 §u:ﬂ Ecgr%zltlanlum Tukw
POWERG® . Core Xeon Nehalem-EX

Itanium 2 with 9B cache »_ “Six-Core Opteron 2400
AMD Kl0@ Core i7 (Quad)

‘ 80[9 2 Duo

®AMD KB

ftanium 28

®Barton .
Pentium 4e @ Atom

o:lIB K.

AMD K6

' @ Pentium Il
Pentium |1

e AMD K5
#® Pentium

Source: wikipedia

r T T
1971 1980 1990

T 1
2000 2011

Date of introduction

ftp://download.intel.com/sites/channel/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf

Single-Core Performance

10,000

The single core-
performance increased by

e <2002: 50%/a
e >2002: 20%/a

Speedup after 10a:
e <2002: ~6000%
e >2002: ~600%

Simply wait for the next
CPU release is not enough
any longer.

Performance (vs. VAX-11/780)

1000

100

10

-
-
ot
-

VAX-11/780

117

L
4

b st awnn AR AR, LI R e R T R Ry D T T T

Alpha 21064, 0.2 GHz

Intel Xeon, 3.6 GHz__64-bit Intel Xeon, 3.6 GHz
Pi5ag, 6505

“Dennard scaling”:
power density in silicon
remains constant as gate

1982 1984 1986

52%/year
size shrinks (speculative).
Smaler --> less
power/gate = higher f
1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

© 2007 Elsavier, Inc. All rights resarved.

Yoo A

Why not further increase frequency?

—
Eingang Ausgang

Core speeds topped out at 2-4 GHz
* World record standard CPU: 8722.78 MHz with liquid nitrogen cooling &

(http://hwbot.org/benchmark/cpu_frequency/) -
* Problem #1: cooling the chip L
C : . : not gate
* Finding: “Dennard scaling” (constant power density) no longer valid
* No longer (since 2000’s) true since 90nm gate sizes (leakage current!)
* The two things that consume energy (CMOS gate): v S B T ?

1. switching state (1 < 0) (10uW/MHz, prop with fA1.75)
2. leakage current (10nW / CMOS-Gate, anti-prop with Vdd and gate size)

Increasing f: increase in power on same area
- compensate this: shrinking gate sizes and lower Vdd o

* But: smaller gates have higher leakage current. - New innovations needed. 1
—> multi-cores at fixed f to gain performance T

Vig in V

Power=P(Vdd, f)

Answer: multicores

technology

normalized &

power
(Watt)

486

Better to replace 1 of this

by 2 of these;

Or N of
these

I
I
I
1
I
I
1
|

Pentium 4

-~
\/ N

4

Energy per Instruction Trends in Intel®
Microprocessors, Grochowski et al., 2006

perf. = f * instr./clock
power = perfA1.75 + const.

technology
normalized

> performance

(op/sec)

Moore‘s Law scaling with cores

little little

little
core

little
core

core core

little
core

little
core

little
core

little
core

little little
core core

little
core

little
core

little
core

little
core

- big core
ittle : :
2 little little
core
core core

With ,,Dennard Scaling” Without ,,Dennard Scaling”

little
core

little
core

little
core

little
core

Recap: Trivial Parallelisation and Multicore
systems

* No drawback using a multi core machine

* We have single independent jobs
* Assign single analysis runs to single cores

Input file 1 little little

Input file 2 ‘ core core
ile 3 : :

little little

core core

Input file
Input file 4

Recap: Trivial Parallelisation and Multicore
systems

* No drawback using a multi core machine

* We have single independent jobs
* Assign single analysis runs to single cores

Input file 1 little little Input file 2

core core

Input file 3 little little Input file 4

core core

- We are on the right path, so let’s dive in.

HPC building blocks

What is High Performance Computing (HPC)

* Basic building blocks are:
1. compute nodes (~1000)
2. fast interconnect (1x)
3. parallel file system (1x)

* Usage remotely, non interactively

Anatomy of a hode

* cache coherent Non-Uniform Memory Access (ccNUMA, AMD: 2003, industry wide: 2011)

s i)

Core 1

Cache

coherence

_ spemMemoy2s66B__________
Y

N =
/

\‘||
\‘||

o

o

System Memory 256 GB

-

* ccNUMA uses inter-processor communication between cache controllers

Machine (32GB)

Socket P#0 (16GB) Socket P#1 (16GB)

NUMANode P#0 (8192MB) NUMANode P#2 (8192MB)

L3 (8192KB) L3 (8192KB)

L2 (2048KB) L2 (2048KB) L2 (2048KB) L2 (2048KB) L2 (2048KB) L2 (2048KB) L2 (2048KB) L2 (2048KB)

L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB)

L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB)

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7
PU P#0 PU P#1 PU P#2 PU P#3 PU P#4 PU P#5 PU P#6 PU P#7 PU P#16 PU P#17 PU P#18 PU P#19 PU P#20 PU P#21 PU P#22 PU P#23

NUMANode P#1 (8192MB) NUMANode P#3 (8192MB)

L3 (8192KB) L3 (8192KB)

L2 (2048KB) L2 (2048KB) L2 (2048KB) L2 (2048KB) L2 (2048KB) L2 (2048KB) L2 (2048KB) L2 (2048KB)

L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB) L1i (64KB)

L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB) L1d (16KB)

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7
PU P#8 PU P#9 PU P#10 PU P#11 PU P#12 PU P#13 PU P#14 PU P#15 PU P#24 PU P#25 PU P#26 PU P#27 PU P#28 PU P#29 PU P#30 PU P#31

e Output of: hwloc
» Topology of a ccNUMA Bulldozer server, 2 socket system

Anatomy of a cluster computer

e N *ccNUMA = cluster:

Core 0 Core 1l Core 0 ore 0

L1 16k L1 L1 16k L1 L1 16k L1 16k L1 L1 16k L1 16k L1

L22m L2 L2 2M L2 L2 2M L2 oY L2 L2 A L2 2M L2
[zsv | [zav] 8M [zav | [zav | SM [zsv |

System Memory 256 GB

System Memory 256 GB System Memory 256 GB

Node interconnect

e Fast lossless interconnect: OmniPath between ccNUMA nodes
* |[nside a node: NUMA, ccNUMA
e Multiple nodes: Distributed memory parallelisation (DMP)

Anatomy of a cluster computer

e Latencies:

Operation min overhead in
cycles

Hit L1 cache 1-10
Miss all caches 100

System Memory 256 GB System Memory 256 GB Page miss 100.000
(Data via 1000 (1ps)
interconnect)

Node interconnect

(all numbers are platform dependent)

HIMster || Specs

e 320 Compute Nodes (256 theory, 64 experiment) in 8 racks

e dual socket Intel 6130 @ 2.1GHz (a 16 cores)
3GB RAM /core
OmniPath 100 Gbit/s interconnect
400 GB local SSD scratch
https://mogonwiki.zdv.uni-mainz.de/dokuwiki/start:mogon_cluster:nodes
* Parallel File System: 747TB Lustre volume

e Software

1. organized in modules
e eg:module avail; module module load lang/Python/3.6.6-foss-2018b
* See: https://mogonwiki.zdv.uni-mainz.de/dokuwiki/start:software:software usage

2. More via nfs mount: /cluster

https://mogonwiki.zdv.uni-mainz.de/dokuwiki/start:mogon_cluster:nodes
https://mogonwiki.zdv.uni-mainz.de/dokuwiki/start:software:software_usage

HIMster |l

HIMster I, Mogon lla and Mogon Ilb form a compound state
* share login nodes, maintenance servers
* interconnect: OmniPath (100GBit/s)

* situated in the institute’s basement computing room, 660kW
e 2PFlops Linpack (20% contributes HIMster Il)

* account registration via Pl of HIM or it@him.uni-mainz.de.
University of Mainz account is mandatory (= HIM Admin will contact you).

* ssh pbotte@miil01-miil03 (only ssh-key login possible, with 29 factor)

e https://mogonwiki.zdv.uni-
mainz.de/dokuwiki/start:mogon cluster:access from outside unix

* home directory: quota 300 GB
* Rules 27oply: https://www.en-zdv.uni-mainz.de/regulations-for-use-of-the-data-

center

mailto:it@him.uni-mainz.de
https://mogonwiki.zdv.uni-mainz.de/dokuwiki/start:mogon_cluster:access_from_outside_unix
https://www.en-zdv.uni-mainz.de/regulations-for-use-of-the-data-center/

HIMster Il: Info and do’s

* Per core memory bandwidth: Clover, HIMster Il = 5.6 GByte/sec
e HIMsterll has Skylake CPUs (eg AVX512 avail.)

 Storage / Parallel File system:
 NO BACKUP of data
* Try to use large files: Source code should be in /home/
* Try not to put too many files into one directory (less than 1k)

* Try to avoid too much metadata load:

DO NOT DO 1s -1 unless you really need it

* In your scripts avoid excessive tests of file existence (put in a sleep statement between two
tests say 30 secs)

Use 1fs find rather than GNU tools like find
Use O RDONLY | O NOATIME (readonly and no update of access time)

Batch System: SLURM

* Batch system, introduces fair share
* Accounts (e.g. m2_himkurs, m2_himexp, etc.)
* Queues
* Reservations

* |ntroduction and docu:

* https://mogonwiki.zdv.uni-mainz.de/
dokuwiki/start:working on _mogon:slurm submit

* https://slurm.schedmd.com/tutorials.html

* Today:
* account to use: m2_himkurs
* Reservation: himkurs
* Submit into partition: parallel
* srun --pty -p parallel -A m2_himkurs --reservation himkurs bash -i

* Check what is running: squeue -h | grep pbotte

e 1184615_79 parallel N203r001 pbotte R 1:00:40 52 4?-0386,0403-0413,0430-0450]

* SSH login into your occupied nodes possible: eg ssh z0367.

* only for debugging, do not launch analysis tasks!

‘roduction to Slurm, Part 1

Morris Jette
jette@schedmd.com

SchedMD LLC
http://www.schedmd.cqQq

SLURM scheduler: Multitfactor Priority

https://slurm.schedmd.com/priority_multifactor.html

A

resources

time

SLURM scheduler: Backfilling

Performed only when jobs with higher prio are
not affected

A
3
4
1

time

https://slurm.schedmd.com/sched_config.html

resources

Batch System: SLURM

Submit script for later execution (batch mode)
* sbatch --partition=himster2 exp

Create job allocation and start a shell to use it (interactive mode)
* salloc -p himster?2 exp -N 1 --time=02:00:00 -A m2Z2 him exp

srun: Create a job allocation (if needed) and launch a job step (typically MPI job)
* srun —--pty -p himsterZ2 exp -N 1 --time=02:00:00 -A m2 him exp
bash -1

sattach: Connect stdin/out/err for an existing job

Sample Submit Script

1. Define and reserve #!/bin/bash
resources (nodes with #SBATCH -o /home/pbotte/test/myjob.%].%N.out
RAM) #SBATCH -D /home/pbotte/test/
2. Once allocated, run the | #SBATCH -J MyJobName
executables as defineq | TSBATCH -A m2 him_exp < account (NOT your account)
#SBATCH -N 1 < Request number of nodes

or interactively #SBATCH --partition=himster2 exp <€ partition

#SBATCH —--mem-per-cpu=1G

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=pbotte@uni-mainz.de

#SBATCH —--time=8:00:00 < wall time (>run time)

More examples
https://mogonwiki.zdv.uni-
mainz.de/
dokuwiki/start:working on
mogon:slurm submit

module load gcc/6.3.0
echo TEST...
srun mykExecutable

Submit with: sbatch submitScript.sh

HIMster com
8 racks

put

X\‘

‘P Cooling gwer]

for up t kW

W

Power and OmniPath Interco an

\\

Optimisation and usage

Amdahl’s Law

e Given a program consisting of a non-parallelisable
and a perfectly parallelisable part

* Fraction s of the non-parallelisable part:
T(P)=Tseq + Toar(p) = T(1) * s + T(1) * (1-5)/p

Speedup

* Speed-up: S(p) = (1+(1-s)/p)?
e p—2inf:S(p)=1/s
* IfS(p) >1/s = “super-scaler speedup”, problem fit’s into
CPU cache.

18

16

14

12

10

ideal (s=0) Amdahl's Law

—

Parallel portion
50%
75%
—— 90%
—— 95%

16

32

=+
o

128
256
512
1024

Number of processors

2048

4096

8192

16384

32768

65536 -

Order of optimisation

How to speed up your existing analysis:
* Apply trivial parallelisation (todays topic!)

Want to go further?
- Identify bottlenecks (and only optimise them)

Optimise algorithm

Write algorithm on single core

Expand code to multicore, single node with OpenMP
Expand to multi node with MPI

A

Optimise multi node system

— Not covered today, lecture in winter semester.

Parallel Programms: Worked out example

e Task: calculate sum of numbers distributed over N cores

* 6,89 3,5,8 9,1,2 2,3,4
core 0 core 1 core 2 core 3

* local sums: 2‘3/6 1L2/

. collection: 35/21

e final sum: 50

Always check the scaling of your program: O(N), O(N?), O(

time

log(N))?

Trivial vs full usage of HPC

 Trivial parallelisation:
* Run your analysis several times (with different parameters)
e Out of the box with any non-interactively linux program

* QOutcome / speedup unclear, but works very good for 10-100 jobs in parallel
Mainly disc access is limiting.

* Full usage (not covered today):
* No automated process to convert a single-core to a multi-core program
* Write parallel code or use existing.

Preparing Hands on...

Today’s Setup

* https://indico.him.uni-mainz.de/event/136

* Linux basics used:
e Bash: launch a program with different parameters
* SSH: generate a key and log into HIMster2
* modules: list and load different modules
* (versioning with git)

* (ideal world: work in groups of 2 on one computer.)

+ {if netpresentfamiliarise-with-i+OR-find-theright team-matel} Ask your neighbour or tutor.

https://indico.him.uni-mainz.de/event/136

Public-key cryptography

* Asymmetric Encryption Alice

)1 barge 10
' 'Random’
| (Number 0

Key
Generation
Program

* connecting to Himster2:

1.

w

run “ssh-keygen” if you have no keys yet

* Private key: ~/.ssh/id_rsa
* Public key: ~/.ssh/id_rsa.pub

Bob
Hello 4/(: ,:| |:'
Alice! Encrypt
+ Alice's
public key
6EB69570
08E03CE4
Alice ¢
Hello /o_"
. -¢— Decrypt
Alice! Alice's
private key

Copy to ZDV via: https://account.uni-mainz.de/my-account/add-ssh-key

Authenticate to get 2nd factor via request to hpc@uni-mainz.de

ssh into mogon2 / HIMster2

Pictures from wikipedia

https://account.uni-mainz.de/my-account/add-ssh-key

Trivial Parallelisation (1)

* Submit a single core job multiple times

* Quick and often only solution for large software blobs (large packages used in collaborations)
* No principal difference compared to running on your desktop computer

e limits:
* required RAM (3GB/core)

* licensees (Mathematica, max 10 concurrent usages in university for such uses cases)
* shared scratch (under “/localscratch”) in node (200GB-400GB)

* parallel filesystem (loading at start, writing back results) max. = 10-100 starting jobs in parallel
* Hint: use job arrays

* https://mogonwiki.zdv.uni-mainz.de/dokuwiki/start:working on mogon:workflow organization:job arrays
* Less work load for SLURM

* Disadvantage (for single and array jobs):

* Single job on Mogon?2 parallel partition always node exclusive: Single job blocks the complete node, independent on how many
resources requested!

* No control over speedup

* Node health check (~1min) and batch system overhead (~1min) for every step
- bundle them to larger blocks = use a workload manager!

https://mogonwiki.zdv.uni-mainz.de/dokuwiki/start:working_on_mogon:workflow_organization:job_arrays

Trivial Parallelisation (2): Workload Manager

Helper MPI-Script
https://gitlab.rlp.net/pbotte/workload-manager

* Occupy Nores cOres on | Neores/20]| (HIMster 2: | Neores/32|) different
machines simultaneously

* Provide a directory with files to process (Ngs)
e Controlling instance on core 0

 Starts your analysis executable on workers (cores 1..N-1) Core 0
(\ERED)

* Feedback or pull requests welcome

Advantages:
 Suits short and long running analysis (avoid node health checks)

* Occupies a complete node
* Does load distribution
* Takes care of in and output files

https://gitlab.rlp.net/pbotte/workload-manager

Trivial Parallelisation (2): Workload Manager

Helper MPI-Script
https://gitlab.rlp.net/pbotte/workload-manager

* Occupy Nores cOres on | Neores/20]| (HIMster 2: | Neores/32|) different
machines simultaneously

* Provide a directory with files to process (Ng;jes)
e Controlling instance on core 0
 Starts your analysis executable on workers (cores 1..N-1) Core 0

Master
* Feedback or pull requests welcome ()

Advantages:
 Suits short and long running analysis (avoid node health checks)

* Occupies a complete node

* Takes care of in and output files

https://gitlab.rlp.net/pbotte/workload-manager

Trivial Parallelisation (2): Workload Manager

Helper MPI-Script
https://gitlab.rlp.net/pbotte/workload-manager

* Occupy Nores cOres on | Neores/20]| (HIMster 2: | Neores/32|) different
machines simultaneously

* Provide a directory with files to process (Ng;jes)
e Controlling instance on core 0
 Starts your analysis executable on workers (cores 1..N-1) Core 0

Master
* Feedback or pull requests welcome ()

Advantages:
 Suits short and long running analysis (avoid node health checks)

* Occupies a complete node
* Does load distribution

* Takes care of in and output files

https://gitlab.rlp.net/pbotte/workload-manager

Trivial Parallelisation (2): Workload Manager

Helper MPI-Script
https://gitlab.rlp.net/pbotte/workload-manager

* Occupy Nores cOres on | Neores/20]| (HIMster 2: | Neores/32|) different
machines simultaneously

* Provide a directory with files to process (Ngs)
e Controlling instance on core 0

 Starts your analysis executable on workers (cores 1..N-1) Core 0
(\ERED)

* Feedback or pull requests welcome

Advantages:
 Suits short and long running analysis (avoid node health checks)

* Occupies a complete node
* Does load distribution

* Takes care of in and output files

https://gitlab.rlp.net/pbotte/workload-manager

Hint: Reservation for this problem class

$ scontrol show reservation

ReservationName=himkurs StartTime=2022-05-11T14:00:00 EndTime=2022-05-11T17:00:00 Duration=03:00:00

Nodes=z[0©500,0566,0751-0758,0811,0813] NodeCnt=12 CoreCnt=240 Features=(null) PartitionName=parallel Flags=

TRES=cpu=480
Users=(null) Groups=(null) Accounts=m2_himkurs Licenses=(null) State=INACTIVE BurstBuffer=(null) Watts=n/a

MaxStartDelay=(null)

$ salloc -p parallel --reservation=himkurs -A m2_himkurs -N 1

Exercise 1: HIMster 2 log in

Learning objectives:

* Usage of ssh, asymmetric keys and 2"d factor

Steps:
1. Go back to slide “Public-key cryptography” and create your keys
2. Login passwordless but with 2"d Factor into Mogon 2/ HIMster2

Exercise 2: Reserve Resources

Learning objectives:
* Reserve resources

* Check number of cores on node

Steps:

1. Loginto Himster 2)
ssh miil@l.zdv.uni-mainz.de

2. Reserve a complete HIMSter node for 1h:) .
salloc -p parallel --reservation=himkurs -A m2_himkurs -N 1 -t 1:00:00
This_step might take some minutes to complete. Wait until the prompt returns after
“salloc: Nodes z0133 are ready tor job”

3. Confirm that information with this cross check:
squeue -u $SUSER

4. Find out how many cores your node has with
ssh [YOUR Node hostname]
cat /proc/cpuinfo
read the info and logout of that node with
logout

Exercise 3: Single core test run

Learning objectives:

* Perform a test drive of your demo analysis

Steps:

1. If not already done so, reserve first resources as described in exercise 2.
Check with: squeue -u SUSER

2. Open 2 more ssh connections to run “top” two times: (1) on the head node (2) on the node

3. Inyour home directory, regare the demo analysis with:
git clone https: /él lab.rlp.net/pbotte/learnhpc/
cd /home/pbotte/learnhpc/openMP/exercisel
cc -0 p1 pi_start.c

4. M7ke sure, you are working on the head node, run your program:
./pi . .
Check, with your other SSH connections (see step 2), the binary runs on the head node.

5. Make syre, you are working on the head node, run your program:
srun ./pi
Check, with your other SSH connections (see step 2), the binary runs on the node.

Exercise 4: batch job

Learning objectives:

* Your first batch job #!/bin/bash

#SBATCH -0 /home/USERNAME/test/myjob.%;j.%N.out
#SBATCH -D /home/USERNAME/test/

#SBATCH -J MyJobName
1. If not already done so, reserve first resources as described in | #SBATCH -A m2_himkurs

Steps:

exercise .2. H#SBATCH -n 1

Check with: squeue -u SUSER #SBATCH --partition=parallel
2. Write a batch job file (name it “job.batch”) | #SBATCH --mem-per-cpu=1G

as shown on the right. #SBATCH --mail-type=FAIL

Replace “USERNAME” -> with your username! #SBATCH --mail-user=USERNAME @uni-mainz.de
3. Queue it: sbatch job.batch #SBATCH --time=0:05:00
4. Check what is does regularly: echo Here comes some test...

(a) squeue -u $USER
(b) via top on the node

(c) your email account srun /home/USERNAME/learnhpc/openMP/exercisel/pi

Ex ulticore analysis

Learning objectives:

* Run an executable on several cores in parallel

Steps:

1. If not already done so, reserve first resources as described in exercise 2.
Check with: squeue -u S$USER

2. After you double checked that you are on the head node again (prompt start with “login2...”), load the modules needed for python3 (for the
workload manager) and solver}/SundiaIs) in exactly this order:
module load math/SUNDIALS/2.7.0-intel-2018.03
module load lang/Python/3.6.6-foss-2018b
Ignore the error messages (bonus: where do they come from?)

3. Run the analysis with the help of the workload manager by typinﬁ on the headnode:
srun -n 20 ~/workload-manager/wkmgr.py -v ~/workload-manager/examples/LGS/PulsedLGS ~/workload-
manager/examples/LGS/Run27_LaPalma Profile I50

4. Outputis send back to the head node delayed and not in order.
Check with a second console any output written,

* run “top” to see running processes, or
* type ,tree”, in the output directory ~/workload-manager/outputXXX

5. How much compared to a single core machine is roughly the speed up?

Hint: Like this, you can easily run on several nodes each having 32 cores.

Exercise 6: mpi4py hello world (Bonus)

Learning objectives:

* Use MPI with Python the first time
aka: make Python run its code on several cores and machines in parallel

Detailed description: https://gitlab.rlp.net/pbotte/learnhpc/-/tree/master/mpidpy/exercisel

Steps:

1. Download the starter files:
git clone https://gitlab.rlp.net/pbotte/learnhpc.git
cd learnhpc/mpidpy/exercisel/

2. Copy the skeleton:
cp start.py exl.py

3. Load environment:
module load lang/Python/3.6.6-foss-2018Db

4. Try with different number of ranks (”-n”), start with 3:
mpirun -n 3 ./exl.py

https://gitlab.rlp.net/pbotte/learnhpc/-/tree/master/mpi4py/exercise1

