
www.hi-jena.de

Code Optimization
Dalibor Djukanovic

www.hi-jena.de
www.hi-mainz.de

Generalities

16.03.23

This is an overview talk.
But technical.

If you have specific
questions/comments
concerning code performance
issues contact me

djukanov@uni-mainz.de

Reminder:
Fortnightly HPC seminar

mailto:djukanov@uni-mainz.de

www.hi-jena.de
www.hi-mainz.de

My Background
• Member of the Nuclear Theory Group
• Doing Calculations in:
– Lattice QCD numerical (and symbolic)
– EFT (mostly symbolic)

• Optimization interests:
– Numerical: MonteCarlo, Analysis (Python,MMA)
– Symbolical: Feynman Diagram Calculations

(FORM,MMA)
– Get results fast

• Not a performance architect:
– Some of the thing I say might not even be wrong!

16.03.23

www.hi-jena.de
www.hi-mainz.de

Contents - I
• Performance = Divide & Conquer
• Core Level Optimization:

SIMD - Domain
Optimize Code to use Oncore vector units

• Node Level Optimization:
SIMT – Domain
Optimize Code to use threads working in
parallel on data

• Application Level Optimization:
Algorithmic Improvements, Avoiding Data Transfer, Hiding Latencies

16.03.23

www.hi-jena.de
www.hi-mainz.de

Contents - II
• I will try to cover the following aspects:
– How can you get the most out of a modern CPU
– How do you know where your code spends most

of the time

• Takeaways:
– Be modest. 20x improvement will (probably) not

happen.
– Try to understand your codes performance ceiling

and the bottlenecks.
– Get used to tools (profilers, debuggers, …).

16.03.23

www.hi-jena.de
www.hi-mainz.de

Outline

• Performance Paradigms

• Profiling

• Assembler Coding

AVX - Literature, Tools

Profiling, Benchmarking, Timing

Optimizations

Profiling

Find hotspots in code
1 gprof - Single Threaded application
2 TAU - Tuning and Analysis Utility (MPI-Jobs)

http://www.cs.uoregon.edu/Research/tau/home.php

Dalibor Djukanovic AVX - Benchmarks

www.hi-jena.de
www.hi-mainz.de

History of the CPU

16.03.23

• Moore

• CPUs went multicore/vector
• RAM does not keep up

(von Neumann-Bottleneck)

• Latency Hierarchies

2019 Dell Technologies Proven Professional Knowledge Sharing 10

visionary statements such as “Integrated circuits will lead to such wonders as home

computers—or at least terminals connected to a central computer—automatic controls for

automobiles, and personal portable communications equipment.”

By 1975, computer-aided design (CAD) was helping build device and circuit cleverness into

chips. However, Moore still felt semiconductor complexity was problematic, and his 1965 annual

double density growth calculations were optimistic. He revised them to double every two

years.38,39 His prediction, backed by a stable transistor density relationship and straightness of

the logarithmic line, has remained true for over the last fifty years. As referenced in an earlier

Intel processor chart, the number of transistors in an Intel chip grew at a staggering rate. Chip

prices have remained relatively constant, transistor prices steadily dropped, and chip feature

sizes decreased to near atomic levels.

Several Laws attributed to Gordon Moore discussed the exponential

nature of transistor density, size and clock speed. In 1995, Moore

published his third “Law” paper which in part said the biggest threat

to his projection was not miniaturization hurdles, believing the

engineering problem could be solved, but the financial aspect of that progression.40 He noted a

piece of equipment cost $12,000 in 1968 and $12 million by 2001 – a trend of increased costs

threatened innovation.

A 1997 Integrated Circuit Engineering Corporation report

supports Moore’s conclusions.41 The cost of 150mm

wafers tripled from $731 in 1980 to $2,375 by 1995, due

mostly to increases in research and development (R&D)

and manufacturing costs of goods sold. Non-R&D labor expense showed little change during

that period. Moore encouraged engineers to innovate with an eye towards affordability. His

Laws evolved as data became available.

This plot shows the exponential growth in transistor

density, and the status of performance, clock

speed, power consumption and logical core

count from 1971 to today.42 You can see Moore’s

transistor prediction still holds, even as operating

frequency and power limits were reached around

2005 when it became impractical to cool ultra-dense

2019 Dell Technologies Proven Professional Knowledge Sharing 12

a strand of human DNA), and 14 atoms can't carry enough current.49,50

Moore’s Law depends on the size of a silicon atom. Silicon transistors cannot exist below 1nm

since the source and drain gap would only be two atoms. Combining germanium with silicon

allows electrons to have added mobility and permits faster current flow, extending the Law.

The von Neumann Controversy

As revolutionary as von Neumann’s architecture was, it’s reliance on a single, relatively small

path separating the CPU’s control unit and main memory forces instruction and execution cycles

to alternate. Processor speed and memory density increased yet lagging transfer rates created

a bottleneck. His design forced the CPU to have idle periods as it waits on

memory retrieval. By 2010, CPUs operated sub-optimally, “starved” for data as

they executed instructions 100 times faster than retrieving items from memory.51

Chip makers guided by Moore’s vision and commitment to von Neumann compatible software

found ways to cut the time CPUs waited for memory transfers.

Von Neumann Memory Bottlenecks

The von Neumann design has three main bottlenecks that all involve memory access:

1. Combining instructions and data in the same memory requires the processor to get its next

instruction from memory. The request traverses the memory bus

(motherboard wires) with data latency traffic jams and slow retrieval compared

to CPU speed. Regardless of the CPU horsepower, memory bus access

speed limits every request. It takes longer to fetch an instruction than it does to execute it,

and when a data-hungry program demands data, the memory bus delays the processor.52

2. A CPU handling large data volumes have relatively few registers to store it. For instance, to

spell check a document, a program compares each word to a memory-resident dictionary. It

can cause an I/O bottleneck if the processor is idle waiting on memory. A broader memory

bus decreases traffic but can increase the die package and cause electrical crosstalk.53

3. While the amount of physical memory has increased, its speed relative to

CPU speed has created a gap. Often, adding memory doesn’t increase

processing throughput. Instruction and data memory retrieval speed can

throttle the processor, and this gap has grown.

Bottleneck - the
part of a bottle
that slows the
flow of liquid.

2019 Dell Technologies Proven Professional Knowledge Sharing 16

Storage-Class Memory

Regardless of processor speed, if a chip’s instructions aren't in its

registers, they load from slower subsystems. This chart shows

some of the innovation that allows Moore’s Law to continue. A

CPU processes an instruction in under 10ns. Memory access

adds an 80ns delay or the time it takes to process eight

instructions.65 Intel “Optane” storage class memory resides between DRAM and an SSD or

HDD disk.66 It is a little slower than main memory but it is persistent like an SSD or HDD. Rather

than wait for 90µs+ for an SSD or 10ms+ for an HDD to fetch data and instructions, Optane

memory responds in 10µs – 10X faster than the fastest SSD.67

Increasing Clock Speed

As we discussed earlier, accessing off-chip memory impacts a computer’s processing power.

Key architectural issues such as instruction set richness, caching, execution units, pipelining,

and branch prediction impact the workload a system can accomplish. Most people focus on the

processor’s clock speed.

Your personal computer’s processor has a measurement of clock speed in gigahertz (GHz or

1,000,000,000Hz) such as 2.4GHz. That translates into a system clock of 2.4 billion ticks or

pulses per second. It was the speed a CPU could perform operations, like adding two numbers.

A faster clock executes more instructions every second than a slower one. It is analogous to a

conductor who uses their baton to increase or

decrease the tempo of a composer’s sheet music.

Here is a clock cycle comparison of 10, 20 and

40MHz. One hertz is one full cycle in one second. Clock speed is not unlimited.

Electromagnetic wave speed (not actual

electrons) governs processors and is set by

the system clock.68 This “Clock Frequency

Over Time” logarithmic trend chart shows

clock frequency leveled in 2007 at 4.6GHz.69

Wave speed is dependent on IC wire gauge 1

10

100

1,000

10,000

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

Clock Frequency Over Time

www.hi-jena.de
www.hi-mainz.de

Many Core
• Performance gains through parallelism
– Thread Level:
• More cores running tasks in parallel

– Core Level:
• Execution units are vector machines

• Having one set of instructions and data we
distinguish
– SIMT: Single Instruction

Multiple Threads
– SIMD: Single Instruction

Multiple Data
16.03.23

www.hi-jena.de
www.hi-mainz.de

SIMD
• Vector Execution of Scalar Code
• Works on registers

16.03.23

A word on terminology
� SIMD == “one instruction Æ several operations”
� “SIMD width” == number of operands that fit into a register
� No statement about parallelism among those operations
� Original vector computers: long registers, pipelined execution, but no

parallelism (within the instruction)

Today
� x86: most SIMD instructions fully parallel

“Short Vector SIMD”
Some exceptions on some archs (e.g., vdivpd)

� NEC Tsubasa: 32-way parallelism but
SIMD width = 256 (DP)

SIMD terminology

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C[
0]

C[
1]

C[
2]

C[
3]

+

+

+

+

R0 R1 R2

(c) NHR@FAU 2021SIMD 2

SIMD (c) NHR@FAU 2021 3

Scalar execution units

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}
Scalar execution

Register widths
• 1 operand

= +

SIMD (c) NHR@FAU 2021 4

Data-parallel execution units (short vector SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register widths
• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

SIMD execution

= +

Best code requires vectorized
LOADs, STOREs, and arithmetic!

www.hi-jena.de
www.hi-mainz.de

SIMD
• Width of registers depend on CPU
– 128 Bit SSE
– 256 Bit AVX
– 512 Bit AVX512

• Instruction set also
depends on CPU

• Theoretical Peak
(Himster2)
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz

• 16 (cores) x 8 (doubles in regs) x 2 (fma)
x 2 (fma units) x 2.1 GHz = 1000 Gflops/s

• 2 Tflops per node
16.03.23

www.hi-jena.de
www.hi-mainz.de

What to Expect?
• MogonII/HIMster2 still in Top500 List
• Pos 364
• Rtheo = 2800 Tflops
• Rlinpack = 1967 Tflops
• @ 657 kWatt
• 70 % of peak

looks promising
• Linpack not very

common work load

16.03.23

www.hi-jena.de
www.hi-mainz.de

Performance Models
• Roofline Model
– Assume perfect overlap of data transfer and ops
– Latency is ignored
– Count amount of „work“ against „data"
– Data: 2 x load + 1 store = 24 byte (30)

– Work: 1 x add = 1 Flop
Intensity: Work/Data = 1 Flop/24 B

– Roofline Model:
• Take minimum of applicable Peak perf vs BW of slowest

data path (suppose 190 Gbyte/s)
• Proofline= min(2 x 1075.2 Gflops, 1/24 x 190 Gflops)

= 8 Gflops < 1 % peak
16.03.23

www.hi-jena.de
www.hi-mainz.de

Roofline Model

16.03.23

• Ways to improve:
• Increase Intensity

Remember
I = Work/Data

• Avoid slow paths
Keep data in caches

Latency and bandwidth in modern computer environments

Avoiding slow data paths
is the key to most
performance
optimizations!

(C) 2010-2020
RRZE,LRZ Code optimization 14

1 GB/s

HPC plays here

Estimating loop performance

▪ “Roofline model”
▪ Calculate

𝑙 = min 1,
𝐵𝑚
𝐵𝑐

This is the fraction of peak performance that the loop can
achieve

▪ Multiply by 𝑃𝑝𝑒𝑎𝑘:

𝑃 = min 𝑃𝑝𝑒𝑎𝑘,
𝑏𝑠
𝐵𝑐

▪ This is a simple model to get an upper limit
for loop performance
• 𝐼 > 𝐵𝑚−1 → core-bound code
• 𝐼 < 𝐵𝑚−1 → memory-bound code

(C) 2010-2020
RRZE,LRZ Code optimization 22

𝐵𝑚−1

www.hi-jena.de
www.hi-mainz.de

Roofline Model
• Simple model tells you „speed of light“

for your kernel
• Refinements Possible:
– Take into account cache hierarchy
– Take into account latencies
– Take into account pipeline design of CPUs

• Usually I stop here at the simple model and
try to get to „speed of light“ according to
Roofline

16.03.23

www.hi-jena.de
www.hi-mainz.de

Memory Alignment - Interlude
• Usually performance problem may be

attributed to bad memory layout
• Ideal is stride-1 access pattern
• NUMA
– Avoid “foreign memory“
– Process pinning important
– Topic for HPC-seminar?

16.03.23

www.hi-jena.de
www.hi-mainz.de

Profiling
• I want to SIMD my code, where do I start?
– Profile code
• Manually using timings
• Automatically using some tool

– Instrumentation
» Gprof, TAU …

– Sampling
» Intel Vtune, perf …

16.03.23

www.hi-jena.de
www.hi-mainz.de

Perf
• Perf is a profiling tool already installed on

most Linux systems
• No need to recompile binary
• May attach to running processes

gcc -g <source> -o <bin>
perf record ./<bin>
perf report

16.03.23

www.hi-jena.de
www.hi-mainz.de

Perf
• Attach to running process

perf top –p <pid>
• Right:

Sample of Jupyter
Notebook run
– HDF5 reading
– Creating new Dict
– Moving data

around
– Some kernel thread messing around at 6 %

(Omnipath)
16.03.23

www.hi-jena.de
www.hi-mainz.de

TAU
• Tuning and Analysis Tookit
• Application is instrumented in source code

automatically by replacing CC with tau_cc.sh
CC=tau_cc.sh -optTauSelectFile=./select.file

• Works with MPI

16.03.23

www.hi-jena.de
www.hi-mainz.de

Profiling General
• Helps you identify HotSpots
• Helps you identify bottlenecks (performance

counters)
• Be careful:
– Overhead due to

instrumentation or
sampling

• Notable alternative

16.03.23

www.hi-jena.de
www.hi-mainz.de

Profiling Caveats
• For the experts:
– Timing code not easy on OutOfOrder execution

archs and different Clocks
– rdtsc: Instruction getting time stamp counters
– Use serializing muops like cpuid

• I haven‘t seen big differences!
Maybe if you want cycle accurate
measurements?

16.03.23

www.hi-jena.de
www.hi-mainz.de

Assembler Coding
• Pros assembler:
– Control over what is done
– You can do better than the compiler (most of the

time)

• Cons assembler:
– Hard to maintain
– Hard to read
– Have to take care of everything

• Only use:
– For best possible perf
– For small kernels

16.03.23

www.hi-jena.de
www.hi-mainz.de

Assembler
• Goals:
– Learn how to code Assembler
– Write a simple programm squaring a vector

• Notable Omissions:
– Will not discuss in detail pipelining or latency

hiding

16.03.23

$ osaca –-arch IVB PATH/TO/FILE

Throughput Analysis Report

X - No information for this instruction in database

* - Instruction micro-ops not bound to a port

Port Binding in Cycles Per Iteration:

| Port | 0 | 1 | 2 | 3 | 4 | 5 |

| Cycles | 2.00 | 1.00 | 5.0 | 5.0 | 2.0 | 1.00 |

Ports Pressure in cycles

| 0 | 1 | 2 | 3 | 4 | 5 |

| | | 0.50 | 0.50 | 1.00 | | movl $0x0,-0x24(%rbp)

| | | | | | | jmp 10b <scale+0x10b>

| | | 0.50 | 0.50 | | | mov -0x48(%rbp),%rax

| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%edx

| 0.33 | 0.33 | | | | 0.33 | movslq %edx,%rdx

| | | 0.50 | 0.50 | | | vmovsd (%rax,%rdx,8),...

| 1.00 | | 0.50 | 0.50 | | | vmulsd -0x50(%rbp),...

| | | 0.50 | 0.50 | | | mov -0x38(%rbp),%rax

| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%edx

| 0.33 | 0.33 | | | | 0.33 | movslq %edx,%rdx

| | | 0.50 | 0.50 | 1.00 | | vmovsd %xmm0,...

| | | | | | | X addl $0x1,-0x24(%rbp)
| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%eax

| 0.33 | 0.33 | 0.50 | 0.50 | | 0.33 | cmp -0x54(%rbp),%eax

| | | | | | | jl e4 <scale+0xe4>

Total number of estimated throughput: 5.0

#define INSTR vcvtsi2ss
#define NINST 32
#define N edi
#define i r8d
.intel_syntax noprefix
.globl ninst
.data
ninst:
.long NINST
.align 32
PI:
.long 0xf01b866e, 0x400921f9
.text
.globl latency
.type latency, @function
.align 32
loop:

inc i
INSTR xmm3, xmm0, eax
INSTR xmm4, xmm1, ebx
INSTR xmm5, xmm2, ecx
INSTR xmm6, xmm0, eax
INSTR xmm7, xmm1, ebx
INSTR xmm8, xmm2, ecx

#define INSTR vcvtsi2ss
#define NINST 32
#define N edi
#define i r8d
.intel_syntax noprefix
.globl ninst
.data
ninst:
.long NINST
.align 32
PI:
.long 0xf01b866e, 0x400921f9
.text
.globl latency
.type latency, @function
.align 32
loop:

inc i
INSTR xmm3, xmm0, eax
INSTR xmm4, xmm1, ebx
INSTR xmm5, xmm2, ecx
INSTR xmm6, xmm0, eax
INSTR xmm7, xmm1, ebx
INSTR xmm8, xmm2, ecx

addl-mem_imd

(TP & LT)

www.hi-jena.de
www.hi-mainz.de

Assembler
• Actually no need to write assembler to use

vector units
Intrinsics:
– Look like ordinary function calls working on vector

memory, e.g. __m256
– We do not have to deal with

registers
– Could lead to spilling (or other

things)

• We‘ll do the hard thing

16.03.23

www.hi-jena.de
www.hi-mainz.de

Assembler
• Example:

We want to do
• Everything double
• Vectorize:

We need to do
• In AVX can load 4 doubles

How?

16.03.23

A word on terminology
� SIMD == “one instruction Æ several operations”
� “SIMD width” == number of operands that fit into a register
� No statement about parallelism among those operations
� Original vector computers: long registers, pipelined execution, but no

parallelism (within the instruction)

Today
� x86: most SIMD instructions fully parallel

“Short Vector SIMD”
Some exceptions on some archs (e.g., vdivpd)

� NEC Tsubasa: 32-way parallelism but
SIMD width = 256 (DP)

SIMD terminology

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C[
0]

C[
1]

C[
2]

C[
3]

+

+

+

+

R0 R1 R2

(c) NHR@FAU 2021SIMD 2

SIMD (c) NHR@FAU 2021 4

Data-parallel execution units (short vector SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register widths
• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

SIMD execution

= +

Best code requires vectorized
LOADs, STOREs, and arithmetic!

No Intraloop Dependency!

www.hi-jena.de
www.hi-mainz.de

Assembler
• Have different options (NASM, etc.)

16.03.23

SIMD (c) NHR@FAU 2021 4

Data-parallel execution units (short vector SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register widths
• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

SIMD execution

= +

Best code requires vectorized
LOADs, STOREs, and arithmetic!

Store operators Load operators

Clobber

• Need 2 AVX Registers YMM0 & YMM1
• Need 2 Loads and 1 Store
• Need 1 Add on those registers
• Total 4 instructions to add 4+4 doubles
• Dependency:

• Loads before add
• Add before store
• Store at the end

x[0]
x[1]
x[2]
x[3]

y[0]
y[1]
y[2]
y[3]

Do not delete

www.hi-jena.de
www.hi-mainz.de

Assembler
• What we did is basically loop-unrolling

• Compiler could do that in simple cases
• OpenMP Pragmas to tell compilers:
– No Dependency:

#pragma omp simd

• Need a lot of flags to get the above

16.03.23

www.hi-jena.de
www.hi-mainz.de

Assembler
• gcc ex2.c -O3 -march=skylake-avx512 -S

• Not using ZMM registers!
• gcc ex2.c -O3 -march=skylake-avx512 -mprefer-vector-width=512 -S

16.03.23

Not clear why. Frequency dropped @ AVX512
Note vmovupd vs vmovapd!

www.hi-jena.de
www.hi-mainz.de

Assembler
• Aligned Mem Access vmovap(sd)

Memory must be aligned at cache line
boundary

• Avoids cache line splits

• Not a drastic penalty anymore

16.03.23

www.hi-jena.de
www.hi-mainz.de

Assembler
• Example with Intraloop dependency

• Every iteration needs result of the one before
• Add accumulators

• 4-Way vectorization final horizontal add

16.03.23

www.hi-jena.de
www.hi-mainz.de

Real World Example
• Lattice QCD Add 2 SU(3) Vectors

16.03.23

#define _vector_add(r,s1,s2) \
(r).c1.re=(s1).c1.re+(s2).c1.re; \
(r).c1.im=(s1).c1.im+(s2).c1.im; \
(r).c2.re=(s1).c2.re+(s2).c2.re; \
(r).c2.im=(s1).c2.im+(s2).c2.im; \
(r).c3.re=(s1).c3.re+(s2).c3.re; \
(r).c3.im=(s1).c3.im+(s2).c3.im

www.hi-jena.de
www.hi-mainz.de

Real World Example
• Lattice QCD Add 2 SU(3) Vectors Intrinsics

16.03.23

vector4double v1,v2;
#define _vector_add_qpx(r,s1,s2) \

v1=vec_lda(0,&((s1).c1.re)); \
v2=vec_lda(0,&((s2).c1.re)); \
vec_sta(vec_add(v1,v2),0,&((r).c1.re)); \
v1=vec_ld2a(0,&((s1).c3.re)); \
v2=vec_ld2a(0,&((s2).c3.re)); \
vec_st2a(vec_add(v1,v2),0,&((r).c3.re));

www.hi-jena.de
www.hi-mainz.de

Real World Example
• Profile to identify HotSpots

16.03.23

www.hi-jena.de
www.hi-mainz.de

Real World Example
• Can get complicated

16.03.23

static vector4double perm1={2.000000,2.250000,3.000000,3.250000};
static vector4double perm2={2.500000,2.750000,3.500000,3.750000};
.
.
v1=vec_ld2a(0,&((*m).u[6]));
v2=vec_lda(0,&((*m).u[8]));
v3=vec_lda(0,&((*m).u[12]));
v4=vec_lda(0,&((*m).u[16]));
v5=vec_lda(0,&((*m).u[20]));
/* First 4 Components */

v100=vec_perm(v10,v10,perm0011); /*(u0,u0,u1,u1) */
s10=vec_sldw(s1,s2,2); /*s1.re, s1.im, s2.re, s2.im*/
s11=vec_sldw(s2,s1,2); /*s2.re, s2.im, s1.im, s1.im*/
v12=vec_perm(v2,v4,perm1); /*(u8,u9,u16,u17)*/
v13=vec_perm(v2,v4,perm2); /*(u10,u11,u18,u19)*/
v14=vec_perm(v3,v5,perm1); /*(u12,u13,u20,u21)*/
v15=vec_perm(v3,v5,perm2); /*(u14,u15,u22,u23)*/
r10=vec_xmul(v100,s10);
r11=vec_xxnpmadd(s11,vec_mul((vector4double)(1,1,1,-1),v1),vec_xmul(v1,s11));
r12=vec_xxnpmadd(v12,s3,vec_xmul(s3,v12));
r13=vec_xxnpmadd(v13,s4,vec_xmul(s4,v13));
r14=vec_xxnpmadd(v14,s5,vec_xmul(s5,v14));
r15=vec_xxnpmadd(v15,s6,vec_xmul(s6,v15));

r100=vec_add(r10,r11);
r101=vec_add(r12,r13);
r102=vec_add(r14,r15);
r110=vec_add(r100,r101);
r111=vec_add(r110,r102);
vec_sta(r111,0,&((*r).c1.c1.re));

Further Improvements:
Mix Loads and (F)MADs!
Order data dependency according to
Instruction latency. (See Bagel maybe?)
This can only be done in assembly, I guess
Not Sure how the compiler orders regs?

Bad Version not using Multiply-Add!
This was version 3. Changed in v4.

www.hi-jena.de
www.hi-mainz.de

Improvements - Version 0.4

Routine -O3 -qstrict -O3 –qstrict -DQPXD -O2

Qhat 688 (2.08x) 1428 640 (2.23x)

Qhat_blk 865 (2.15x) 1859 691 (2.69x)

Qnohat 562 (2.38x) 1335 499 (2.68x)

Qhat_dble 436 (1.78x) 774 438 (1.77x)

Qhat_blk_dble 576 (1.89x) 1089 566 (1.92x)

Qnohat_dble 403 (1.71x) 690 392 (1.76x)

• After 4 weeks of tuning
• Using timing programs from devel/dirac subdirectory in DD-HMC
• Local Lattice 16x16x16x16
• Processorgrid 4x2x2x2
• Results in Mflops/process
• Speedup for QPXD in brackets

• Using Prefetch by data cache block touch to preload __dcbt
• Set pipeline depth should improve DP code?

www.hi-jena.de

